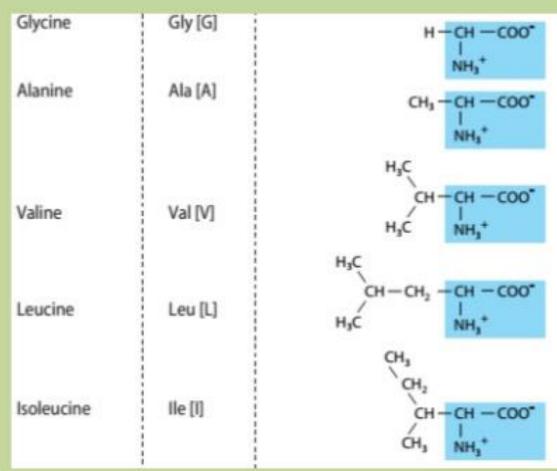

AMINO ACIDS BY:NEHA MEGHANI DEPARTMENT OF BIOCHEMISTRY

Amino Acid

- It's a group of organic compounds containing two functional groups – amino (-NH2) and carboxyl group (-COOH)
- Its also called Zwitter Ion– both acidic and basic functional group (dipolar ion)


- This property is known as amphoteric and are often called ampholytes
- Neither humans nor any other higher animals can synthesize 10 of the 20 common amino acids – Essential Amino acids

Classification

- Amino acid has been classified under various ways
 - Structure
 - With side chain containing Aliphatic Side Chains
 - With Side Chains Containing Hydroxylic (OH) Groups
 - With Side Chains Containing Sulfur Atoms
 - With Side Chains Containing Acidic Groups or Their Amides
 - With Side Chains Containing Basic Groups
 - Containing Aromatic Rings
 - Imino Acid
 - Polarity
 - Non Polar
 - Polar
 - Nutritional
 - Essential and Non-essential

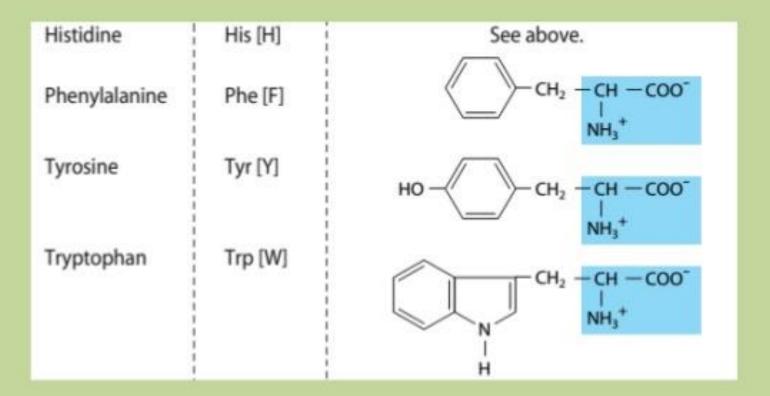
Side chain containing Aliphatic Side Chains

- Simplest amino acids
- Contains branched chain of hydrocarbons

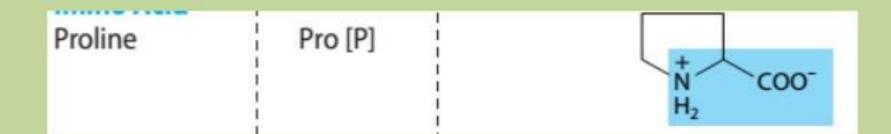
Side Chains Containing Hydroxylic (OH) Groups

Serine	Ser [S]	CH ₂ - CH - COO" OH NH ₃ +
Threonine	Thr [T]	CH ₃ — CH — CH — COO" OH NH ₃ +
Tyrosine	Tyr [Y]	See below.

Side Chains Containing Sulfur Atoms


Side Chains Containing Acidic Groups or Their Amides

Aspartic acid	Asp [D]	⁻ OOC — CH ₂ — CH — COO ⁻ NH ₃ ⁺
Asparagine	Asn [N]	$\begin{array}{c} H_2 N - C - C H_2 - C H - C O O^- \\ \parallel \\ O & N H_3^+ \end{array}$
Glutamic acid	Glu [E]	$OOC - CH_2 - CH_2 - CH - COO $
Glutamine	Gln [Q]	$\begin{array}{c} H_2 N - C - C H_2 - C H_2 - C H - C O O^{-1} \\ H_2 O & H_3^+ \end{array}$

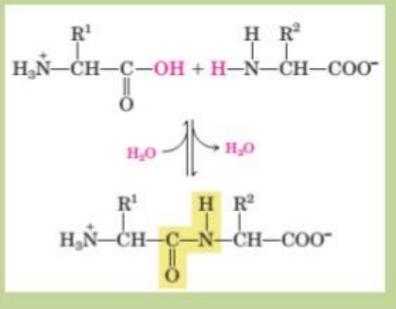

Side Chains Containing Basic Groups

Arginine	Arg [R]	$\begin{array}{c} H - N - CH_2 - C$
Lysine	Lys [K]	
Histidine	His [H]	$ \begin{array}{c c} & -CH - COO^{-} \\ HN & N \\ HN & NH_{3}^{+} \end{array} $

Containing Aromatic Rings

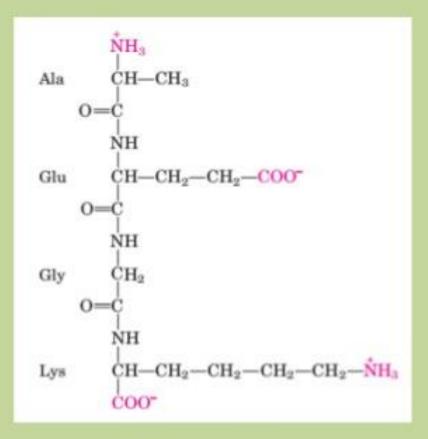
Imino Acid

Classification : Polarity


- Non-polar group : No charge on R group. Ex: Alanine, leucine. Isoleucine, valine, methionine, phenylalanine, tryptophan and proline
- Polar group
 - No charge on R : no charge on R but posses group such as hydroxyl, sulfhydryl and amide. Ex: Glycine, serine, threonine, cysteine, glutamine, asparigine and tyrsoine
 - Positive R- Lysine, arginine, and histidine
 - Negative R asparatic acid and glutamic acid

Essential Amino Acid (EAA)

- It cant be synthesized in the body and therefore need to be supplied through diet
- Proper growth and maintenance of the individual
- Ex. Arginine, Valine, Histidine, Isoleucine, leucine, lysine, Methionine, Phenylalanine, Threonine, Tryphtophan
- Mnemonics : AV hill, MP TT
- Semi-essential amino acid: Adults can synthesize 2 amino acid and not by growing children. Ex: Arginine and histidine
- So in all 8 are essential and 2 semi essential


PEPTIDES

- Two AA covalently joined through a substituted amide linkage – peptide bond
- Dehydration removal of H₂O
 - OH⁻ Carboxyl group of one AA
 - H⁺ from amino group of another AA
- Example of a condensation reaction – common biological reactions

POLYPEPTIDES

- Two AA reacts to form dipeptides, Three AA can be joined by two peptide bonds to form a tripeptide and so on.
- Oligopeptide: When a few AA are joined by various peptide linkage
- When many amino acids are joined, the product is called a polypeptide.
- Proteins may have thousands of amino acid residues

Tetrapeptide

THANK YOU