
Why choose this book?

It’s written in plain English
Put off by the jargon? Don’t worry, we
keep things straight forward.

It’s easy to follow
Clear, step-by-step instructions make
learning simple.

It’s in full color
This book’s printed in color to make it
simpler to use and easier on the eye.

And it’s fantastic value
Do we need to say any more?

Let these icons make
it even easier

Wherever you see one of these icons you know there’s
a handy tip to spice up your learning, fl ag something
to remember or ward you away from potential dangers.

Look inside

£10.99 UK / $14.99 US / $16.95 CN

www.ineasysteps.com

ISBN-13: 978-1-84078-432-9

9 7 8 1 8 4 0 7 8 4 3 2 9

99415

It’s fully illustrated
We don’t just tell you how to do it, we
also show you how.

C++ Programming in easy steps instructs how to
program in the powerful C++ language assuming no
prior knowledge of programming. Now, in its fourth
edition, this guide gives complete examples that
illustrate each aspect with colorized source code.

C++ Programming in easy steps begins by explaining
how to install a free C++ compiler so you can quickly
begin to create your own executable programs by
copying the book’s examples. It demonstrates all the
C++ language basics before moving on to provide
examples of Object Oriented Programming (OOP).

The book concludes by demonstrating how to use your
acquired knowledge to create programs graphically
in the free Microsoft Visual C++ Express Integrated
Development Environment (IDE).

“ ”...the book is an excellent resource...

PC Extreme
Refers to this series

4th
Edition

C
+

+
 P

R
O

G
R

A
M

M
IN

G

m i k e m c g r a t h

FULLY ILLUSTRATED

EASY TO FOLLOW

PLAIN ENGLISH

IN FULL COLOR

Fourth Edition

 C++
Programming

38
Pe

rf
or

m
in

g
op

er
at

io
ns

39

Setting precedence …cont’d

Operator: Direction:

()

->
Function call
Class pointer

[]

.
Array index
Class member LTR

!

--

+

sizeof

Logical NOT
Decrement
Positive sign
Size of

*

++

-

&

Pointer
Increment
Negative sign
Address of

RTL

*

%
Multiply
Modulus

/ Divide
LTR

+ Add - Subtract LTR
<=

>=
Less or equal
Greater or equal

<

>
Less than
Greater than LTR

== Equality != Inequality LTR
&& Logical AND LTR
|| Logical OR LTR
?: Ternary RTL

 += -= *= /= %= Assignments RTL
, Comma LTR

The -> class pointer
and the . class member
operators are introduced
later in this book – but
they are included here
for completeness.

 Operator precedence determines the order in which C++ evaluates
expressions. For example, in the expression a = 6 + 8 * 3 the order
of precedence determines that multiplication is completed � rst.

� e table below lists operator precedence in descending order
– those on the top row have highest precedence, those on lower
rows have successively lower precedence. � e precedence of
operators on the same row is determined by their position in
the expression, according to the direction listed for that operator
– Left-To-Right (LTR) or Right-To-Left (RTL).

In addition to the operators in this table there are a number of
“bitwise” operators, which are used to perform binary arithmetic.
� is is outside the scope of this book but there is a section
devoted to binary arithmetic in “C Programming in easy steps”.
� ose operators perform in just the same way in C++.

Operator precedence is demonstrated in the program opposite.

The * multiply operator is
on a higher row than the
+ addition operator – so
in the expression
a=6+8*3 multiplication
is completed fi rst, before
the addition.

Do not rely upon default
precedence as it may
vary between compilers
– always use parentheses
to clarify expressions.

�1 Start a new program by specifying the C++ library classes
to include and a namespace pre� x to use
#include <iostream>
using namespace std ;

�2 Add a main function continuing a � nal return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

�3 In the main function, declare an integer variable
initialized with the result of an expression using default
precedence, then output the result
int num = 1 + 4 * 3 ;
cout << endl << “Default order: ” << num << endl ;

�4 Next assign the result of this expression to the variable
using explicit precedence, then output the result
num = (1 + 4) * 3 ;
cout << “Forced order: ” << num << endl << endl ;

�5 Assign the result of a di� erent expression to the variable
using direction precedence, then output the result
num = 7 - 4 + 2 ;
cout<< “Default direction: ” << num << endl ;

�6 Now assign the result of this expression to the variable
using explicit precedence, then output the result
num = 7 - (4 + 2) ;
cout << “Forced direction: ” << num << endl ;

�7 Save, compile and run the program to see the output

++

precedence.cpp

M i k e M c G r a t h

C++
Programming

Fourth Edition

In easy steps is an imprint of In Easy Steps Limited
Southfield Road . Southam
Warwickshire CV47 0FB . United Kingdom
www.ineasysteps.com

Copyright © 2011 by In Easy Steps Limited. All rights reserved. No part
of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording,
or by any information storage or retrieval system, without prior
written permission from the publisher.

Notice of Liability
Every effort has been made to ensure that this book contains accurate
and current information. However, In Easy Steps Limited and the
author shall not be liable for any loss or damage suffered by readers
as a result of any information contained herein.

Trademarks
All trademarks are acknowledged as belonging to their respective
companies.

In Easy Steps Limited supports The Forest Stewardship Council (FSC),
the leading international forest certification organisation. All our titles
that are printed on Greenpeace approved FSC certified paper carry the
FSC logo.

Printed and bound in the United Kingdom

ISBN 978-1-84078-432-9

Fourth Edition

Contents

1

2

3

Contents

Getting started	 7	

Introducing C++	 8
Installing a compiler	 10
Writing your first program	 12
Compiling & running programs	 14
Creating variables	 16
Employing variable arrays	 18
Employing vector arrays	 20
Declaring constants	 22
Summary	 24

Performing operations	 25	

Doing arithmetic	 26
Assigning values	 28
Comparing values	 30
Assessing logic	 32
Examining conditions	 34
Establishing size	 36
Setting precedence	 38
Casting data types	 40
Summary	 42

Making statements	 43	

Branching with if	 44
Switching branches	 46
Looping for	 48
Looping while	 50
Declaring functions	 52
Passing arguments	 54
Overloading functions	 56
Optimizing functions	 58
Summary	 60

5

6

4

7

Handling strings	 61	

Creating string variables	 62
Getting string input	 64
Solving the string problem	 66
Discovering string features	 68
Joining & comparing strings	 70
Copying & swapping strings	 72
Finding substrings	 74
Replacing substrings	 76
Summary	 78

Reading and writing files	 79	

Writing a file	 80
Appending to a file	 82
Reading characters & lines	 84
Formatting with getline	 86
Manipulating input & output	 88
Predicting problems	 90
Recognizing exceptions	 92
Handling errors	 94
Summary	 96

Pointing to data	 97	

Understanding data storage	 98
Getting values with pointers	 100
Doing pointer arithmetic	 102
Passing pointers to functions	 104
Making arrays of pointers	 106
Referencing data	 108
Passing references to functions	 110
Comparing pointers & references	 112
Summary	 114

Creating classes and objects	 115	

Encapsulating data	 116
Creating an object	 118
Creating multiple objects	 120
Initializing class members	 122
Overloading methods	 124
Inheriting class properties	 126
Calling base constructors	 128
Overriding base methods	 130
Summary	 132

8

9

10

Harnessing polymorphism	 133	

Pointing to classes	 134
Calling a virtual method	 136
Directing method calls	 138
Providing capability classes	 140
Making abstract data types	 142
Building complex hierarchies	 144
Isolating class structures	 146
Employing isolated classes	 148
Summary	 150

Processing macros	 151	

Exploring compilation	 152
Defining substitutes	 154
Defining conditions	 156
Providing alternatives	 158
Guarding inclusions	 160
Using macro functions	 162
Building strings	 164
Debugging assertions	 166
Summary	 168

Programming visually	 169	

Generating random numbers	 170
Planning the program	 172
Assigning static properties	 174
Designing the interface	 176
Initializing dynamic properties	 178
Adding runtime functionality	 180
Testing the program	 182
Deploying the application	 184
Summary	 186

Index	 187	

Foreword
The creation of this book has provided me, Mike McGrath, a welcome opportunity to update
my previous books on C++ programming with the latest techniques. All examples I have given
in this book demonstrate C++ features supported by current compilers on both Windows and
Linux operating systems, and in the Microsoft Visual Studio development suite, and the book’s
screenshots illustrate the actual results produced by compiling and executing the listed code.

Conventions in this book

In order to clarify the code listed in the steps given in each example I have adopted certain
colorization conventions. Components of the C++ language itself are colored blue, numeric and
string values are red, programmer-specified names are black, and comments are green, like this:

// Store then output a text string value.
string myMessage = “Hello from C++!” ;
cout << myMessage ;

Additionally, in order to identify each source code file described in the steps a colored icon and
file name appears in the margin alongside the steps:

I sincerely hope you enjoy discovering the powerful expressive possibilities of C++
Programming and have as much fun with it as I did in writing this book.

Mike McGrath

Grabbing the source code

For convenience I have placed source code files from the examples featured in this book into
a single ZIP archive, providing versions for Windows and Linux platforms plus the Microsoft
Visual Studio IDE. You can obtain the complete archive by following these easy steps:

l1	 Browse to http://www.ineasysteps.com then navigate to the “Resource Center” and
choose the “Downloads” section

l2	 Find “C++ Programming in easy steps, 4th Edition” in the “Source Code” list, then
click on the hyperlink entitled “All Code Examples” to download the archive

l3	 Now extract the archive contents to any convenient location on your computer

++

main.cpp header.h

Welcome to the exciting world of C++
programming. This chapter demonstrates
how to create a simple C++ program and
how to store data within a program.

Getting started1

8
G

et
ti

ng
 s

ta
rt

ed

Introducing C++
C++ is an extension of the C programming language that was first
implemented on the UNIX operating system by Dennis Ritchie
way back in 1972. C is a flexible programming language that
remains popular today and is used on a large number of platforms
for everything from microcontrollers to the most advanced
scientific systems.

C++ was developed by Dr. Bjarne Stroustrup between 1983-1985
while working at AT&T Bell Labs in New Jersey. He added
features to the original C language to produce what he called
“C with classes”. These classes define programming objects with
specific features that transform the procedural nature of C into
the object-oriented programming language of C++.

The C programming language was so named as it succeeded
an earlier programming language named “B” that had been
introduced around 1970. The name “C++” displays some
programmers’ humor because the programming ++ increment
operator denotes that C++ is an extension of the C language.

C++, like C, is not platform-dependent so programs can be
created on any operating system. Most illustrations in this book
depict output on the Windows operating system purely because it
is the most widely used desktop platform. The examples can also
be created on other platforms such as Linux or MacOS.

Why learn C++ programming?

The C++ language is favored by many professional programmers
because it allows them to create fast, compact programs that are
robust and portable.

Using a modern C++ Integrated Development Environment
(IDE), such as Microsoft’s Visual C++ Express Edition, the
programmer can quickly create complex applications. But to use
these tools to greatest effect the programmer must first learn quite
a bit about the C++ language itself.

This book is an introduction to programming with C++, giving
examples of program code and its output to demonstrate the
basics of this powerful language.

Microsoft’s free Visual
C++ Express IDE is
used in this book to
demonstrate visual
programming.

A powerful programming
language (pronounced
“see plus plus”) designed
to let you express ideas.

9
…cont’d

Should I learn C first?

Opinion is divided on the question of whether it is an advantage
to be familiar with C programming before moving on to C++. It
would seem logical to learn the original language first in order to
understand the larger extended language more readily. However,
C++ is not simply a larger version of C as the approach to object-
oriented programming with C++ is markedly different to the
procedural nature of C. It is, therefore, arguably better to learn
C++ without previous knowledge of C to avoid confusion.

This book makes no assumption that the reader has previous
knowledge of any programming language so it is suitable for the
beginner to programming in C++, whether they know C or not.

If you do feel that you would benefit from learning to program in
C, before moving on to C++, we recommend you try the examples
in “C Programming in easy steps” before reading this book.

Standardization of C++

As the C++ programming language gained in popularity it
was adopted by many programmers around the world as their
programming language of choice. Some of these programmers
began to add their own extensions to the language so it became
necessary to agree upon a precise version of C++ that could be
commonly shared internationally by all programmers.

A standard version of C++ was defined by a joint committee
of the American National Standards Institute (ANSI) and the
Industry Organization for Standardization (ISO). This version is
sometimes known as ANSI C++ and is portable to any platform
and to any development environment.

The examples given in this book conform to ANSI C++.
Example programs run in a console window, such as the
Command Prompt window on Windows systems or a shell
terminal window on Linux systems, to demonstrate the
mechanics of the C++ language itself. An example in the final
chapter illustrates how code generated automatically by a visual
development tool on the Windows platform can, once you’re
familiar with the C++ language, be edited to create a graphical
windowed application.

“ISO” is not an acronym
but is derived from
the Greek word “isos”
meaning “equal” – as in
“isometric”.

10
G

et
ti

ng
 s

ta
rt

ed

Installing a compiler
C++ programs are initially created as plain text files, saved with
the file extension of “.cpp”. These can be written in any text editor,
such as Windows’ Notepad application or the Vi editor on Linux.

In order to execute a C++ program it must first be “compiled”
into byte code that can be understood by the computer. A C++
compiler reads the text version of the program and translates it
into a second file – in machine-readable executable format.

Should the text program contain any syntax errors these will be
reported by the compiler and the executable file will not be built.

If you are using the Windows platform and have a C++
Integrated Development Environment (IDE) installed then you
will already have a C++ compiler available as the compiler is
an integral part of the visual IDE. The excellent free Microsoft
Visual C++ Express IDE provides an editor window where the
program code can be written, and buttons to compile and execute
the program. Visual IDEs can, however, seem unwieldy when
starting out with C++ because they always create a large number
of “project” files that are used by advanced programs.

The popular GNU C++ compiler is available free under the terms
of the General Public License (GPL). It is included with most
distributions of the Linux operating system. The GNU C++
compiler is also available for Windows platforms and is used to
compile examples throughout this book.

To discover if you already have the GNU C++ compiler on your
system type c++ -v at a command prompt then hit Return. If it’s
available the compiler will respond with version information. If
you are using the Linux platform and the GNU C++ compiler
is not available on your computer install it from the distribution
disc, or online, or ask your system administrator to install it.

The GNU (pronounced “guh-new”) Project was launched back in
1984 to develop a complete free Unix-like operating system. Part
of GNU is “Minimalist GNU for Windows” (MinGW). MinGW
includes the GNU C++ compiler that can be used on Windows
systems to create executable C++ programs. Windows users can
download and install the GNU C++ compiler by following the
instructions on the opposite page.

The terms and conditions
of the General Public
License can be found
online at www.gnu.org/
copyleft/gpl.html

11
...cont’d

l1	 With an internet connection open, launch a web browser
then navigate to http://sourceforge.net/projects/mingw and
click the “Download” button to get the MinGW installer

l2	 Launch the installer and do accept the suggested location
of C:\MinGW in the “Select Destination Location” dialog

l3	 Be sure to choose the optional “C++ Compiler” item in
the “Select Components” dialog then complete installation

The MinGW C++ Compiler is a binary executable file located at
C:\MinGW\bin. To allow it to be accessible from any system
location this folder should now be added to the System Path:

l4	 In Windows’ Control Panel, click the System icon then
select the Advanced System Settings item to launch the
“System Properties” dialog

l5	 In the System Properties dialog, click the Environment
Variables button, select the Path system variable, then
click the Edit button and add the location C:\MinGW\bin;

l6	 Click OK to close each dialog then open a Command
Prompt window and enter the command c++. If the
installation is successful the compiler should respond that
you have not specified any input files for compilation:

The MinGW installation
process may be subject
to change, but current
guidance can be found
at www.mingw.org/wiki/
Getting_Started.

Location addresses in the
Path statement must end
with a ; semi-colon.

12
G

et
ti

ng
 s

ta
rt

ed

Writing your first program

After typing the final
closing } brace of the
main method always hit
Return to add a newline
character – your compiler
may insist that a source
file should end with a
newline character.

Comments throughout
this book are shown in
green – to differentiate
them from other code.

Follow these steps, copying the code exactly as it is listed, to
create a simple C++ program that will output the traditional first
program greeting:

l1	 Open a plain text editor, such as Windows’ Notepad, then
type these “preprocessor directives”
#include <iostream>
using namespace std ;

l2	 A few lines below the preprocessor directives, add a
“comment” describing the program
// A C++ Program to output a greeting.

l3	 Below the comment, add a “main function” declaration to
contain the program statements
int main()
{

}

l4	 Between the curly brackets (braces) of the main function,
insert this output “statement”
cout << “Hello World!” << endl ;

l5	 Next insert a final “return” statement in the main function
return 0 ;

l6	 Save the program to any convenient location as
“hello.cpp”- the complete program should look like this:

++

hello.cpp

13

The C++ compiler also
supports multiple-line
C-style comments
between /* and */
– but these should
only ever be used in
C++ programming
to “comment-out”
sections of code when
debugging.

The separate parts of the program code on the opposite page can
be examined individually to understand each part more clearly:

•	 Preprocessor Directives – these are processed by the compiler
before the program code so must always appear at the start
of the page. Here the #include instructs the compiler to
use the standard C++ input/output library named iostream,
specifying the library name between < > angled brackets. The
next line is the “using directive” that allows functions in the
specified namespace to be used without their namespace prefix.
Functions of the iostream library are within the std namespace
– so this using directive allows functions such as
std::cout and std::endl to be simply written as cout and endl.

•	 Comments – these should be used to make the code more
easily understood by others, and by yourself when revisiting
the code later. In C++ programming everything on a single line
after a // double-slash is ignored by the compiler.

•	 Main function – this is the mandatory entry point of every
C++ program. Programs may contain many functions but they
must always contain one named main, otherwise the compiler
will not compile the program. Optionally the parentheses
after the function name may specify a comma-separated list
of “argument” values to be used by that function. Following
execution the function must return a value to the operating
system of the data type specified in its declaration – in this
case an int (integer) value.

•	 Statements – these are the actions that the program will
execute when it runs. Each statement must be terminated
by a semi-colon, in the same way that English language
sentences must be terminated by a full stop period. Here the
first statement calls upon the cout library function to output
text and an endl carriage return. These are directed to standard
output by the << output stream operator. Notice that text
strings in C++ must always be enclosed within double quotes.
The final statement employs the C++ return keyword to return
a zero integer value to the operating system – as required by
the main function declaration. Traditionally returning a zero
value indicates that the program executed successfully.

Notice how the program
code is formatted using
spacing and indentation
(collectively known
as whitespace) to
improve readability. All
whitespace is ignored by
the C++ compiler.

…cont’d

14
G

et
ti

ng
 s

ta
rt

ed

Compiling & running programs

The command c++ is an
alias for the GNU C++
compiler – the command
g++ can also be used.

The C++ source code files for the examples in this book are stored
in a directory created expressly for that purpose. The directory is
named “MyPrograms” – its absolute address on a Windows system
is C:\MyPrograms and on Linux it’s /home/user/MyPrograms. You
can recreate this directory to store programs awaiting compilation:

l1	 Move the “hello.cpp” program source code file, created on
page 12, to the “MyPrograms” directory on your system

l2	 At a command prompt, use the “cd” command to navigate
to the “MyPrograms” directory

l3	 Enter a command to attempt to compile the program
c++ hello.cpp

When the attempt succeeds the compiler creates an executable file
alongside the original source code file. By default the executable
file is named a.exe on Windows systems and a.out on Linux.
Compiling a different source code file in the same directory
would now overwrite the first executable file without warning.
This is obviously undesirable so a custom name for the executable
file should be specified when compiling programs, using the
compiler’s -o option in the compile command.

l4	 Enter a command to compile the program, creating an
executable file named “hello.exe” alongside the source file
c++ hello.cpp -o hello.exe

You can see the compiler
version number with the
command c++ --version
and display all its options
with c++ --help.

15
…cont’d

All command line
examples in this book
have been compiled and
tested with the GNU
C++ compiler (4.5.2)
and with the Microsoft
C++ compiler from
Visual C++ 10.0 – they
may not replicate exactly
with other compilers.

l5	 To run the generated executable program file in
Windows simply enter the file name at the prompt in the
“MyPrograms” directory – optionally the file extension
may be omitted. In Linux the full file name must by used,
preceded by a ./ dot-slash – as Linux does not look in the
current directory unless it is explicitly directed to do so:

16
G

et
ti

ng
 s

ta
rt

ed

Data Type: Description: Example:

char
A single byte, capable of
holding one character

‘A’

int An integer whole number 100

float
A floating-point number,
correct to six decimal places

0.123456

double
A floating-point number,
correct to ten decimal places

0.0123456789

bool
A boolean value of true or
false, or numerically zero is
false and any non-zero is true

false or 0
true or 1

Creating variables

Names are case-sensitive
in C++ – so variables
named VAR, Var, and
var are treated as three
individual variables.
Traditionally C++
variable names are
lowercase and seldom
begin with an underscore
as some C++ libraries
use that convention.

A “variable” is like a container in a C++ program in which a data
value can be stored inside the computer’s memory. The stored
value can be referenced using the variable’s name.

The programmer can choose any name for a variable providing
it adheres to the C++ naming conventions – a chosen name may
only contain letters, digits, and the underscore character, but
cannot begin with a digit. Also the C++ keywords, listed on the
inside cover of this book, must be avoided. It’s good practice to
choose meaningful names to make the code more comprehensible.

To create a new variable in a program it must be “declared”,
specifying the type of data it may contain and its chosen name.
A variable declaration has this syntax:

data-type variable-name ;

Multiple variables of the same data type can be created in a single
declaration as a comma-separated list with this syntax:

data-type variable-name1 , variable-name2 , variable-name3 ;

The five basic C++ data types are listed in the table below,
together with a brief description and example content:

Variable declarations must appear before executable statements
– so they will be available for reference within statements.

Character values of the
char data type must
always be enclosed
between single quotes
– not double quotes.

17
…cont’d

When a value is assigned to a variable it is said to have been
“initialized”. Optionally a variable may be initialized in its
declaration. The value stored in any initialized variable can be
displayed on standard output by the cout function, which was
used on page 12 to display the “Hello World!” greeting.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert statements to declare and
initialize variables of various data types
char letter ;	 letter = ‘A’ ;	 // Declared then initialized.
int number ;	 number = 100 ;	// Declared then initialized.
float decimal = 7.5 ;		 // Declared and initialized.
double pi = 3.14159 ;		 // Declared and initialized.
bool isTrue = false ;		 // Declared and initialized.

l4	 Now insert statements to output each stored value
cout << “char letter: ” 	<< letter << endl ;
cout << “int number: ” << number << endl ;
cout << “float decimal: ” << decimal << endl ;
cout << “double pi: ” 	 << pi << endl ;
cout << “bool isTrue: ” 	<< isTrue << endl ;

l5	 Save, compile, and run the program to see the output

Always begin boolean
variable names with
“is” so they are
instantly recognizable
as booleans. Also, use
“lowerCamelCase” for
all variable names that
comprise multiple words
– where all except the
first word begin with
uppercase, like “isTrue”.

++

vars.cpp

18
G

et
ti

ng
 s

ta
rt

ed

Employing variable arrays

Array numbering starts
at zero – so the final
element in an array of six
elements is number five,
not number six.

An array is a variable that can store multiple items of data
– unlike a regular array, which can only store one piece of data.
The pieces of data are stored sequentially in array “elements”
that are numbered, starting at zero. So the first value is stored in
element zero, the second value is stored in element one, and so on.

An array is declared in the same way as other variables but
additionally the size of the array must also be specified in the
declaration, in square brackets following the array name. For
example, the syntax to declare an array named “nums” to store six
integer numbers looks like this:

int nums[6] ;

Optionally an array can be initialized when it is declared by
assigning values to each element as a comma-separated list
enclosed by curly brackets (braces). For example:

int nums[6] = { 0, 1, 2, 3, 4, 5 } ;

An individual element can be referenced using the array name
followed by square brackets containing the element number. This
means that nums[1] references the second element in the example
above – not the first element, as element numbering starts at zero.

Arrays can be created for any C++ data type, but each element
may only contain data of the same data type. An array of
characters can be used to store a string of text if the final element
contains the special \0 null character. For example:

char name[5] = { ‘m’, ‘i’, ‘k’, ‘e’, ‘\0’ } ;

The entire string to be referenced just by the array name. This is
the principle means of working with strings in the C language but
the C++ string class, introduced in chapter four, is far simpler.

Collectively the elements of an array are known as an “index”.
Arrays can have more than one index – to represent multiple
dimensions, rather than the single dimension of a regular array.
Multi-dimensional arrays of three indices and more are
uncommon, but two-dimensional arrays are useful to store
grid-based information, such as coordinates. For example:

int coords[2] [3] = { { 1, 2, 3 } , { 4, 5, 6 } } ;

[0]

[1]

[0]

[2][1]

1

654

32

19
…cont’d

Where possible
variable names should
not be abbreviations
– abbreviated names are
only used in this book’s
examples due to space
limitations.

The loop structures,
introduced in chapter
three, are often used to
iterate array elements.

++

arrays.cpp

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert statements to declare and
initialize three variable arrays
// Declared then initialized.
float nums[3] ;
nums[0] = 1.5 ; nums[1] = 2.75 ; nums[2] = 3.25 ;

// Declared and initialized.
char name[5] = { ‘m’, ‘i’, ‘k’, ‘e’, ‘\0’ } ;
int coords[2] [3] = { { 1, 2, 3 } , { 4, 5, 6 } } ;
}

l4	 Now insert statements to output specific element values
cout << “nums[0]: ” << nums[0] << endl ;
cout << “nums[1]: ” << nums[1] << endl ;
cout << “nums[2]: ” << nums[2] << endl ;
cout << “name[0]: ” << name[0] << endl ;
cout << “Text string: ” << name << endl ;
cout << “coords[0][2]: ” << coords[0][2] << endl ;
cout << “coords[1][2]: ” << coords[1][2] << endl ;

l5	 Save, compile, and run the program to see the output

20
G

et
ti

ng
 s

ta
rt

ed

Function: Description:

at(number)
Gets the value contained in the specified
element number

back() Gets the value in the final element

clear() Removes all vector elements

empty()
Returns true (1) if the vector is empty,
or returns false (0) otherwise

front() Gets the value in the first element

pop_back() Removes the final element

push_back(value)
Adds a final element to the end of the
vector, containing the specified value

size() Gets the number of elements

Employing vector arrays

Individual vector
elements can be
referenced using square
brackets as with regular
arrays, such as vec[3].

A vector is an alternative to a regular array and has the advantage
that its size can be changed as the program requires. Like regular
arrays, vectors can be created for any data type and their elements
are also numbered starting at zero.

In order to use vectors in a program the C++ vector library must
be added with an #include <vector> preprocessor directive at the
start of the program. This library contains the predefined functions
in the table below, which are used to work with vectors:

A declaration to create a vector looks like this:

vector < data-type > vector-name (size) ;

An int vector will, by default have each element automatically
initialized with a zero value. Optionally a different initial value
can be specified after the size in the declaration with this syntax:

vector < data-type > vector-name (size , initial-value) ;

The functions to work with vectors are simply appended to the
chosen vector name by the dot operator. For example, to get the
size of a vector named “vec” you would use vec.size() .

21
…cont’d

The example on page 50
shows how to use a loop
to populate a vector with
different initial values in
each element.

++

vector.cpp

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <vector>		 // Include vector support.
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert a statement to declare and
initialize a vector array of three elements of the value 100
vector <int> vec(3, 100) ;

l4	 Now insert statements to manipulate the vector elements
cout << “Vector size: ” << vec.size() << endl ;
cout << “Is empty?: ” << vec.empty() << endl ;
cout << “First element: ” << vec.at(0) << endl ;

vec.pop_back() ; 	 // Remove final element.
cout << “Vector size: ” << vec.size() << endl ;
cout << “Final element: ” << vec.back() << endl ;

vec.clear() ; 		 // Remove all elements.
cout << “Vector size: ” << vec.size() << endl ;

vec.push_back(200) ; 	 // Add an element.
cout << “Vector size: ” << vec.size() << endl ;
cout << “First element: ” << vec.front() << endl ;

l5	 Save, compile, and run the program to see the output

22
G

et
ti

ng
 s

ta
rt

ed

Declaring constants

The typedef keyword
simply creates a
nickname for a structure.

Data that will not change during the execution of a program
should be stored in a constant container, rather than in a variable.
This better enables the compiler to check the code for errors – if
the program attempts to change the value stored in a constant the
compiler will report an error and the compilation will fail.

A constant can be created for any data type by prefixing a
variable declaration with the const keyword, followed by a space.
Typically constant names appear in uppercase to distinguish
them from (lowercase) variable names. Unlike variables, constants
must always be initialized in the declaration. For example, the
declaration of a constant for the math pi value looks like this:

const double PI = 3.1415926536 ;

The enum keyword provides a handy way to create a sequence of
integer constants in a concise manner. Optionally, the declaration
can include a name for the sequence after the enum keyword. The
constant names follow as a comma-separated list within braces.
For example, this declaration creates a sequence of constants:

enum suit { CLUBS , DIAMONDS , HEARTS , SPADES } ;

Each of the constants will, by default, have a value one greater
than the preceding constant in the list. Unless specified the first
constant will have a value of zero, the next a value of one, and
so on. A constant can be assigned any integer value but the next
constant in the list will always increment it by one.

It is occasionally convenient to define a list of enumerated
constants as a “custom data type” – by using the typedef keyword.
This can begin the enum declaration and a chosen type name can
be added at the end of the declaration. For example, this typedef
statement creates a custom data type named “charge”:

typedef enum { NEGATIVE , POSITIVE } charge ;

Variables can then be created of the custom data type in the usual
way, which may legally be assigned any of the listed constants.
Essentially these variables act just like an int variable – as they
store the numerical integer value the assigned constant represents.
For example, with the example above, assigning a POSITIVE
constant to a charge variable actually assigns an integer of one.

23
…cont’d

In the PI declaration the
* character is the C++
multiplication operator,
and the backslash
character in \” escapes
the quote mark from
recognition – so the
string does not get
terminated prematurely.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert statements to declare a
constant and output using the constant value
const double PI = 3.1415926536 ;
cout << “6\” circle circumference: “ << (PI * 6) << endl ;

l4	 Next insert statements to declare an enumerated list of
constants and output using some of those constant values
enum
{ RED=1, YELLOW, GREEN, BROWN, BLUE, PINK, BLACK } ;
cout << “I shot a red worth: ” << RED << endl ;
cout << “Then a blue worth: ” << BLUE << endl ;
cout << “Total scored: ” << (RED + BLUE) << endl ;

l5	 Now insert statements to declare a custom data type and
output its assigned values
typedef enum { NEGATIVE , POSITIVE } charge ;
charge neutral = NEGATIVE , live = POSITIVE ;
cout << “Neutral wire: ” << neutral << endl ;
cout << “Live wire: ” << live << endl ;

l6	 Save, compile, and run the program to see the output

++

constant.cpp

24
G

et
ti

ng
 s

ta
rt

ed

Summary

•	 C++ is an object-oriented programming language that is an
extension of the procedural C programming language

•	 The GNU C++ compiler is available for Windows and Linux

•	 Preprocessor directives are used to make functions within the
standard C++ libraries available to a program

•	 Each C++ program must contain one main method as the
entry point to the program

•	 Statements define the actions that the program will execute

•	 It is recommended that program code should be widely
commented to make its purpose clear

•	 The c++ command calls the compiler and its -o option allows
the command to specify the name of the generated executable

•	 A variable declaration specifies a data type and a chosen name
by which the value within that variable can be referenced

•	 The cout function, which is part of the C++ iostream library,
writes content to the standard output console

•	 An array is a fixed size variable that stores multiple items of
data in elements, which are numbered starting at zero

•	 The special \0 character can be assigned to the final element of
a char array to allow it to be treated as a single text string

•	 A vector variable stores multiple items of data in elements and
can be dynamically resized

•	 The value stored in an array or vector element can be
referenced using that variable’s name and its index number

•	 Variable values that are never changed by the program should
be stored in a constant

•	 A constant list can be automatically numbered by the enum
keyword and given a type name by the typedef keyword

This chapter introduces the C++ operators
and demonstrates the operations they can
perform.

Performing operations2

26
Pe

rf
or

m
in

g
op

er
at

io
ns

Doing arithmetic

Values used with
operators to form
expressions are called
“operands” – in the
expression 2 + 3 the
numerical values 2 and 3
are the operands.

The arithmetical operators commonly used in C++ programs are
listed in the table below together with the operation they perform:

The operators for addition, subtraction, multiplication, and
division act as you would expect. Care must be taken, however,
to bracket expressions where more than one operator is used to
clarify the expression – operations within innermost parentheses
are performed first:

a = b * c - d % e / f ;			 // This is unclear.

a = (b * c) - ((d % e) / f) ;		 // This is clearer.

The % modulus operator will divide the first given number by the
second given number and return the remainder of the operation.
This is useful to determine if a number has an odd or even value.

The ++ increment operator and -- decrement operator alter the
given number by one and return the resulting value. These are
most commonly used to count iterations in a loop. Counting up,
the ++ operator increases the value by one while, counting down,
the -- decrement operator decreases the value by one.

The increment and decrement operators can be placed before
or after a value to different effect. If placed before the operand
(prefix) its value is immediately changed, if placed after the
operand (postfix) its value is noted first, then the value is changed.

Operator: Operation:

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

-- Decrement

27
…cont’d

Remember that a prefix
operator changes
the variable value
immediately – a postfix
operator changes the
value subsequently.

++

arithmetic.cpp

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert a statement to declare and
initialize two integer variables
int a = 8 , b = 4 ;

l4	 Next insert statements to output the result of each basic
arithmetic operation
cout << “Addition result: ” 	 << (a + b) << endl ;
cout << “Subtraction result: ” 	 << (a - b) << endl ;
cout << “Multiplication result: ” << (a * b) << endl ;
cout << “Division result: ” 	 << (a / b) << endl ;
cout << “Modulus result: ” 	 << (a % b) << endl ;

l5	 Now insert statements to output the result of both postfix
and prefix increment operations
cout << “Postfix increment: ” 	 << a++ << endl ;
cout << “Postfix result: ” 	 << a << endl ;
cout << “Prefix increment: ” 	 << ++b << endl ;
cout << “Prefix result: ” 	 << b << endl ;

l6	 Save, compile, and run the program to see the output

28
Pe

rf
or

m
in

g
op

er
at

io
ns

Assigning values
The operators that are used in C++ programming to assign values
are listed in the table below. All except the simple = assignment
operator are a shorthand form of a longer expression so each
equivalent is given for clarity:

In the example above the variable named “a” is assigned the value
that is contained in the variable named “b” – so that becomes the
new value stored in the a variable.

The += operator is useful to add a value onto an existing value
that is stored in the a variable.

In the table example the += operator first adds the value
contained in variable a to the value contained in variable b. It then
assigns the result to become the new value stored in variable a.

All the other operators work in the same way by making the
arithmetical operation between the two values first, then assigning
the result of that operation to the first variable – to become its
new stored value.

With the %= operator the first operand a is divided by the second
operand b then the remainder of that operation is assigned to the
a variable.

Each assignment operation is demonstrated in the program on the
opposite page.

Operator: Example: Equivalent:

= a = b a = b

+= a += b a = (a + b)

-= a -= b a = (a - b)

*= a *= b a = (a * b)

/= a /= b a = (a / b)

%= a %= b a = (a % b)

It is important to regard
the = operator to
mean “assign” rather
than “equals” to avoid
confusion with the ==
equality operator.

29
…cont’d

Unlike the = assign
operator the == equality
operator compares
operands and is
described on page 30.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert a statement declaring two
integer variables
int a , b ;

l4	 Next insert statements to output simple assigned values
cout << “Assign values: ” ;
cout << “a = “ << (a = 8) << “ “ ;
cout << “b = “ << (b = 4) ;

l5	 Now insert statements to output combined assigned values
cout << endl << “Add & assign: ” ;
cout << “a += b (8 += 4) a = “ << (a += b) ;
cout << endl << “Subtract & assign: ” ;
cout << “a -= b (12 -= 4) a = “ << (a -= b) ;
cout << endl << “Multiply & assign: ” ;
cout << “a *= b (8 *= 4) a = “ << (a *= b) ;
cout << endl << “Divide & assign: ” ;
cout << “a /= b (32 /= 4) a = “ << (a /= b) ;
cout << endl << “Modulus & assign: ” ;
cout << “a %= b (8 %= 4) a = “ << (a %= b) ;

l6	 Save, compile, and run the program to see the output

++

assign.cpp

30
Pe

rf
or

m
in

g
op

er
at

io
ns

Comparing values

A-Z uppercase characters
have ASCII code values
65-90 and a-z lowercase
characters have ASCII
code values 97-122.

The operators that are commonly used in C++ programming to
compare two numerical values are listed in the table below:

The == equality operator compares two operands and will return
true (1) if both are equal in value, otherwise it will return a false
(0) value. If both are the same number they are equal, or if both
are characters their ASCII code values are compared numerically.
Conversely the != inequality operator returns true (1) if two
operands are not equal, using the same rules as the == equality
operator, otherwise it returns false (0). Equality and inequality
operators are useful in testing the state of two variables to perform
conditional branching in a program.

The > “greater than” operator compares two operands and will
return true (1) if the first is greater in value than the second, or it
will return false (0) if it is equal or less in value. The < “less than”
operator makes the same comparison but returns true (1) if the
first operand is less in value than the second, otherwise it returns
false (0). A > “greater than” or < “less than” operator is often
used to test the value of an iteration counter in a loop.

Adding the = operator after a > “greater than” or < “less than”
operator makes it also return true (1) if the two operands are
exactly equal in value.

Each comparison operation is demonstrated in the program on
the opposite page.

Operator: Comparative test:

== Equality

!= Inequality

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

31
…cont’d

The ASCII code value for
uppercase “A” is 65 but
for lowercase “a” it’s 97
– so their comparison
here returns false (0).

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert statements to declare and
initialize variables that can convert to booleans
int nil = 0, num = 0, max = 1 ; char cap = ‘A’, low = ‘a’ ;

l4	 Next insert statements to output equality comparisons of
integers and characters
cout << “Equality comparisons: ” ;
cout << “(0 == 0) ” << (nil == num) << “(true)” ;
cout << “(A == a) ” << (cap == low) << “(false)” ;

l5	 Now insert statements to output all other comparisons
cout << endl << “Inequality comparison: ” ;
cout << “(0 != 1) ” << (nil != max) 	 << “(true)” ;
cout << endl << “Greater comparison: ” ;
cout << “(0 > 1) ” << (nil > max) 	 << “(false)” ;
cout << endl << “Lesser comparison: ” ;
cout << “(0 < 1) ” << (nil < max) 	 << “(true)” ;
cout << endl << “Greater or equal comparison: ” ;
cout << “(0 >= 0) ”<< (nil >= num) 	<< “(true)” ;
cout << endl << “Lesser or equal comparison: ” ;
cout << “(1 <= 0) ” << (max <= num) << “(false)” ;

l6	 Save, compile, and run the program to see the output

++

comparison.cpp

32
Pe

rf
or

m
in

g
op

er
at

io
ns

Assessing logic

Where there is more
than one operand each
expression must be
enclosed by parentheses.

The term “boolean”
refers to a system
of logical thought
developed by the English
mathematician George
Boole (1815-1864).

The logical operators most commonly used in C++ programming
are listed in the table below:

The logical operators are used with operands that have boolean
values of true or false, or are values that convert to true or false.

The logical && AND operator will evaluate two operands and
return true only if both operands themselves are true. Otherwise
the && operator will return false. This is used in conditional
branching where the direction of a program is determined by
testing two conditions – if both conditions are satisfied the
program will go in a certain direction, otherwise it will take a
different direction.

Unlike the && AND operator that needs both operands to be true
the || OR operator will evaluate its two operands and return true
if either one of the operands itself returns true. If neither operand
returns true then the || OR operator will return false. This is
useful in C++ programming to perform a certain action if either
one of two test conditions has been met.

The third logical ! NOT operator is a unary operator that is used
before a single operand. It returns the inverse value of the given
operand so if the variable a had a value of true then !a would have
a value of false. The ! NOT operator is useful in C++ programs to
toggle the value of a variable in successive loop iterations with a
statement like a = !a. This ensures that on each pass the value is
changed, like flicking a light switch on and off.

In C++ programs a zero represents the boolean false value and
any non-zero value, such as one, represents the boolean true value.

Each logical operation is demonstrated in the program on the
opposite page.

Operator: Operation:

&& Logical AND

|| Logical OR

! Logical NOT

33
…cont’d

Notice that 0 && 0
returns 0, not 1
– demonstrating the
maxim “two wrongs
don’t make a right”.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, declare and initialize two integer
variables – with values that can represent boolean values
int a = 1 , b = 0 ;

l4	 Insert statements to output the result of AND evaluations
cout << “AND logic:” << endl ;
cout << “(a && a) ” << (a && a) << “(true) ” ;
cout << “(a && b) ” << (a && b) << “(false) ” ;
cout << “(b && b) ” << (b && b) << “(false)” << endl ;

l5	 Insert statements to output the result of OR evaluations
cout << endl << “OR logic:” << endl ;
cout << “(a || a) ” << (a || a) << “(true) ” ;
cout << “(a || b) ” << (a || b) << “(true) ” ;
cout << “(b || b) ” << (b || b) << “(false)” << endl ;

l6	 Insert statements to output the result of NOT evaluations
cout << endl << “NOT logic:” << endl ;
cout << “a = “ << a << “ !a = “ << !a << “ “ ;
cout << “b = “ << b << “ !b = “ << !b << endl ;

l7	 Save, compile, and run the program to see the output

++

logic.cpp

34
Pe

rf
or

m
in

g
op

er
at

io
ns

Examining conditions

The ternary operator has
three operands – the one
before the ?, and those
before and after the : .

Possibly the C++ programmer’s most favorite test operator is the
?: “ternary” operator. This operator first evaluates an expression for
a true or false condition then returns one of two specified values
depending on the result of the evaluation. For this reason it is also
known as the “conditional” operator.

The ?: ternary operator has this syntax:

(test-expression) ? if-true-return-this : if-false-return-this ;

Although the ternary operator can initially appear a little
confusing it is well worth becoming familiar with this operator as
it can execute powerful program branching with minimal code.
For example, to branch when a variable is not a value of one:

(var != 1) ? if-true-do-this : if-false-do-this ;

The ternary operator is commonly used in C++ programming to
assign the maximum, or minimum, value of two variables to a
third variable. For example, to assign a minimum like this:

c = (a < b) ? a : b ;

The expression in parentheses returns true when the value of
variable a is less than that of variable b – so in this case the lesser
value of variable a gets assigned to variable c.

Similarly, replacing the < less than operator in the test expression
with the > greater than operator would assign the greater value of
variable b to variable c.

Another common use of the ternary operator incorporates the %
modulus operator in the test expression to determine whether the
value of a variable is an odd number or an even number:

(var % 2 != 0) ? if-true(odd)-do-this : if-false(even)-do-this ;

Where the result of dividing the variable value by two does leave
a remainder the number is odd – where there is no remainder
the number is even. The test expression (var % 2 == 1) would
have the same effect but it is preferable to test for inequality – it’s
easier to spot when something is different than when it’s identical.

The ternary operator is demonstrated in the program on the
opposite page.

35
…cont’d

The ternary operator can
return values of any data
type – numbers, strings,
boolean values, etc..

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert statements declaring three
integer variables, and initializing two of them
int a, b, max ;
a = 1, b = 2 ;

l4	 Insert statements to output the value and parity of the
first examined variable
cout << “Variable a value is: ” ;
cout << ((a != 1) ? “not one, “ : “one, “) ;
cout << ((a % 2 != 0) ? “odd” : “even”) ;

l5	 Next insert statements to output the value and parity of
the second examined variable
cout << endl << “Variable b value is: ” ;
cout << ((b != 1) ? “not one, “ : “one, “) ;
cout << ((b % 2 != 0) ? “odd” : “even”) ;

l6	 Now insert statements to output the greater of the two
stored variable values
max = (a > b) ? a : b ;
cout << endl << “Greater value is: ” << max << endl ;

l7	 Save, compile and run the program to see the output

++

ternary.cpp

36
Pe

rf
or

m
in

g
op

er
at

io
ns

Establishing size

Although sizeof is an
operator that does not
strictly need parentheses
it is commonly seen with
them – as if it was a
function, like main().

Declaration of a variable allocates system memory where values
assigned to that variable will be stored. The amount of memory
allocated for this is determined by your system and the data type.

Typically an int data type is created as a “long” value by default,
which can store values from +2,147,483,647 to -2,147,483,648.
On the other hand, if the int data type is created as a “short” value
by default it can only store values from +32,767 to -32,768.

The preferred range can be explicitly specified when declaring the
variable by prefixing the int keyword with a short or long qualifier.
The short int is useful to save memory space when you are sure
the limited range will never be exceeded.

When an int variable is declared it can by default contain either
positive or negative integers, which are known as “signed” values.
If the variable will always contain only positive integers it can
be qualified as unsigned to increase its maximum possible value.
Typically an unsigned short int has a range from zero to 65,535
and an unsigned long int has a range from zero to 4,294,967,295.

The memory size of any variable can be discovered using the C++
sizeof operator. The name of the variable to be examined can be
specified in optional parentheses following the sizeof operator
name. For example, to examine a variable named “var”:

sizeof(var) ;	 // Alternatively you can use “sizeof var ;”.

The sizeof operator will return an integer that is the number of
bytes allocated to store data within the named variable.

Simple data types, such as char and bool, only need a single
byte of memory to store just one piece of data. Longer numeric
values need more memory, according to their possible range
– determined by data type and qualifiers.

The memory allocated to an array is simply a multiple of that
allocated to a single variable of its data type, according to its
number of elements. For example, an int array of 50 elements will
allocate fifty times the memory allocated to a single int variable.

The sizeof operator is demonstrated in the program on the
opposite page.

37
…cont’d

Here the int data type is
created as a long type
by default – your system
may be different.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert statements declaring variables
of various data types
int num ; 	 int nums[50] ;		 float decimal ;
bool isTrue ;	 unsigned int max ; 	 char letter ;	
double pi ;	 short int number ;	 char letters[50] ;

l4	 Next insert statements to output the byte size of each
integer variable
cout << “int size:” << sizeof(num) << endl ;
cout << “50 int size: ” << sizeof(nums) << endl ;
cout << “short int size: ” << sizeof(number) << endl ;
cout << “unsigned int size: ” << sizeof(max) << endl ;

l5	 Now insert statements to output the size of other variables
cout << “double size: ” << sizeof(pi) << endl ;
cout << “float size: ” << sizeof(decimal) << endl ;
cout << “char size: ” << sizeof(letter) << endl ;
cout << “50 char size: ” << sizeof(letters) << endl ;
cout << “bool size: ” << sizeof(isTrue) << endl ;

l6	 Save, compile and run the program to see the output

++

sizeof.cpp

38
Pe

rf
or

m
in

g
op

er
at

io
ns

Setting precedence

Operator: Direction:

()

->
Function call
Class pointer

[]

.
Array index
Class member LTR

!

--

+

sizeof

Logical NOT
Decrement
Positive sign
Size of

*

++

-

&

Pointer
Increment
Negative sign
Address of

RTL

*

%
Multiply
Modulus

/ Divide
LTR

+ Add - Subtract LTR
<=

>=
Less or equal
Greater or equal

<

>
Less than
Greater than LTR

== Equality != Inequality LTR
&& Logical AND LTR
|| Logical OR LTR
?: Ternary RTL

 += -= *= /= %= Assignments RTL
, Comma LTR

The -> class pointer
and the . class member
operators are introduced
later in this book – but
they are included here
for completeness.

Operator precedence determines the order in which C++ evaluates
expressions. For example, in the expression a = 6 + 8 * 3 the order
of precedence determines that multiplication is completed first.

The table below lists operator precedence in descending order
– those on the top row have highest precedence, those on lower
rows have successively lower precedence. The precedence of
operators on the same row is determined by their position in
the expression, according to the direction listed for that operator
– Left-To-Right (LTR) or Right-To-Left (RTL).

In addition to the operators in this table there are a number of
“bitwise” operators, which are used to perform binary arithmetic.
This is outside the scope of this book but there is a section
devoted to binary arithmetic in “C Programming in easy steps”.
Those operators perform in just the same way in C++.

Operator precedence is demonstrated in the program opposite.

The * multiply operator is
on a higher row than the
+ addition operator – so
in the expression
a=6+8*3 multiplication
is completed first, before
the addition.

39
…cont’d

Do not rely upon default
precedence as it may
vary between compilers
– always use parentheses
to clarify expressions.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function continuing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, declare an integer variable
initialized with the result of an expression using default
precedence, then output the result
int num = 1 + 4 * 3 ;
cout << endl << “Default order: ” << num << endl ;

l4	 Next assign the result of this expression to the variable
using explicit precedence, then output the result
num = (1 + 4) * 3 ;
cout << “Forced order: ” << num << endl << endl ;

l5	 Assign the result of a different expression to the variable
using direction precedence, then output the result
num = 7 - 4 + 2 ;
cout<< “Default direction: ” << num << endl ;

l6	 Now assign the result of this expression to the variable
using explicit precedence, then output the result
num = 7 - (4 + 2) ;
cout << “Forced direction: ” << num << endl ;

l7	 Save, compile and run the program to see the output

++

precedence.cpp

40
Pe

rf
or

m
in

g
op

er
at

io
ns

Casting data types

The result of dividing
an integer by another
integer is truncated, not
rounded – so a result of
9.9 would become 9.

Any data stored in a variable can be forced (coerced) into a
variable of a different data type by a process known as “casting”.
The cast statement simply states the data type to which the value
should be cast in parentheses preceding the name of the variable
containing the data to be cast. So casting syntax looks like this:

variable-name = (data-type) variable-name ;

This is the traditional form of casting that is also found in the C
programming language. A newer alternative available in C++ uses
angled brackets with the static_cast keyword like this:

variable-name = static_cast < data-type > variable-name ;

The newer version allows casts to be more easily identified in
source code by avoiding the use of parentheses, which can easily
be confused with parentheses in expressions. The newer form of
casting is preferred but the older form is still widely found.

Casting is often necessary to accurately store the result of an
arithmetic operation because dividing one integer by another
integer will always produce an integer result. For example, the
integer division 7/2 produces the truncated integer result of 3.

To store the accurate floating-point result would require the result
be cast into a suitable data type, such as a float, like this:

float result = (float) 7 / 2 ;

Or alternatively using the newer form of cast:

float result = static_cast < float > 7 / 2 ;

In either case it should be noted that operator precedence casts
the first operand into the specified data type before implementing
the arithmetic operation, so the statement can best be written as:

float result = static_cast < float > (7) / 2 ;

Bracketing the expression as (7 / 2) would perform the arithmetic
first on integers, so the integer result would be truncated before
being cast into the float variable – not the desired effect!

Casting with both the older C-style form and the newer C++
form is demonstrated in the program on the opposite page.

41
…cont’d

ASCII (pronounced
“askee”) is the American
Standard Code for
Information Interchange,
which is the accepted
standard for plain text.
In ASCII, characters are
represented numerically
within the range 0-127.
Uppercase ‘A’ is 65 so
that integer value gets
cast into an int variable.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert statements to declare and
initialize integer, character, and floating-point variables
int num = 7, factor = 2 ;
char letter = ‘A’ ; float result = 0.0 ;

l4	 Output the result of a plain integer division
cout << “Integer division: ” << (num / factor) << endl ;

l5	 Now cast the same division into a floating-point variable
and output that result
result = (float) (num) / factor ;
cout << “Cast division float: ” << result << endl ;

l6	 Next cast a character variable into an integer variable and
output that value
num = static_cast <int> (letter) ;
cout << “Cast character int: ” << num << endl ;

l7	 Cast an integer into a character variable and output it
letter = static_cast <char> (70) ;
cout << “Cast integer char: ” << letter << endl ;

l8	 Save, compile and run the program to see the output

++

cast.cpp

42
Pe

rf
or

m
in

g
op

er
at

io
ns

Summary

•	 Arithmetical operators can form expressions with two
operands for addition +, subtraction -, multiplication *,
division /, or modulus %

•	 Increment ++ and decrement -- operators modify a single
operand by a value of one

•	 The assignment = operator can be combined with an
arithmetical operator to perform an arithmetical calculation
then assign its result

•	 Comparison operators can form expressions comparing two
operands for equality ==, inequality !=, greater >, lesser <,
greater or equal >=, and lesser or equal <= values

•	 Logical && and || operators form expressions evaluating two
operands to return a boolean value of true or false

•	 The logical ! operator returns the inverse boolean value of a
single operand

•	 A ternary ?: operator evaluates a given boolean expression then
returns one of two operands depending on its result

•	 The sizeof operator returns the memory byte size of a variable

•	 An int variable may be qualified as a short type for smaller
numbers or as a long type for large numbers

•	 Where an int variable will only store positive numbers it may
be qualified as unsigned to extend its numeric range

•	 It is important to explicitly set operator precedence in complex
expressions by adding parentheses ()

•	 Data stored in a variable can be forced into a variable of a
different data type by the casting process

•	 C++ supports traditional C-style casts and the newer form of
casts that use the static_cast keyword

This chapter demonstrates C++ conditional
statements, which allow programs
to branch in different directions, and
introduces C++ function structures.

Making statements3

44
M

ak
in

g
st

at
em

en
ts

Branching with if

When there is only one
statement to execute
when the test succeeds
the braces may be
omitted – but retaining
them aids code clarity.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert statements to declare and
initialize two variables
int num = 8 ;
char letter = ‘A’ ;

The C++ if keyword performs the basic conditional test that
evaluates a given expression for a boolean value of true or false
– and its syntax looks like this:

if (test-expression) { statements-to-execute-when-true }

The braces following the test may contain one or more statements,
each terminated by a semi-colon, but these will only be executed
when the expression is found to be true. When the test is found
to be false the program proceeds to its next task.

Optionally, an if statement can offer alternative statements to
execute when the test fails by appending an else statement block
after the if statement block like this:

if (test-expression) { statements-to-execute-when-true }
else { statements-to-execute-when-false }

To test two conditions the test expression may use the &&
operator. For example, if ((num > 5) && (letter == ‘A’)).
Alternatively, an if statement can be “nested” within another if
statement, so those statements in the inner statement block will
only be executed when both tests succeed – but statements in the
outer statement block will be executed if the outer test succeeds.

++

ifelse.cpp

45
…cont’d

Avoid nesting more
than three levels of if
statements – to avoid
confusion and errors.

l7	 Edit the character variable declaration to change its value
char letter = ‘B’ ;

l8	 Save, compile, and run the program once more to see only
the outer test succeed – executing the outer if statement

l9	 Edit the integer variable declaration to change its value
int num = 3 ;

l10	 Save, compile, and run the program again to see both
tests now fail – executing the outer else statement

l4	 Next insert an if-else statement that tests the integer
variable value and outputs an appropriate response
if (num > 5)
{ cout << “Number exceeds five” << endl ; }
else
{ cout << “Number is five or less” << endl ; }

l5	 In the if statement block, insert a nested if statement that
tests the character variable value and outputs when matched
if (letter == ‘A’) { cout << “Letter is A” << endl ; }

l6	 Save, compile and run the program to see both tests succeed

Shorthand can be used
when testing a boolean
value – so the expression
if (flag == true) can be
written as just if (flag).

46
M

ak
in

g
st

at
em

en
ts

Switching branches

Missing break keywords
are not syntax errors –
ensure that all intended
breaks are present after
case statements.

The if and else keywords, introduced on the previous page, allow
programs to branch in a particular direction according to the
result of a test condition and can be used to repeatedly test a
variable to match a value. For example, testing for an integer:

if (num == 1) { cout << “Monday” ; }
else
if (num == 2) { cout << “Tuesday” ; }
else
if (num == 3) { cout << “Wednesday” ; }
else
if (num == 4) { cout << “Thursday” ; }
else
if (num == 5) { cout << “Friday” ; }

The program will branch in the direction of the match.

Conditional branching with long if-else statements can often
be more efficiently performed using a switch statement instead,
especially when the test expression evaluates one variable.

The switch statement works in an unusual way. It takes a given
variable value then seeks a matching value among a number of
case statements. Statements associated with the matching case
statement value will then be executed.

When no match is found, no case statements will be executed but
you may add a default statement after the final case statement to
specify statements to be executed when no match is found.

It is important to follow each case statement with the break
keyword to stop the program proceeding through the switch block
after all statements associated with the matched case value have
been executed – unless that is precisely what you require. For
example, one statement for each block of three values like this:

switch(variable-name)
{
 case value1 ; case value2 ; case value3 ;
	 statements-to-be-executed ; break ;

case value4 ; case value5 ; case value6 ;
	 statements-to-be-executed ; break ;
}

Usually each case statement will have its own set of statements to
execute and be terminated by a break as in the program opposite.

47
…cont’d

++

switch.cpp

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert a statement to declare and
initialize an integer variable with a value to be matched
int num = 3 ;

l4	 Next insert a switch statement to seek a match
switch (num)
{
 case 1 : cout << num << “ : Monday” ; break ;
 case 2 : cout << num << “ : Tuesday” ; break ;
 case 3 : cout << num << “ : Wednesday” ; break ;
 case 4 : cout << num << “ : Thursday” ; break ;
 case 5 : cout << num << “ : Friday” ; break ;
}

l5	 In the switch statement, insert a default statement after
the final case statement
default : cout << num << “ : Weekend day” ;

l6	 Save, compile, and run the program to see the output

l7	 Now edit the integer variable declaration to change its
value then save, compile and run the program once more
int num = 6 ;

Notice that a default
statement does not need
to be followed by a
break keyword – because
a default statement
always appears last in a
switch statement.

48
M

ak
in

g
st

at
em

en
ts

Looping for
A loop is a piece of code in a program that automatically repeats.
One complete execution of all statements contained within the
loop block is known as an “iteration” or “pass”.

The number of iterations made by a loop is controlled by a
conditional test made within the loop. While the tested expression
remains true the loop will continue – until the tested expression
becomes false, at which time the loop ends.

The three types of loop structures in C++ programming are
for loops, while loops, and do-while loops. Perhaps the most
commonly used loop is the for loop, which has this syntax:

for (initializer ; test-expression ; incrementer) { statements }

The initializer sets the starting value for a counter of the number
of iterations made by the loop. An integer variable is used for this
purpose and is traditionally named “i”.

Upon each iteration of the loop the test expression is evaluated
and that iteration will only continue while this expression is
true. When the tested expression becomes false the loop ends
immediately without executing the statements again. On each
iteration the counter is incremented then the statements executed.

Loops may be nested within other loops – so that the inner loop
will fully execute its iterations on each iteration of the outer loop.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 In the main function, insert a statement to declare an
integer variable to be used as a loop iteration counter
int i ;

++

forloop.cpp

49
…cont’d

On the third iteration
of these loops the
incrementer increases
the counter value to
four – so when it is next
evaluated the test returns
false and the loop ends.

Alternatively, a for loop
counter can count down
by decrementing the
counter value on each
iteration using i-- instead
of the i++ incrementer.

l4	 Next insert a for loop to output the counter value on each
of three iterations
for (i = 1 ; i < 4 ; i++)
{
 cout << “Loop iteration: ” << i << endl ;
}

l5	 Save, compile, and run the program to see the output

l6	 Now edit the variable declaration to add a second counter
int i , j ;			 // Integer variable “j” added.

l7	 Inside the for loop block, after the output statement add
an inner loop to output its counter value on each iteration
for (j = 1 ; j < 4 ; j++)
{ cout << “ Inner loop iteration: “ << j << endl ; }

l8	 Save, compile, and run the program again to see the inner
loop fully execute on each iteration of the outer loop

50
M

ak
in

g
st

at
em

en
ts

Looping while

If you accidentally start
running an infinite loop
press the Ctrl+C keys to
terminate the process.

An alternative to the for loop, introduced on the previous page,
uses the while keyword followed by an expression to be evaluated.
When the expression is true statements contained within braces
following the test expression will be executed. The expression will
then be evaluated again and the while loop will continue until the
expression is found to be false.

The loop’s statement block must contain code that will affect the
tested expression in order to change the evaluation result to false,
otherwise an infinite loop is created that will lock the system!
When the tested expression is found to be false upon its first
evaluation, the while loop’s statement block will never be executed.

A subtle variation of the while loop places the do keyword before
the loop’s statement block and a while test after it, with this syntax:

do { statements-to-be-executed } while (test-expression) ;

In a do-while loop the statement block will always be executed at
least once – because the expression is not evaluated until after the
first iteration of the loop.

A break statement can be included in any kind of loop to
immediately terminate the loop when a test condition is met. The
break ensures no further iterations of that loop will be executed.

Similarly a continue statement can be included in any kind of
loop to immediately terminate that particular iteration of the loop
when a test condition is met. The continue statement allows the
loop to proceed to the next iteration.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <vector>		 // Include vector support.
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

++

while.cpp

51
…cont’d

The position of break
and continue statements
is important – they
must appear after the
incrementer, to avoid
creating an infinite
loop, but before
other statements that
affect the program to
avoid executing those
statements.

The vector library must
be included with a
preprocessor directive in
this example.

l3	 In the main function, insert statements to declare an
integer vector and an integer variable loop counter
vector <int> vec(10) ;
int i = 0 ;

l4	 Next insert a while loop to assign a counter value to an
element of the vector on each iteration
while (i < vec.size())
{
 i++ ;	 			 // Increment the counter.
 vec[i-1] = i ;			 // Assign count to element.
 cout << “ | ” << vec.at(i-1) ;
}

l5	 Save compile and run the program to see the output

l6	 Edit the while loop to add a continue statement
immediately after the incrementer to make the loop skip
its third iteration
if (i == 3) { cout << “ | Skipped” ; continue ; }

l7	 After the continue statement, now add a break statement,
to make the loop quit on its eighth iteration
if (i == 8) { cout << endl << “Done” ; break ; }

l8	 Save, compile, and run the program once more to see the
loop now omits some iterations

52
M

ak
in

g
st

at
em

en
ts

Declaring functions

Use the void keyword if
the function will return
no value to the caller.

Strictly speaking, the
arguments in a function
prototype are known as
its “formal parameters”.

Functions enclose a section of code that provides specific
functionality to the program. When a function is called from the
main program its statements are executed and, optionally, a value
can be returned to the main program upon completion. There are
three main benefits to using functions:

•	 Functions make program code easier to understand & maintain

•	 Tried and tested functions can be re-used by other programs

•	 Several programmers can divide the workload in large projects
by working on different functions of the program

Declaring functions
Each function is declared early in the program code as a
“prototype” comprising a data type for the value it will return and
the function name followed by parentheses, which may optionally
contain a list of “argument” data types of passed values it may use.
The syntax of a function prototype declaration looks like this:

return-data-type function-name (arguments-data-type-list) ;

For example, a function named “computeArea” that returns a float
value and is passed two float arguments is declared as:

float computeArea(float, float) ;

Defining functions
The function’s definition appears later in the program code and
comprises a repeat of the prototype plus the actual function body.
The function body is the statements to be executed whenever the
function is called, contained within a pair of braces.

It is important to recognize that the compiler checks the
function definition against the prototype so the actual returned
data type must match that specified in the prototype, and any
supplied arguments must match in both number and data type.
Compilation fails if the definition does not match the prototype.
A simple computeArea definition might look like this:

float computeArea(float width, float height)
{
	 return (width * height) ;
}

53
…cont’d

Variables of the same
name do not conflict
when they are declared
in a different scope
– they are not visible to
each other.

Variable scope
Variables that are declared in a function can only be used locally
within that function and are not accessible globally for use in
other functions. This limitation is known as “variable scope”.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Next declare two simple function prototypes
float bodyTempC() ;
float bodyTempF() ;

l3	 Now add a main function containing calls to each
function and a final return statement
int main()
{
 cout << “Centigrade: ” << bodyTempC() << endl ;
 cout << “Fahrenheit: ” << bodyTempF() << endl ;
 return 0 ;
}

l4	 After the main function, define both other functions – to
each return the value of a local “temperature” variable
float bodyTempC()
{
 float temperature = 37.0 ;
 return temperature ;
}

float bodyTempF()
{
 float temperature = 98.6 ;
 return temperature ;
}

l5	 Save, compile, and run the program to see the output

++

scope.cpp

54
M

ak
in

g
st

at
em

en
ts

Passing arguments

Function prototypes must
be declared before they
can be defined. Typically
the prototypes appear
before the main function
and their definitions after
the main function.

Function calls frequently supply argument values to a function.
These can be of any quantity and data type but they must agree
with those specified in the function prototype declaration.

Note that arguments passed to a function only supply a copy of
the original value, in a procedure known as “passing by value”.

The values passed to arguments can be “static” values, specified in
the program code, or “dynamic” values that are input by the user.
At a command prompt the C++ cin function can be used with the
>> input stream operator to direct a value from standard input to
a variable like this:

float num ;
cout << “Please enter a number: ” ;
cin >> num ;

Input can then be passed to a function as an argument in a
function call, such as workWith(num).

Optionally, a function prototype can assign default values to
arguments, which will be used when a call does not pass an
argument value. Multiple arguments can be assigned default values
in the prototype but these must always appear at the end of the
argument list, after any other arguments.

In the same way that functions can be called from the main
function, functions may call other functions and pass arguments.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Next declare a function prototype that returns a float
value and specifies a single float argument, to which a
default value is assigned
float fToC (float degreesF = 32.0) ;

l3	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

++

args.cpp

55
…cont’d

The names given to the
arguments and variables
in the function definition
do not need to be the
same as the variable
names in the calling
function – but it helps to
clarify the program.

In the same way that
functions can be called
from the main function,
functions may call other
functions and pass
arguments to them.

l4	 After the main function, define the “fToC” function with
statements that will return a converted value
float fToC(float degreesF)
{
 float degreesC = ((5.0 / 9.0) * (degreesF - 32.0)) ;
 return degreesC ;
}

l5	 In the main function, insert a statement to declare two
float variables – to store an input Fahrenheit temperature
value and its Centigrade equivalent
float fahrenheit, centigrade ;

l6	 Insert statements to request that user input be stored in
the first variable
cout << “Enter a Fahrenheit temperature:\t” ;
cin >> fahrenheit ;

l7	 Next call the “fToC” function to convert the input value
– and assign the conversion to the second variable
centigrade = fToC(fahrenheit) ;

l8	 Now output a message describing the result
cout << fahrenheit << “F is “ << centigrade << “C” ;

l9	 Finally add a statement to output a further message using
the default argument value of the function prototype
cout << endl << “Freezing point: “ << fToC() << “C” ;

l10	 Save, compile, and run the program, then enter a numeric
value when requested to see the output

56
M

ak
in

g
st

at
em

en
ts

Overloading functions

Functions that only differ
by their return data type
cannot be overloaded
– it’s the arguments that
must differ. Function
resolution does not take
the return data types
into consideration.

Function “overloading” allows functions of the same name to
happily co-exist in the same program, providing their arguments
differ in number, data type, or both number and data type. The
compiler matches a function call to the correct version of the
function by recognizing its argument number and data types – a
process known as “function resolution”.

It is useful to create overloaded functions when the tasks they are
to perform are similar, yet subtly different.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Below the preprocessor instructions, declare a function
prototype that returns a float value and has one argument
float computeArea (float) ;

l3	 Now declare two overloaded function prototypes – having
different arguments to the first prototype
float computeArea (float, float) ;
float computeArea (char, float, float) ;

l4	 Below the prototype declarations, add a main function
containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l5	 After the main function, define the first function that
receives just one argument
float computeArea(float diameter)
{
 float radius = (diameter / 2) ;
 return (3.141593 * (radius * radius)) ;
}

++

overload.cpp

57
…cont’d

l6	 Below the first function definition, define the overloaded
functions that receives different arguments
float computeArea(float width, float height)
{
 return (width * height) ;
}

float computeArea(char letter, float width , float height)
{
 return ((width / 2) * height) ;
}

l7	 In the main function, insert statements to declare two
variables and initialize one with user input
float num, area ;

cout << “Enter dimension in feet: “ ;
cin >> num ;

l8	 Call the first function and output its returned value
area = computeArea(num) ;
cout << “Circle: Area = “ << area << “ sq.ft.” << endl ;

l9 	 Call the overloaded functions and output their returns
area = computeArea(num, num) ;
cout << “Square: Area = “<< area << “ sq.ft.” << endl ;
area = computeArea(‘T’, num, num) ;
cout << “Triangle: Area = “<< area << “sq.ft.” << endl ;

l10	 Save, compile, and run the program then enter a numeric
value when requested to see the output The value passed to the

char argument is never
used – that argument
is included merely
to differentiate that
overloaded function.

58
M

ak
in

g
st

at
em

en
ts

Optimizing functions

A recursive function
generally uses more
system resources than a
loop – but it can make
for more readable code.

Functions can call themselves recursively, to repeatedly execute the
statements contained in their function body – much like a loop.
As with loops, a recursive function must contain an incrementer
and a conditional test to call itself again or stop repeating when a
condition is met. The syntax of a recursive function looks like this:

return-data-type function-name (argument-list)
{
	 statements-to-be-executed ;
	 incrementer ;
	 conditional-test-to-recall-or-exit ;
}

The incrementer will change the value of a passed argument – so
subsequent calls will pass the adjusted value back to the function.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Below the preprocessor instructions, declare two function
prototypes that will both be recursive functions
int computeFactorials (int, int) ;
int factorial (int) ;

l3	 Below the prototype declarations, add a main function
containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l4	 After the main function, add the definition for the first
function prototype – a recursive function
int computeFactorials(int num, int max)
{
 cout << “Factorial of “ << num << “: ” ;
 cout << factorial(num) << endl ;	 // Statements.
 num++ ;				 // Incrementer.
 if (num > max) return 0 ;		 // Exit...
 else computeFactorials(num , max) ;	 // or call again.
}

++

optimize.cpp

59
…cont’d

Inline declarations
may only contain one
or two statements as
the compiler recreates
them at each calling
point – longer inline
declarations would,
therefore, produce a
more unwieldy program.

If you accidentally run an
infinite recursive function
press the Ctrl+C keys to
terminate the process.

l5	 Define a recursive function for the second prototype
int factorial(int n)
{
 int result ;
 if (n == 1) result = 1 ;		 // Exit or...
 else result = (factorial(n - 1) * n) ;	 // Decrement..
 return result ;	 			 // and call again.
}

l6	 At the start of the main function, insert a call to the
recursive function
computeFactorials(1, 8) ;

l7	 Save, compile, and run the program to see the output

The output lists factorial values (factorial 3 is 3x2x1=6, etc.)
but the program can be improved by optimizing the factorial()
function. This function does not need a variable if written with
the ternary operator. It then contains just one statement so its
definition can replace the prototype declaration as an “inline”
declaration. This means that the program need not keep checking
between the declaration and definition, and so improves efficiency.

l8	 Delete the factorial() function definition, then replace its
prototype declaration with this inline declaration
inline int factorial(int n)
{ return (n == 1) ? 1 : (factorial(n - 1) * n) ; }

l9	 Save, compile, and run the program again to see the same
output, produced more efficiently

60
M

ak
in

g
st

at
em

en
ts

Summary

•	 An if statement evaluates a given test expression for a boolean
value of true or false

•	 Statements contained in braces after an if statement will only
be executed when the evaluation is found to be true

•	 The if and else keywords are used to perform conditional
branching according to the result of a tested expression

•	 A switch statement is an alternative form of conditional
branching that matches a case statement to a given value

•	 The for loop structure has parameters declaring an initializer,
a test expression, and an incrementer or decrementer

•	 A while loop and do-while loop must always have an
incrementer or decrementer within their loop body

•	 Any type of loop can be immediately terminated by including
a break statement within the loop body

•	 A single iteration of any type of loop can be skipped by
including a continue statement within the loop body

•	 Functions are usually declared as prototypes at the start of the
program and defined after the main function

•	 Variables declared in a function are only accessible from within
that function as they only have local scope

•	 Values can be passed into functions if arguments are declared
in the function prototype and definition

•	 Overloaded functions have the same name but different
number or type of declared arguments

•	 Recursive functions repeatedly call themselves until a test
condition is met

•	 Short function definitions of just one or two statements can be
declared in place of a prototype using the inline keyword

This chapter demonstrates how to
manipulate C++ text strings as a
simpler, more powerful, alternative to
character arrays.

Handling strings4

62
H

an
dl

in
g

st
ri

ng
s

Creating string variables
Unlike the char, int, float, double, and bool data types there is no
native “string” data type in C++ – but its <string> library class
provides a string object that emulates a string data type. To make
this available to a program the library must be added with an
#include <string> directive at the start of the program.

Like the <iostream> class library, the <string> library is part of
the std namespace that is used by the C++ standard library classes.
This means that a string object can be referred to as std::string,
or more simply as string when a using namespace std; directive is
included at the start of the program.

Once the <string> library is made available a string “variable” can
be declared in the same way as other variables. The declaration
may optionally initialize the variable using the = assignment
operator, or it may be initialized later in the program.

Additionally, a string variable may be initialized by including a
text string between parentheses after the variable name.

Text strings in C++ must always be enclosed within “ ” double
quote characters – ‘ ’ single quotes are only used to surround
character values of the char data type.

A C++ string variable is much easier to work with than the char
arrays which C programmers must use, as it automatically resizes
to accommodate the length of any text string. At a lower level the
text is still stored as a character array but the string variable lets
you ignore those details. Consequently a character array can be
assigned to a string variable using the = assignment operator.

It is important to remember that when numeric values are
assigned to a string variable they are no longer a numeric data
type, so arithmetic cannot be performed on them. For example,
attempting to add string values of “7” and “6” with the + addition
operator produces the concatenated string “76”, not the numerical
value of 13. In this case the + operator recognizes that the context
is not arithmetical so adopts the guise of “concatenation operator”
to unite the two strings. Similarly, the += operator appends a
string to another string and is useful to build long strings of text.

Several string values are built into a single long string in the
example program described on the opposite page.

63
…cont’d…cont’d

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <string>		 // Include string support.
#include <iostream>
using namespace std ;

l2	 Add a main function containing four string variable
declarations and a final return statement
int main()
{
 string text = “9” ;
 string term(“9 “) ;
 string info = “Toys” ;
 string color ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, after the variable declarations insert
statements to declare and initialize a character array, then
assign its value to the uninitialized string variable
char hue[4] = { ‘R’, ’e’, ’d’, ’\0’ } ;
color = hue ;

l4	 Assign a longer text string to one of the string variables
info = “Balloons” ;

l5	 Build a long string by combining all the string variable
values in the first string variable, then output the
combined string value
text += (term + color + info) ;
cout << endl << text << endl ;

l6 	 Save, compile, and run the program to see the output

++

string.cpp

Remember to add the
special \0 character to
mark the end of a string
in a char array.

64
H

an
dl

in
g

st
ri

ng
s

Getting string input
The C++ cin function, that was introduced in the last chapter to
input numeric values, can also assign text input to string variables.
This has a limitation as it can only be used to input a single
word at a time – the cin function stops reading the input when it
encounters a space, leaving any other text in the “input buffer”.

When you want to allow the user to input a string with spaces,
such as a sentence, the getline() function can be used. This
function requires two arguments to specify the source and
destination of the string. For example, where the cin function is
the source and a string variable named “str” is the destination:

getline(cin , str) ;

The getline() function reads from an input “stream” until it
encounters a \n newline character at the end of the line – created
when you hit Return.

Care must be taken when mixing cin and getline() functions as
the getline() function will automatically read anything left on the
input buffer – giving the impression that the program is skipping
an instruction. The cin.ignore() function can be used to overcome
this problem by ignoring content left in the input buffer.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <string>		 // Include string support.
#include <iostream>
using namespace std ;

l2	 Add a main function containing one string variable
declaration and a final return statement
int main()
{
 string name ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, insert statements assigning the user
name input to a string variable then outputting its value
cout << “Please enter your full name: ” ;
cin >> name ;
cout << “Welcome “ << name << endl ;

++

input.cpp

65

Use the cin function for
numeric input or single
word input, but use the
getline() function for
string input.

The arguments to the
cin.ignore() function
specify it should discard
up to 256 characters and
stop when it encounters
a newline character.

…cont’d

l4	 Next insert a statement requesting the user name again,
but this time assigning the input to the string variable
with the getline function before outputting its value
cout << “Please re-enter your full name: ” ;
getline(cin , name) ;
cout << “Thanks, “ << name << endl ;

l5	 Save, compile, and run the program and enter your full
name when requested

This unsatisfactory result shows that cin reads up to the first space,
leaving the second name in the input buffer, which is then read by
getline() and subsequently output. The problem persists even when
you enter only your first name because cin leaves the newline
character, created when you hit Return, on the input buffer.

l6	 Edit the program to resolve this issue by inserting a
statement, just before the call to the getline function,
instructing it to ignore content in the input buffer
cin.ignore(256, ‘\n’) ;

l7	 Save, compile, and run the program again then re-enter
your full name to see the program perform as required

66
H

an
dl

in
g

st
ri

ng
s

Solving the string problem
A problem arises with string variables when you need to convert
them to a different data type, perhaps to perform arithmetical
operations with those values. As the string object is not a native
C++ data type a string variable value cannot be converted to an int
or any other regular data type by casting.

The solution is provided by the C++ <sstream> library that
allows a stringstream object to act as an intermediary, through
which string values can be converted to a numeric data type, and
numeric values can be converted to a string data type. To make
this ability available to a program the library must be added with
an #include <sstream> directive at the start of the program.

Values can be loaded into a stringstream object with the familiar
output stream << operator – that is used with cout statements.
Contents can then be extracted from a stringstream object with
the >> input stream operator that is used with cin statements.

In order to re-use a stringstream object it must first be returned to
its original state. This requires its contents to be set as an empty
string and it status bit flags to be cleared.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <string>	 // Include string support.
#include <sstream>	 // Include stringstream support.
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and declaring two initialized variables to be converted
int main()
{
 string term = “100” ;
 int number = 100 ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, insert statements to declare an
integer variable, string variable, and a stringstream object
int num ;		 // To store a converted string.
string text ;		 // To store a converted integer.
stringstream stream ;	 // To perform conversions.

++

convert.cpp

67

A non-empty
stringstream object has
bit flags indicating its
status as good, bad, eof,
or fail – these should be
cleared before re-use by
the stringstream object’s
clear() function, as
demonstrated here.

Notice how the
stringstream object’s
str() function is used
here to reset its contents
to an empty string.

…cont’d

l4	 Next use the stream output operator to load the
initialized string value into the stringstream object
stream << term ;	 // Load the string.

l5	 Use the stream input operator to extract content from the
stringstream object into the uninitialized integer variable
stream >> num ;	 // Extract the integer.

l6	 Perform arithmetic on the integer and output the result
num /= 4 ;
cout << “Integer value: ” << num << endl ;

l7	 Reset the stringstream object ready for re-use
stream.str(“”) ;		 // Empty the contents.
stream.clear() ;		 // Empty the bit flags.

l8	 Now use the stream output operator to load the
initialized integer value into the stringstream object
stream << number ;	 // Load the integer.

l9	 Use the stream input operator to extract content from the
stringstream object into the uninitialized string variable
stream >> text ;	 // Extract the string.

l10	 Perform concatenation on the string and output the result
text += “ Per Cent” ;
cout << “String value: ” << text << endl ;

l11	 Save, compile, and run the program to see the converted
output values

68
H

an
dl

in
g

st
ri

ng
s

Discovering string features
The C++ <string> library provides a number of functions that
make it easy to work with strings. To use them simply add the
function name after the string variable name and a dot. For
example, with a string variable named “msg” you can call upon the
size() function, to return its character length, with msg.size().

A string variable can be emptied of all characters by assigning it
an empty string with two double quotes without spacing – as “”,
or alternatively by calling the <string> library’s clear() function.

Unlike a char array a string variable will dynamically enlarge to
accommodate the number of characters assigned to it, and its
current memory size can be revealed with the <string> library’s
capacity() function. Once enlarged the allocated memory size
remains, even when a smaller string gets assigned to the variable.

The <string> library’s empty() function returns a boolean true (1)
or false (0) response to reveal whether the string is empty or not.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <string>		 // Include string support.
#include <iostream>
using namespace std ;

l2	 Below the preprocessor directives, declare a function
prototype with a single string data type argument
void computeFeatures(string) ;

l3	 Add a main function containing a final return statement
and declaring an initialized string variable
int main()
{
 string text = “C++ is fun” ;
 // Add more statements here.
 return 0 ;
}

l4	 After the main function, define the declared function to
display the string variable value when called
void computeFeatures(string text)
{
 cout << endl << “String: ” << text << endl ;
}

++

features.cpp

The length() function can
be used in place of the
size() function to reveal
the size of a string value.

69

A space occupies one
memory element – just
like a character does.

The empty() function
is useful to check if
the user has entered
requested input.

…cont’d

l5	 In the function definition, add statements to output
features of the string variable
cout << “Size: ” << text.size() ;
cout << “ Capacity: ” << text.capacity() ;
cout << “ Empty?: ” << text.empty() << endl ;

l6	 In the main function, insert a call to the defined function
computeFeatures(text) ;

l7	 Next in the main function, insert a statement to enlarge
the string value and call the function to see its features
text += “ for everyone” ;
computeFeatures(text) ;

l8	 Now insert a statement to reduce the string value
text = “C++ Fun” ;
computeFeatures(text) ;

l9	 Finally insert a statement to empty the string variable
text.clear() ;
computeFeatures(text) ;

l10	 Save, compile, and run the program to see the output

70
H

an
dl

in
g

st
ri

ng
s

Joining & comparing strings
When the + operator is used to concatenate strings in an
assignment the combined strings get stored in the string variable.
But when it is used with the cout function the strings are only
combined in the output – the variable values are unchanged.

The <string> library’s append() function can also be used to
concatenate strings, specifying the string value to append as an
argument within its parentheses. When this is used with the cout
function the strings are combined in the variable, then its value
written as output – in this case the variable value does change.

String comparisons can be made, in the same way as numeric
comparisons, with the == equality operator. This returns true (1)
when both strings precisely match, otherwise it returns false (0).

Alternatively, the <string> library’s compare() function can be
used to compare a string value specified as its argument. Unlike
the == equality comparison, the compare() function returns zero
when the strings are identical by examining the string value’s
combined ASCII code values. When the string argument totals
more than the first string it returns -1, otherwise it returns 1.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <string>		 // Include string support.
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and declaring three initialized string variables
int main()
{
 string lang = “C++” ;
 string term = “ Programming” ;
 string text = “C++ Programming” ;
 // Add more statements here.
 return 0 ;
}

++

compare.cpp

71

The += assignment
operator can also be
used to append a string.

In comparisons character
order is taken into
account – so comparing
“za” to “az” reveals that
“za” has a greater total.
In terms of ASCII values
‘a’ is 97, and ‘z’ is 122.

…cont’d

l3	 In the main function, insert statements to output two
string values combined with the + concatenate operator
and the (unchanged) value of the first variable
cout << “Concatenated: ” << (lang + term) << endl ;
cout << “Original: ” << lang << endl ;

l4	 Next insert statements to output two string values
combined with the append function and the (changed)
value of the first variable
cout << “Appended: ” << lang.append(term) << endl ;
cout << “Original: ” << lang << endl << endl ;

l5	 Use the == equality operator to compare two string
values that differ, then two string values that match
cout << “Differ: ” << (lang == term) << endl ;
cout << “Match: ” << (lang == text) << endl << endl ;

l6	 Now use the compare function to compare three string
values, examining their ASCII code total values
cout << “Match: ” << lang.compare(text) << endl ;
cout << “Differ: ” << lang.compare(term) << endl ;
cout << “Lower ASCII: ” <<
		 lang.compare(“zzzzz”) << endl ;

l7	 Save, compile, and run the program to see the output

72
H

an
dl

in
g

st
ri

ng
s

Copying & swapping strings
String values can be assigned to a string variable by the =
assignment operator, or by the <string> library’s assign() function.
This function specifies the string value to be copied to the variable
as an argument within its parentheses.

Optionally, the assign() function can copy just a part of the
specified string value by stating the position of the starting
character as a second argument, and the number of characters to
copy as a third argument.

The contents of a string variable can be exchanged for that of
another string variable by the <string> library’s swap() function.
In this case the contents of the first variable receives those of the
second variable, which in turn receives those of the first variable.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <string>		 // Include string support.
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and declaring three string variables – with one initialized
int main()
{
 string front ;
 string back ;
 string text =
 “Always laugh when you can. It\’s cheap medicine.” ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, insert a statement to assign the
entire value of the initialized string variable to the first
uninitialized string variable
front.assign(text) ;

l4	 Next insert a statement to output the newly assigned
string value
cout << endl << “Front: ” << front << endl ;

++

swap.cpp

73

Use the = assignment
operator to assign
complete strings and
the assign() function to
assign partial strings.

…cont’d

l5	 Now insert a statement to assign only the first 27
characters of the initialized variable to the first variable
front.assign(text, 0, 27) ;

l6	 Output the newly assigned string value
cout << endl << “Front: ” << front << endl ;

l7	 Next assign only the last part of the initialized string
variable to the second uninitialized variable, starting at
character (element) 27
back.assign (text, 27 , text.size()) ;

l8	 Now output this newly assigned string value
cout << “Back: ” << back << endl ;

l9	 Finally exchange the assigned string values contained
in the first and second string variables then output the
exchanged values
back.swap(front) ;
cout << endl << “Front: ” << front << endl ;
cout << “Back: ” << back << endl ;

l10	 Save, compile, and run the program to see the output

Use the swap() function
wherever possible rather
than creating additional
string variables.

74
H

an
dl

in
g

st
ri

ng
s

Finding substrings
A string value can be searched to see if it contains a specified
“substring” using the find() function of the <string> library.
Its parentheses should specify the substring to seek as its first
argument, and the index number of the character at which to start
searching as its second argument.

When a search successfully locates the specified substring the
find() function returns the index number of the first occurrence
of the substring’s first character within the searched string. When
the search fails find() returns a value of -1 to indicate failure.

There are several other functions in the <string> library that are
related to the find() function. Two of these are the find_first_of()
function and the find_first_not_of() function. Instead of seeking
the first occurrence of a complete string, as find() does, the
find_first_of() function seeks the first occurrence of any of the
characters in a specified string, and find_first_not_of() seeks the
first occurrence of a character that is not in the specified string.

The find_last_of() and find_last_not_of() functions work in a
similar manner – but begin searching at the end of the string then
move forwards.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <string>		 // Include string support.
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement,
an initialized string variable declaration, and declaring an
integer variable to store search results
int main()
{
 string text = “I can resist anything but temptation.” ;
 int num ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, insert statements to output the start
position of a substring within the entire string variable
num = text.find(“resist”, 0) ;
cout << “Position: ” << num << endl ;

++

find.cpp

75

The searches are case
sensitive so seeking “If”
and “if” may produce
different results – here
uppercase ‘I’ matches.

The first character in a
string is at position zero,
not at position one.

…cont’d

l4	 Next insert a statement to seek a non-existent substring
within the entire string variable and output the result
num = text.find(“nonsuch” , 0) ;
cout << “Result: ” << num << endl ;

l5	 Now insert a statement to output the start position of the
first occurrence any characters of an “If ” substring found
within the entire string variable
num = text.find_first_of(“If” , 0) ;
cout << “First I: ” << num << endl ;

l6	 Insert a statement to report the string position of the first
character not within the “If ” substring
num = text.find_first_not_of(“If”) ;
cout << “First not I: ” << num << endl ;

l7	 Next insert a statement to seek the last occurrence of the
letter “t” within the string variable and output its position
num = text.find_last_of(“t”) ;
cout << “Last t: ” << num << endl ;

l8	 Now add a statement to report the string position of the
last character within the string variable that is not a “t”
num = text.find_last_not_of(“t”) ;
cout << “Last not t: ” << num << endl ;

l9	 Save, compile, and run the program to see the search
results indicating failure or the positions when located

76
H

an
dl

in
g

st
ri

ng
s

Replacing substrings
The <string> library contains a number of useful functions to
manipulate substrings. A string can be inserted into another string
using the insert() function. This requires the index position at
which the string should be inserted as its first argument, and the
string value to be inserted as its second argument.

Conversely, a substring can be removed from a string using the
erase() function. This requires the index position at which it
should begin erasing as its first argument, and the number of
characters to be erased as its second argument.

The replace() function neatly combines the erase() and insert()
functions to both remove a substring and insert a replacement.
It requires three arguments specifying the position at which it
should begin erasing, the number of characters to be erased, and
the replacement string to be inserted at that position.

A substring can be copied from a string using the substr()
function, stating the index position at which it should begin
copying as its first argument, and the number of characters to be
copied as its second argument.

The character at any specified position within a string can be
copied using the at() function, which requires the index position
as its argument. The final character in a string always has an
element index number one less than the length of the string
– because index numbering starts at zero, not one.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <string>		 // Include string support.
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement,
an initialized string variable declaration, and a statement
outputting the string variable value
int main()
{
 string text = “I do like the seaside” ;
 cout << “Original: ” << text << endl ;
 // Add more statements here.
 return 0 ;
}

++

sub.cpp

77

The insert() function can
optionally have a third
and fourth argument
– specifying the position
in the substring at which
to begin copying, and
the number of characters
to be copied.

…cont’d

l3	 In the main function, insert statements to insert a
substring into the variable value at index position ten and
to output the modified string
text.insert(10, “to be beside “) ;
cout << “Inserted: ” << text << endl ;

l4	 Next insert statements to erase two characters from the
modified string value starting at index position three, and
to output the revised string
text.erase(2, 3) ;
cout << “Erased: ” << text << endl ;

l5	 Now insert statements to remove 25 characters at index
position seven, insert a replacement substring, then output
the revised string again
text.replace(7, 25, “strolling by the sea”) ;
cout << “Replaced: ” << text << endl ;

l6	 Finally insert statements to output nine copied characters
at index position seven, and to output the final character
in the string
cout << “Copied: ” << text.substr(7, 9) << endl ;
cout << “Last character: ” <<
		 text.at(text.size() - 1) << endl ;

l7	 Save, compile, and run the program to see the output
showing how the string has been manipulated

The replace() function
can optionally have
a fourth and fifth
argument – specifying
the position in the
substring at which to
begin copying, and the
number of characters to
be copied.

78
H

an
dl

in
g

st
ri

ng
s

Summary

•	 The C++ <string> library provides a “string” object that
emulates a data type – so that string variables can be created

•	 Arithmetic cannot be performed on numeric values assigned to
string variables until they are converted to a numeric data type

•	 The standard cin function reads from standard input until it
encounters a space, so can be used to input a single word, and
provides an ignore() function to disregard the input buffer

•	 The getline() function reads from standard input until it
encounters a newline, so can be used to input a string of text

•	 The C++ <sstream> library provides a “stringstream” object
that acts an intermediary to convert strings to other data types

•	 A string variable can be emptied by assigning it an empty
string (= “”) or by calling its clear() function

•	 Features of a string variable can be revealed by calling its size(),
capacity(), and empty() functions

•	 Multiple string values can be concatenated by the + operator

•	 A string can be appended to another string by the += operator
or by calling its append() function

•	 A string can be compared to another string by the == operator
or by calling its compare() function

•	 A string value can be assigned to a string variable using the
= operator or by calling its assign() function

•	 The swap() function swaps the values of two string variables

•	 Substrings of a string can be sought with the find() function,
or specialized functions such as find_first_of(), and a character
retrieved from a specified index position by the at() function

•	 A substring can be added to a string by its insert() function,
removed by its erase() function, replaced by its replace()
function, or copied by its substr() function

This chapter demonstrates how to store and
retrieve data in text files, and illustrates
how to avoid errors in C++ programs.

Reading
and writing files5

80
Re

ad
in

g
an

d
w

ri
ti

ng
 fi

le
s

Writing a file

The nominated file
name or path must be
enclosed within double
quotes, like a string.

The ability to read and write files from a program provides a
useful method of maintaining data on the computer’s hard disk.
The format of the data may be specified as human-readable plain
text format or machine-readable binary format.

The standard C++ <fstream> library provides functions for
working with files, which can be made available by adding an
#include <fstream> directive at the start of the program.

For each file that is to be opened a filestream object must first be
created. This will be either an “ofstream” (output filestream) object,
for writing data to the file, or an “ifstream” (input filestream)
object, for reading data from the file. The ofstream object is
used like the cout function that writes to standard output, and
the ifstream object works like the cin function that reads from
standard input.

The declaration of a filestream object for writing output begins
with the ofstream keyword, then a chosen name for that particular
filestream object followed by parentheses nominating the text file
to write to. So the declaration syntax looks like this:

ofstream object-name (“file-name”) ;

The argument nominating the text file may optionally contain
the full file path, such as “C:\data\log.txt” or “/home/user/log.txt”,
otherwise the program will seek the file within the directory in
which the program resides.

Before writing output to a file the program should always first test
that the filestream object has actually been created. Typically this
is performed by an if statement that allows the program to write
output only when the test is successful.

If a nominated file already exists it will, by default, be overwritten
without warning. Otherwise a new file will be created and written.

After writing output to a nominated file the program should
always call the associated filestream object’s close() function to
close the output filestream.

The program described opposite first builds a string for writing
as output. This is written to a nominated file when the filestream
object has been successfully created, then the filestream closed.

81
…cont’d

Notice how the newline
and tab characters are
preserved in the text file.

…cont’d

++

write.cpp

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <fstream>	 // Include filestream support.
#include <string>
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and building a lengthy text string in a string variable
int main()
{
 string poem = “\n\tI never saw a man who looked” ;
 poem.append(“\n\tWith such a wistful eye”) ;
 poem.append(“\n\tUpon that little tent of blue”) ;
 poem.append(“\n\tWhich prisoners call the sky”) ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, create an output filestream object
ofstream writer(“poem.txt”) ;

l4	 Insert statements to write the string to a file or exit, then
save, compile, and run the program to see the result
if (! writer)
{
 cout << “Error opening file for output” << endl ;
 return -1 ; 	 // Signal an error then exit the program.
}
writer << poem << endl ; 	 // Write output.
writer.close() ;			 // Close filestream.

String values can contain
\n newline and \t tab
escape sequences for
formatting lines.

82
Re

ad
in

g
an

d
w

ri
ti

ng
 fi

le
s

Appending to a file

The preprocessor directive
using namespace std;
allows the std
namespace prefix to be
omitted – so cout refers
to the std::cout function.
The ios namespace
exists within the std
namespace – so the file
modes can be explicitly
addressed using both
namespace prefixes, for
example std::ios::out.

When a filestream object is created, the parentheses following
its chosen name can optionally contain additional arguments,
specifying a range of file “modes” to control the behavior of that
filestream object. These file modes are part of the ios namespace,
so must be explicitly addressed using that prefix. Each file mode is
listed in the table below, together with a behavior description:

Mode: Behavior:

ios::out Open a file to write output

ios::in Open a file to read input

ios::app
Open a file to append output at the end of any
existing content

ios::trunc Truncate the existing file (default behavior)

ios::ate
Open a file without truncating and allow data
to be written anywhere in the file

ios::binary
Treat the file as binary format rather than text
so the data may be stored in non-text format

Multiple modes may be specified if they are separated by a “|”
pipe character. For example, the syntax of a statement to open a
file for binary output looks like this:

ofstream object-name (“file-name” , ios::out|ios::binary) ;

The default behavior when no modes are explicitly specified
regards the file as a text file that will be truncated after writing.

The most commonly specified mode is ios::app, which ensures
existing content will be appended, rather than overwritten, when
new output is written to the nominated file.

The program described opposite appends data to the text file
created in the previous example.

83

The file must allow the
program suitable read
and write permissions.

…cont’d

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <fstream>	 // Include filestream support.
#include <string>
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and building a text string in a string variable
int main()
{
 string info = “\n\tThe Ballad of Reading Gaol” ;
 info.append(“\n\t\t\tOscar Wilde 1898”) ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, create an output filestream object
– specifying a file mode that will append to existing text
ofstream writer(“poem.txt” , ios::app) ;

l4	 Insert statements to append the string to a file or exit,
then save, compile, and run the program to see the result
if (! writer)
{
 cout << “Error opening file for output” << endl ;
 return -1 ; 	 // Signal an error then exit the program.
}
writer << info << endl ; 	 // Append output.
writer.close() ;			 // Close filestream.

++

append.cpp

84
Re

ad
in

g
an

d
w

ri
ti

ng
 fi

le
s

Reading characters & lines
The ifstream filestream object has a get() function that can be
used in a loop to read a file and assign each character in turn to
the char variable specified as its argument:

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <fstream>	 // Include filestream support.
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and two variable declarations – one variable to store a
character and another to count loop iterations
int main()
{
 char letter ;
 int i ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, create an input filestream object to
read the text file from the previous example
ifstream reader(“poem.txt”) ;

l4	 Insert statements to exit unless the filestream object exists
if (! reader)
{
 cout << “Error opening input file” << endl ;
 return -1 ;	 // Signal an error then exit the program.
}

l5	 Next insert a loop to read the text file, assigning each
character in turn to the variable and outputting its value
for (i = 0 ; ! reader.eof() ; i++)
{
 reader.get(letter) ;
 cout << letter ;
}

l6	 Finally, insert statements to close the filestream, output
the total number of loop iterations
reader.close() ;
cout << “Iterations: ” << i << endl ;

Notice how the ifstream
eof() function is used to
check if the “end of file”
has been reached.

++

read.cpp

85

Output an endl after
each line output
– because getline() stops
reading when it meets a
\n newline character.

…cont’d

l7	 Save, compile, and run the program to see the text file
contents and loop count get displayed on standard output

This program works well enough but the loop must make many
iterations to output the text file contents. Efficiency could be
improved by reading a line on each iteration of the loop:

l8	 Insert a preprocessor directive to make the C++ string
library available to the program
#include <string>

l9	 Replace the character variable declaration with a string
variable declaration
string line ;

l10	 Replace both statements in the while loop to read lines,
then save, compile, and run the program once more
getline(reader , line) ;
cout << line << endl ;

86
Re

ad
in

g
an

d
w

ri
ti

ng
 fi

le
s

Formatting with getline

The string array must
have a sufficient number
of elements to store each
item of data – it would
need to be enlarged to
handle more records.

The getline() function can optionally have a third argument to
specify a delimiter at which to stop reading a line. This can be
used to separate text read from a tabulated list in a data file:

l1	 In a plain text editor, create a text file containing 12 items
of data of four items per line, each separated by a tab

l2	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <fstream>	 // Include filestream support.
#include <string>
#include <iostream>
using namespace std ;

l3	 Add a main function containing a final return statement
and four variable declarations – a fixed number, a string
array to store data, and two counter variables set to zero
int main()
{
 const int RANGE = 12 ;
 string tab[RANGE] ;
 int i = 0 , j = 0 ;
 // Add more statements here.
 return 0 ;
}

l4	 Insert a statement to create an input filestream object
ifstream reader(“records.txt”) ;

l5	 Insert statements to exit unless the filestream object exists
if (! reader)
{
 cout << “Error opening input file” << endl ;
 return -1 ;
}

++

format.cpp

87

The record counter must
use a prefix incrementer
to increase the variable
value before it is output.

The if statement tests if
the item number
(element number plus 1)
is exactly divisible by four
to determine whether to
read up to a newline or
tab character.

…cont’d

l6	 Next insert a loop that will read each line into the string
array – reading up to a \t tab for the first three items and
up to a \n newline for the fourth item on each line
while (! reader.eof())
{
 if ((i + 1) % 4 == 0)
	 getline(reader, tab[i++], ‘\n’) ;
 else
	 getline(reader, tab[i++], ‘\t’) ;
}

l7	 Now close the filestream and reset the counter
reader.close() ;
i = 0 ;

l8	 Insert a second loop to output the data stored in each
array element, formatted with descriptions and newlines
while (i < RANGE)
{
 cout << endl << “Record Number: ” << ++j << endl ;
 cout << “Forename: ” << tab[i++] << endl ;
 cout << “Surname: ” 	<< tab[i++] << endl ;
 cout << “Department: ” << tab[i++] << endl ;
 cout << “Telephone: ” << tab[i++] << endl ;
}

l9	 Save, compile, and run the program to see the formatted
output from the text file

88
Re

ad
in

g
an

d
w

ri
ti

ng
 fi

le
s

Manipulating input & output

Insertion operators
modify just one stream
object – subsequent
stream objects use the
defaults, unless they too
get modified first by
insertion operators.

Manipulator: Display:

noboolalpha* Boolean values as 1 or 0
boolalpha Boolean values as “true” or “false”
dec* Integers as base 10 (decimal)
hex Integers as base 16 (hexadecimal)
oct Integers as base 8 (octal)
right* Text right-justified in the output width
left Text left-justified in the output width
internal Sign left-justified, number right-justified
noshowbase* No prefix indicating numeric base
showbase Prefix indicating numeric base
noshowpoint* Whole number only when a fraction is zero
showpoint Decimal point for all floating point numbers
noshowpos* No + prefix before positive numbers
showpos Prefix positive numbers with a + sign
noskipws* Do not skip whitespace for >> input
skipws Skip whitespace for >> input
fixed* Floating point numbers to six decimal places
scientific Floating point numbers in scientific notation
nouppercase* Scientific as e and hexadecimal number as ff
uppercase Scientific as E and hexadecimal number as FF

The behavior of input and output streams can be modified using
“insertion operators” with the cout and cin functions. Specifying
an integer argument to their width() function sets the stream
character width. Where the content does not fill the entire stream
width a fill character may be specified as the argument to their
fill() function to indicate the empty portion. Similarly, the default
precision of six decimal places for floating point numbers can be
changed by specifying an integer to their precision() function.
Statements using insertion operators to modify a stream should be
made before those using the << or >> operators.

The <iostream> library provides the “manipulators” listed in the
table below, which modify a stream using the << or >> operators.

Manipulators marked
with an * are the default
behaviors.

89
…cont’d

++

manipulate.cpp

Manipulators affect all
input or output on that
stream. For example, the
boolalpha manipulator
will display all boolean
values on that stream in
written form.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and declaring two initialized variables
int main()
{
 bool isTrue = 1 ;
 int num = 255 ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, insert statements to set the width
and fill of an output stream then output a text string on it
cout.width(40) ;
cout.fill(‘.’) ;
cout << “Output” << endl ;

l4	 Next insert statements to set the precision of an output
stream to stop truncation of decimal places – then output
a floating point number showing all its decimal places
cout.precision(11) ;
cout << “Pi: ” << 3.1415926536 << endl ;

l5	 Now insert statements that use manipulators to output
the variable values in modified formats
cout << isTrue << “: ” << boolalpha << isTrue << endl ;
cout << num << “: ” << hex << showbase
			 << uppercase << num << endl ;

l6	 Save, compile, and run the program to see the output

90
Re

ad
in

g
an

d
w

ri
ti

ng
 fi

le
s

Predicting problems
Despite the best efforts of the programmer C++ programs may
unfortunately contain one, or more, of these three types of bugs:

•	 Syntax errors – the code contains incorrect use of the C++
language. For example, an opening brace does not have a
matching closing brace.

•	 Logic errors – the code is syntactically correct but attempts to
perform an operation that is illegal. For example, the program
may attempt to divide a number by zero, causing an error.

•	 Exception errors – the program runs as expected until an
exceptional condition is encountered that crashes the program.
For example, the program may request a number, which the
user enters in word form rather than in numeric form.

The C++ standards allow the compiler to spot “compile-time”
errors involving syntax and logic but the possibility of exceptional
errors is more difficult to locate as they only occur at “run-time”.
This means that the programmer must try to predict problems
that may arise and prepare to handle those exceptional errors.

The first step is to identify which part of the program code that
may, under certain conditions, cause an exception error. This can
then be surrounded by a “try” block, which uses the try keyword
and encloses the suspect code within a pair of braces.

When an exception error occurs the try block then “throws” the
exception out to a “catch” block, which immediately follows the
try block. This uses the catch keyword and encloses statements to
handle the exception error within a pair of braces.

The program described on the opposite page has a try block
containing a loop that increments an integer. When the integer
reaches five a throw() function manually throws an exception to
the catch block exception handler, passing the integer argument.

Always consider that
the user will perform
the unexpected – then
ensure your programs
can handle those actions.

91

When an exception
occurs control passes to
the catch block – in this
example the loop does
not complete.

…cont’d

++

try.cpp

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and declaring an integer variable for increment by a loop
int main()
{
 int number ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, insert try and catch blocks to
handle a “bad number” exception
try
{	 }
catch (int num)
{	 }

l4	 In the try block, insert a loop to increment the variable
for (number = 1 ; number < 21 ; number++)
{
 if (number > 4) throw (number) ;
 else
 cout << “Number: ” << number << endl ;
}

l5	 In the catch block, insert an exception handler statement
cout << “Exception at: ” << num << endl ;

l6	 Save, compile, and run the program to see the thrown
exception get caught by the catch block

92
Re

ad
in

g
an

d
w

ri
ti

ng
 fi

le
s

Recognizing exceptions

The error description
will vary for different
compilers – the Visual
C++ compiler describes
the exception error
in this example as an
“invalid string position”.

More on references in
the next chapter.

When a program exception occurs within a try block an
“exception” object is automatically thrown. A reference to the
exception can be passed to the associated catch block in the
parentheses after the catch keyword. This specifies the argument
to be an exception type, and a chosen exception name prefixed by
the & reference operator. For example, exception &error.

Once an exception reference is passed to a catch block an error
description can be retrieved by the exception’s what() function:

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <string>		 // Include string support.
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and declaring an initialized string variable
int main()
{
 string lang = “C++” ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, insert a try block containing a
statement attempting to erase part of the string variable
try { lang.erase(4, 6) ; }

l4	 Next insert a catch block containing a statement to send a
description to standard error output by the cerr function
catch (exception &error)
{ cerr << “Exception: ” << error.what() << endl ; }

l5	 Save, compile, and run the program to see the error
description of the caught exception

++

what.cpp

93

The example described
on the next page
demonstrates the use of
standard exceptions.

…cont’d

The cout function
sends data to standard
output, whereas the cerr
function sends error data
to standard error output.
These are simply two
different data streams.

The C++ <stdexcept> library defines a number of exception
classes. Its base class is named “exception” from which other
classes are derived, categorizing common exceptions.

Each of the exception classes are listed in the table below,
illustrating their relationship and describing their exception type:

When the <stdexcept> library is made available to a program,
by adding an #include <stdexcept> preprocessor directive, the
exception classes can be used to identify the type of exception
thrown to a catch block.

The specific exception class name can appear, in place of the
general exception type, within the catch block’s parentheses.

Multiple catch blocks can be used in succession, much like case
statements in a switch block, to handle several types of exception.

Additionally, exceptions can be produced manually by the throw
keyword. This can be used to create any of the logic_error and
runtime_error exceptions in the table above. Optionally, a custom
error message can be specified for manual exceptions, which can
be retrieved by its what() function.

Exception class: Description:

exception General exception
 bad_alloc – failure allocating storage
 bad_cast – failure casting data type
 bad_typeid – failure referencing typeid
 logic_error Logic exception
 domain_error – invalid domain
 invalid_argument – invalid argument in call
 length_error – invalid length for container
 out_of_range – invalid element range
 runtime_error Runtime exception
 range_error – invalid range request
 overflow_error – invalid arithmetic request

94
Re

ad
in

g
an

d
w

ri
ti

ng
 fi

le
s

Handling errors

The out_of_range error
occurs because the
replace() function is
trying to begin erasing at
the 100th character, but
the string variable has
only three characters.

Exception type information can be provided by including the
C++ standard <typeinfo> library. Its typeid() function accepts an
exception argument so its name() function can return the type name:

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <stdexcept> 	 // Support standard exceptions.
#include <typeinfo>	 // Support type information.
#include <fstream>
#include <string>
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement,
two initialized variable declarations, and a statement
ouputting a text message
int main()
{
 string lang = “C++” ;
 int num = 1000000000 ; // One billion.
 // Try-catch block goes here.
 cout << “Program continues...” << endl ;
 return 0 ;
}

l3	 In the main function, insert a try block containing a
statement attempting to replace part of the string value
try { lang.replace(100, 1 , “C”) ; }

l4	 After the try block, add a catch block to handle a range
exception then save, compile, and run the program
catch (out_of_range &e)
{
 cerr << “Range Exception: ” << e.what() << endl ;
 cerr << “Exception Type: ” << typeid(e).name() ;
 cerr << endl << “Program terminated.” << endl ;
 return -1 ;
}

++

except.cpp

95

The order of catch
blocks can be important
– placing the exception
error handler before the
out_of_range error
handler would allow an
out_of_range error to be
handled by the (higher
level) exception handler.

An exception object is
typically given the name
“e” – as seen here.

…cont’d

l5	 Replace the statement in the try block with one
attempting to resize the string variable
lang.resize(3 * num) ;

l6	 After the catch block, add a second catch block to handle
general exceptions
catch (exception &e)
{
 cerr << “Exception: ” << e.what() << endl ;
 cerr << “Exception Type: ” << typeid(e).name() << endl ;
}

l7	 Save, compile, and run the program again to see the
exception handled by the second catch block

l8	 Replace the statement in the try block with one
attempting to open a non-existent file
ifstream reader(“nonsuch.txt”) ;
if (! reader) throw logic_error(“File not found”) ;

l9	 Save, compile, and run the program once more to see the
exception handled again by the second catch block, and
the specified custom error message

96
Re

ad
in

g
an

d
w

ri
ti

ng
 fi

le
s

Summary

•	 The C++ <fstream> library provides functions for working
with files as ifstream input or ofstream output stream objects

•	 Upon completion a stream’s close() function should be called

•	 File modes can be used to control the behavior of a stream

•	 An input stream’s get() function reads one character at a time

•	 The getline() function can be used to read a line at a time from
an input stream

•	 Optionally, the getline() function can have a third argument
specifying a delimiter character at which to stop reading

•	 Insertion operators can be used with the cin and cout functions
to modify their behavior

•	 The cout.width() function sets the width of the output stream

•	 The cout.fill() function specifies a character to occupy any
empty portion of the output

•	 The cout.precision() function determines how many decimal
places to display when the output is a floating point number

•	 A badly performing program may contain syntax errors, logic
errors, or exception errors

•	 A try block can be used to enclose statements that, under
certain conditions, may cause an exception error

•	 A catch block can be used to handle exception errors produced
in its associated try block

•	 Exception errors that occur in a try block are automatically
thrown to the associated catch block, or can be manually
thrown using the throw() function

•	 The C++ <stdexcept> library defines a number of exception
classes that categorize common exceptions, and the
<typeinfo> library provides exception type information

This chapter demonstrates how to produce
efficient C++ programs utilizing pointers
and references.

Pointing to data6

98
Po

in
ti

ng
 t

o
da

ta

Understanding data storage

++

address.cpp

In order to understand C++ pointers it is helpful to understand
how data is stored on your computer. Envision the computer’s
memory as a very long row of sequentially numbered slots, which
can each contain one byte of data. When a variable is declared
in a program the machine reserves a number of slots at which to
store data assigned to that variable. The number of slots it reserves
depends upon the variable’s data type. When the program uses
the variable name to retrieve stored data it actually addresses the
number of the variable’s first reserved slot.

Comparison can be drawn to a long row of sequentially numbered
houses that can each accommodate a different family. Any family
can be explicitly referenced by addressing their house number.

The slot (house) numbers in computer memory are expressed in
hexadecimal format and can be revealed by the & reference operator.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <string>
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and declaring three initialized variables
int main()
{
 int num = 100 ;
 double sum = 0.0123456789 ;
 string text = “C++ Fun” ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, insert statements to output the
memory address of the first slot of each variable
cout << “Integer variable starts at: “ << &num << endl ;
cout << “Double variable starts at: “ << &sum << endl ;
cout << “String variable starts at: “ << &text << endl ;

l4	 Save, compile, and run the program to see the three
memory addresses

99

L-values are containers
but R-values are data.

…cont’d

Once memory space has been reserved by a variable declaration, a
value of the appropriate data type can be stored there using the
= assignment operator. For example, num = 100 takes the value
on its right (100) and puts it in the memory referenced by the
named variable on its left (num).

The operand to the left of the = assignment operator is called
its “L-value” and the operand to its right is called its “R-value”.
Consider the “L” in L-value to mean “Location” and consider the
“R” in R-value to mean “Read”.

One important rule in C++ programming insists that an R-value
cannot appear to the left of the = assignment operator, but an
L-value may appear on either side. Code that places an R-value to
the left of an = assignment operator will not compile:

l5	 Just before the return statement, insert statements placing
R-values incorrectly to the left of assignment operators
200 = num ;
5.5 = sum ;
“Bad assignments” = text ;

l6	 Save, and attempt to recompile the program to see the
errors caused by incorrectly placed R-values

The location addresses
are dynamically allocated
– so will vary from those
in this screenshot.

10
0

Po
in

ti
ng

 t
o

da
ta

Getting values with pointers
Pointers are a useful part of efficient C++ programming – they are
simply variables that store the memory address of other variables.

Pointer variables are declared in the same way that other variables
are declared, but the data type is suffixed by a “*” character. This
denotes, in a declaration, that the variable will be a pointer.
Always remember that the pointer’s data type must match that of
the variable to which it points.

A pointer variable is initialized by assigning it the memory
address of another variable using the & reference operator. The
assignment can be made either in the declaration statement, or in
a separate statement after the declaration. Referencing a pointer
variable by its name alone will simply reveal the memory address
that it contains.

After a pointer variable has been initialized, either in the
declaration or by a subsequent assignment, it “points” to the
variable at the address which it contains. Usefully, this means that
the value of the variable to which it points can be referenced by
prefixing the pointer name with the * dereference operator:

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and declaring two regular initialized integer variables
int main()
{
 int a = 8 , b = 16 ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, insert a statement to declare and
initialize a pointer with the memory address of the first
integer variable
int* aPtr = &a ; 	 // aPtr assigned address of a.

++

deref.cpp

101

The memory addresses
are dynamically allocated
– so will vary from those
in this screenshot.

The * dereference
operator is alternatively
known as the
“indirection” operator.

…cont’d

l4	 Insert a statement to declare a second pointer, then
initialize it with the address of the second integer variable
int* bPtr ; 		 // bPtr declared.
bPtr = &b ;		 // bPtr assigned address of b.

l5	 Next insert statements to output the actual memory
address of each pointer
cout << “Addresses of pointers...” << endl ;
cout << “aPtr: ” << &aPtr << endl ;
cout << “bPtr: ” << &bPtr << endl << endl ;

l6	 Now insert statements to output the memory address
stored inside each pointer
cout << “Values in pointers...” << endl ;
cout << “aPtr: ” << aPtr << endl ;
cout << “bPtr: ” << bPtr << endl << endl ;

l7	 Finally insert statements to output the values stored at the
memory address stored in each pointer – the value of the
variables to which the pointers point
cout << “Values in addresses pointed to...” << endl ;
cout << “a: ” << *aPtr << endl ;
cout << “b: ” << *bPtr << endl ;

l8	 Save, compile, and run the program to see the pointer
addresses and the stored values

10
2

Po
in

ti
ng

 t
o

da
ta

Doing pointer arithmetic

++

point.cpp

Once a pointer variable has been initialized with a memory
address it can be assigned another address, or changed using
pointer arithmetic.

The ++ increment operator or the -- decrement operator will
move the pointer along to the next or previous address for that
data type – the larger the data type, the bigger the jump.

Even larger jumps can be achieved using the += and -= operators.

Pointer arithmetic is especially useful with arrays because the
elements in an array occupy consecutive memory addresses.
Assigning just the name of an array to a pointer automatically
assigns it the address of the first element. Incrementing the
pointer by one moves the pointer along to the next element.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and declaring an initialized integer array of ten elements
int main()
{
 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, insert a statement to declare a
pointer, initialized with the memory address of the first
element in the integer array
int* ptr = nums ;

l4	 Next insert a statement to output the memory address of
the first element of the integer array, and its value
cout << endl << “ptr at: ” << ptr << “ gets: ”<< *ptr ;

l5	 Now increment the pointer and output its new memory
address – that of the second element in the integer array
ptr++ ;
cout << endl << “ptr at: ” << ptr << “ gets: ”<< *ptr ;

103

The name of an array
acts like a pointer to its
first element.

The *=, /=, and %=
operators cannot be
used to move a pointer.

…cont’d

l6	 Increment the pointer again and output its new memory
address – that of the third element in the integer array
ptr++ ;
cout << endl << “ptr at: ” << ptr << “ gets: ” << *ptr ;

l7	 Decrement the pointer by two places and output its
memory address – that of the first element in the array
ptr -= 2 ;
cout << endl << “ptr at: ” << ptr << “ gets: ” << *ptr ;
cout << endl ;

l8	 Now insert a loop to output the value stored in each
element of the integer array
for (int i = 0 ; i < 10 ; i++)
{
	 cout << endl << “Element: “ << i ;
	 cout << “ Value: “ << *ptr ;
	 ptr++ ;
}
cout << endl ;

l9	 Save, compile, and run the program to see the pointer
addresses and the stored values

10
4

Po
in

ti
ng

 t
o

da
ta

Passing pointers to functions
Pointers can access the data stored in the variable to which they
point using the * dereference operator. This can also be used to
change the stored data by assigning a new value of the appropriate
data type.

Additionally, pointers can be passed to functions as arguments
– with a subtly different effect to passing variables as arguments:

•	 When variables are passed to functions their data is passed “by
value” to a local variable inside the function – so that the
function operates on a copy of the original value.

•	 When pointers are passed to functions their data is passed “by
reference” – so that the function operates on the original value.

The benefit of passing by reference allows functions to directly
manipulate variable values declared within the calling function.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 After the preprocessor instructions, declare two function
prototypes to each accept a single pointer argument
void writeOutput (int*) ;
void computeTriple (int*) ;

l3	 Add a main function containing a final return statement
and declaring an initialized regular integer variable
int main()
{
 int num = 5 ;
 // Add more statements here.
 return 0 ;
}

l4	 In the main function, insert a second variable declaration
that initializes a pointer with the address of the regular
integer variable
int* ptr = &num ;

++

fnptr.cpp

105

Functions that operate
directly on variables
within the calling
function need no return
statement.

The function prototype
and definition must
both contain a pointer
argument.

…cont’d

l5	 After the main function block, define a function to output
the current value of a variable to which a pointer points
void writeOutput(int* value)
{
 cout << “Current value: ” << *value << endl ;
}

l6	 Define another function to multiply the current value of a
variable to which a pointer points
void computeTriple(int* value)
{
 *value *= 3 ;	 // Multiply and assign dereferenced value.
}

l7	 In the main function, pass a pointer argument to a
function to output the variable value to which it points
writeOutput(ptr) ;

l8	 Next use the pointer to increase the variable value, then
display its new value
*ptr += 15 ;	 // Add and assign a dereferenced value.
writeOutput(ptr) ;

l9	 Now pass a pointer argument to a function to multiply
the variable to which it points, then display its new value
computeTriple(ptr) ;
writeOutput(ptr) ;

l10	 Save, compile, and run the program to see the computed
values output

10
6

Po
in

ti
ng

 t
o

da
ta

Making arrays of pointers

Character values must
be enclosed in single
quotes, but string values
must be enclosed in
double quotes – even
when it is being assigned
to a char pointer.

++

arrptr.cpp

A variable of the regular char data type can be assigned a single
character value but a pointer to a constant char array can usefully be
assigned a string of characters. The string is actually stored as an
array of characters, with one character per element, but referencing
the char pointer will automatically retrieve the entire string.

This ability to retrieve a string value from a char pointer using just
its variable name resembles the way that a string can be retrieved
from a regular char array using its variable name.

Multiple strings can be stored in a constant char pointer array,
with one string per element. You can even store multiple char
pointer arrays in a “master” char pointer array – one array per element.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and declaring two initialized variables – a regular character
array, and a character pointer with identical string values
int main()
{
 char letters[8] = { ‘C’, ‘+’ , ‘+’ , ‘ ‘ , ‘F’, ‘u’, ‘n’, ‘\0’ } ;
 const char* text = “C++ Fun” ;
 // Add more statements here.
 return 0 ;
}

l3	 In the main function, insert statements to declare and
initialize two further character pointer variables, with
unique string values
const char* term = “Element” ;
const char* lang = “C++” ;

l4	 Next insert a statement to declare a character pointer
array initialized with three string values
const char* ap1[3] = { “Great ” , “Program” , “Code ” } ;

107

Remember that the final
element of a char array
must contain the special
\0 character to designate
that array as a string.

…cont’d

l5	 Now insert a statement to declare a second character
pointer array initialized with three string values – making
one of the pointer variables its first element value
const char* ap2[3] = { lang , “is ” , “Fun” } ;

l6	 Declare two “master” character pointer arrays, each
initialized with three elements of the char pointer arrays
const char* ap3[3] = { ap2[0] , ap2[1] , ap1[0] } ;
const char* ap4[3] = { ap1[2] , ap2[1] , ap2[2] } ;

l7	 After the declarations, insert statements to output the
identical string values of the first two variables
cout << letters << endl ;
cout << text << endl ;

l8	 Next insert a loop containing a statement to output the
value within a character pointer and the iteration number
for (int i = 0 ; i < 3 ; i++)
{
 cout << term << i << “ “ ;
}

l9	 Within the loop block, insert statements to output each
element value of the four character pointer arrays
cout << ap1[i] << “ ” ;
cout << ap2[i] << “ ” ;
cout << ap3[i] << “ ” ;
cout << ap4[i] << endl ;

l10	 Save, compile, and run the program to see the character
string output

To include a space
in a char array the
assignment must have
a space between the
quotes as ‘ ‘ – two single
quotes together
(‘‘) is regarded as an
empty element and
causes a compiler error.

10
8

Po
in

ti
ng

 t
o

da
ta

Referencing data

++

ref.cpp

A C++ “reference” is an alias for a variable or an object in a
program. A reference must be initialized within its declaration, by
assigning it the name of the variable or object to which it refers.
From then on the reference acts as an alternative name for the
item to which it refers – anything that happens to the reference is
really implemented on the variable or object to which it refers.

A reference declaration first states its data type, matching that of
the item to which it will refer, suffixed by an & character denoting
that variable will be a reference, and a chosen name. Finally the
declaration uses the = operator to associate a variable or object.

Traditionally, a reference is named with the name of the associated
variable or object but with an uppercase first letter and the whole
name prefixed by an “r”. For example, a declaration to create a
reference to an integer variable named “num” looks like this:

int& rNum = num ;

Note that the purpose of the & reference operator is context-
sensitive so that it declares a reference when used as an L-value,
on the left side of the = operator, otherwise it returns a memory
address when used as an R-value.

A reference is such a true alias to its associated item that querying
its memory address returns the address of its associated item
– there is no way to discover the address of the reference itself.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
and declaring two variables – a regular integer variable
and a reference to that variable
int main()
{
 int num ;
 int& rNum = num ;
 // Add more statements here.
 return 0 ;
}

Once a reference has
been created it will
always refer to the
item to which it was
initialized – a different
item cannot be assigned
to that reference.

109

A reference is always
an alias for the item
associated in its
declaration statement.

The compiler decides
how to use the &
reference operator
according to its context.

…cont’d

l3	 In the main function, insert a statement assigning an
initial value to the integer variable via its reference
rNum = 400 ;

l4	 Next insert statements to output the stored value, both
directly and via its reference
cout << “Value direct: ” << num << endl ;
cout << “Value via reference: ” << rNum << endl ;

l5	 Now insert statements to output the memory address,
both directly and via its reference
cout << “Address direct: ” << &num << endl ;
cout << “Address via reference: ” << &rNum << endl ;

l6	 Insert a statement to manipulate the value stored in the
variable via its reference
rNum *= 2 ;

l7	 Once more output the stored value, both directly and via
its reference
cout << “Value direct: ” << num << endl ;
cout << “Value via reference: ” << rNum << endl ;

l8	 Save, compile, and run the program to see the values and
memory address

11
0

Po
in

ti
ng

 t
o

da
ta

Passing references to functions

This example may seem
familiar as it recreates
the example on page
104 – but replaces
pointers with references.

++

fnref.cpp

References provide access to the data stored in the variable to
which they refer, just like the variable itself, and can be used to
change the stored data by assigning a new value of the appropriate
data type.

Additionally, references can, like pointers, be passed to functions
as arguments:

•	 When variables are passed to functions their data is passed
“by value” to a local variable inside the function – so that the
function operates on a copy of the original value.

•	 When references are passed to functions their data is passed
“by reference” – so the function operates on the original value.

The benefit of passing by reference allows functions to directly
manipulate variable values declared within the calling function.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 After the preprocessor instructions, declare two function
prototypes to each accept a single reference argument
void writeOutput (int&) ;
void computeTriple (int&) ;

l3	 Add a main function containing a final return statement
and declaring an initialized regular integer variable
int main()
{
 int num = 5 ;
 // Add more statements here.
 return 0 ;
}

l4	 In the main function, insert a second variable declaration,
initializing a reference as an alias of the integer variable
int& ref = num ;

111
…cont’d

Functions that operate
directly on variables
within the calling
function need no return
statement.

The function prototype
and definition must
both contain a reference
argument.

l5	 After the main function block, define a function to output
the current value of a variable to which a reference refers
void writeOutput(int& value)
{
 cout << “Current value: ” << value << endl ;
}

l6	 Define another function to multiply the current value of a
variable to which a reference refers
void computeTriple(int& value)
{
 value *= 3 ;	 // Multiply and assign a referenced value.
}

l7	 In the main function, pass a reference argument to a
function to output the variable value to which it refers
writeOutput(ref) ;

l8	 Next use the reference to increase the variable value, then
display its new value
ref += 15 ;	 // Add and assign a referenced value.
writeOutput(ref) ;

l9	 Now pass a reference argument to a function to multiply
the variable to which it refers, then display its new value
computeTriple(ref) ;
writeOutput(ref) ;

l10	 Save, compile, and run the program to see the computed
values output

11
2

Po
in

ti
ng

 t
o

da
ta

Comparing pointers & references

A reference must
be initialized in the
declaration to refer to a
variable or object – then
always refers to that item.

Pointers and references can both be used to refer to variable values
and to pass them to functions by reference rather than by value.
Technically, passing by reference is more efficient than passing by
value so the use of pointers and references is to be encouraged.

The decision whether to use a pointer or a reference is determined
by the program requirements. C++ programmers generally prefer
to use references wherever possible as they are easier to use and
easier to understand than pointers. References must, however, obey
certain rules which can make the use of pointers necessary:

Rule: References: Pointers:

Can be declared without initialization No Yes

Can be reassigned No Yes

Can contain a 0 (null) value No Yes

Easiest to use Yes No

As a general rule the choice between using a reference or a
pointer can be determined by following these guidelines:

•	 If you don’t want to initialize in the declaration use a pointer

OR

•	 If you want to be able to reassign another variable use a pointer

OTHERWISE

•	 Always use a reference

Pointers are more flexible than references, however, and can even
point to functions. In this case the pointer declaration must
precisely match the return data type and arguments to those of
the function to which it points. Additionally the pointer name
must be enclosed within parentheses in the declaration to avoid
compiler errors. The function pointer can then be assigned a
function by name so that function can be called via the pointer.

113

C programmers tend
to put the & and *
characters before the
variable names but in
C++ it is usual to put
them after the data
type – as the feature is
a property of the data
type, not the name.

…cont’d

++

pref.cpp

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 After the preprocessor instructions, define an inline
function to output the total of two passed arguments
void add (int& a, int* b)
{ cout << “Total: ” << (a + *b) << endl ; } ;

l3	 Add a main function containing a final return statement
and declarations creating two regular integer variables,
one reference, and two pointers
int main()
{
 int num = 100 , sum = 500 ;
 int& rNum = num ;
 int* ptr = &num ;
 void (* fn) (int& a, int* b) = add ;
 // Add more statements here.
 return 0 ;
}

l4	 In the main function, insert statements to output the first
integer variable values via the reference and pointer
cout << “Reference: ” << rNum << endl ;
cout << “Pointer: ” << *ptr << endl ;

l5	 Now assign the second integer variable to the pointer
and output its value via the pointer, then call the function
pointer to output the sum of the variable values
ptr = &sum ;
cout << “Pointer now: ” << *ptr << endl ;
add(rNum , ptr) ;

l6	 Save, compile, and run the program to see the output

11
4

Po
in

ti
ng

 t
o

da
ta

Summary

•	 Data is stored in computer memory within sequentially
numbered addresses

•	 Operands to the left of an = operator are L-values, and those
to its right are R-values

•	 An R-value may only appear to the right of an = operator

•	 A pointer is a variable that stores the memory address of
another variable – that to which it points

•	 The * character appears as an L-value in a pointer declaration
indicating that the statement will create a pointer variable

•	 Once declared, the * dereference operator can be used to
reference the value within a variable to which a pointer points

•	 Pointer arithmetic can be used to iterate through the values
stored in array elements

•	 A variable is passed to a function by value, whereas pointers
and references are passed by reference

•	 Passing by reference allows the receiving function to directly
manipulate variables declared within the calling function

•	 A string value can be assigned to a pointer of the char data
type, and the whole string retrieved using the pointer name

•	 Each element in a pointer array can store data or a pointer

•	 A reference is not a variable, but merely an alias for a variable

•	 The & character appears as an L-value in a reference
declaration indicating that the statement will create an alias

•	 The & reference operator can be used to reference the memory
address stored within a pointer

•	 References are easier to use than pointers but, unlike pointers,
a reference must always be initialized in its declaration and can
never be assigned a different variable

This chapter introduces the topics of
encapsulation and inheritance – the first
two principles of C++ Object Oriented
Programming.

Creating
classes and objects7

11
6

C
re

at
in

g
cl

as
se

s
an

d
ob

je
ct

s

Encapsulating data
A class is a data structure that can contain both variables and
functions in a single entity. These are collectively known as its
“members”, and the functions are known as its “methods”.

Access to class members from outside the class is controlled by
“access specifiers” in the class declaration. Typically these will
deny access to the variable members but allow access to methods
that can store and retrieve data from those variable members.
This technique of “data hiding” ensures that stored data is safely
encapsulated within the class variable members and is the first
principle of Object Oriented Programming (OOP).

A class declaration begins with the class keyword, followed by a
space, then a programmer-specified name – adhering to the usual
C++ naming conventions but beginning in uppercase. Next come
the access specifiers and class members, contained within a pair
of braces. Every class declaration must end with a semicolon after
the closing brace – so the class declaration syntax looks like this:

class ClassName
{
 access specifier :
 member1 ;
 member2 ;
 access specifier :
 member3 ;
 member4 ;
} ;

An access specifier may be any one of the keywords public, private,
or protected to specify access rights for its listed members:

•	 Public members are accessible from any place where the class
is visible

•	 Private members are accessible only to other members of the
same class

•	 Protected members are accessible only to other members of the
same class and to members of classes derived from that class

By default, all class members have private access – so any
members that appear in the class declaration without an access
specifier will have private access.

Derived classes, which
use the protected access
specifier, are introduced
later in this chapter.

Encapsulation OOP

117
…cont’d

Any real-world object can be defined by its attributes and by its
actions. For example, a dog has attributes such as age, weight,
and color and actions it can perform such as bark. The class
mechanism in C++ provides a way to create a virtual dog object
within a program, where the variable members of a class can
represent its attributes and the methods represent its actions:

class Dog
{
 private: // The default access level.
 int age, weight ;
 string color ;
 public :
 void bark() ; 		
 // ... Plus methods to store/retrieve data.
} ;

It is important to recognize that a class declaration only defines a
data structure – in order to create an object you must declare an
“instance” of that data structure. This is achieved in just the same
way that instances are declared of regular C++ data types:

int num ;	 // Creates an instance named “num”.
		 // of the regular C++ int data type.

Dog fido ;	 // Creates an instance named “fido”.
		 // of the programmer-defined Dog data structure.

Alternatively, an instance object can be created by specifying
its name between the class declaration’s closing brace and its
final semicolon. Multiple instances can be created this way by
specifying a comma-separated list of object names. For example,
the class declaration listed below creates four instance objects of
the Dog class named “fido”, “pooch”, “rex”, and “sammy”.

class Dog
{
 int age, weight ;
 string color ;	
 public:
 void bark() ;	
 // ... Plus methods to store/retrieve data.
} fido, pooch, rex, sammy ;

The principle of encapsulation in C++ programming describes the
grouping together of data and functionality in class members
– age, weight, color attributes and bark action in the Dog class.

While a program class
cannot perfectly emulate
a real-word object the
aim is to encapsulate all
relevant attributes and
actions.

It is conventional to
begin class names with
an uppercase character
and object names with
lowercase.

11
8

C
re

at
in

g
cl

as
se

s
an

d
ob

je
ct

s

Creating an object

++

object.cpp

In order to assign and retrieve data from private members of a
class, special public accessor methods must be added to the class.
These are “setter” methods, to assign data, and “getter” methods,
to retrieve data. Accessor methods are often named as the variable
they address, with the first letter made uppercase, and prefixed
by “set” or “get” respectively. For example, accessor methods to
address an age variable may be named setAge() and getAge().

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <string>
#include <iostream>
using namespace std ;

l2	 Declare a class named “Dog”
class Dog
{

} ;

l3	 Between the braces of the Dog class declaration, declare
three private variable members
int age, weight ;
string color ;

l4	 After the private variables, add a public access specifier
public:

l5	 Begin the public members list by adding a method to
output a string when called
void bark() { cout << “WOOF!” << endl ; }

l6	 Add public setter methods – to assign individual values to
each of the private variables
void setAge (int yrs) { age = yrs ; }
void setWeight (int lbs) { weight = lbs ; }
void setColor (string clr) { color = clr ; }

l7	 Add public getter methods – to retrieve individual values
from each of the private variables
int getAge() 	 { return age ; }
int getWeight() 	{ return weight ; }
string getColor() { return color ; }

In the class declaration,
notice that all methods
are declared public and
all variables are declared
private. This notion of
“public interface, private
data” is a key concept
when creating classes.

Members declared before
an access specifier are
private by default, and
remember to add a final
semicolon after each
class declaration.

119
…cont’d

This program will
get modified over
the next few pages
as new features are
incorporated.

l8	 After the Dog class declaration, declare a main method
containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l9 	 Between the braces of the main method, declare an
instance of the Dog class named “fido”
Dog fido ;

l10	 Add statements calling each setter method to assign data
fido.setAge(3) ;
fido.setWeight(15) ;
fido.setColor(“brown”) ;

l11 	 Add statements calling each getter method to retrieve the
assigned values
cout << “Fido is a “ << fido.getColor() <<
				 “ dog” << endl ;
cout << “Fido is “ << fido.getAge() <<
				 “ years old” << endl ;
cout << “Fido weighs “ << fido.getWeight() <<
				 “ pounds” << endl ;

l12	 Now add a call to the regular output method
fido.bark() ;

l13	 Save, compile, and run the program to see the output

Fido

12
0

C
re

at
in

g
cl

as
se

s
an

d
ob

je
ct

s

Creating multiple objects

++

multiple.cpp

Note that a prototype is
a statement – so it must
end with a semicolon.

A program can easily create multiple objects simply by declaring
multiple instances of a class, and each object can have unique
attributes by assigning individual values with its setter methods.

It is often convenient to combine the setter methods into a single
method that accepts arguments for each private variable. This
means that all values can be assigned with a single statement in
the program, but the method will contain multiple statements.

The class declaration in the previous example contains short
methods of just one line, which are created “inline” – entirely
within the class declaration block. Where methods have more
than two lines they should not be created inline, but should
instead be declared as a “prototype” in the class declaration block
and defined separately – after the class declaration. The definition
must prefix the method name with the class name and the scope
resolution operator :: to identify the class containing its prototype.

l1	 Rename a copy of the previous example “object.cpp” as a
new program “multiple.cpp”

l2	 In the Dog class declaration, replace the three setter
methods with a single combined setter prototype that
specifies the argument data types – but not their names
void setValues (int, int, string) ;

l3	 After the Dog class declaration, add a definition block
for the prototype using the :: scope resolution operator to
identify the class in which it resides
void Dog::setValues (int age, int weight, string color)
{

}

Notice that, for easy identification, the arguments are named with
the same names as the variables to which they will be assigned.
Where a class method definition has an argument of the same
name as a class member the this -> class pointer can be used to
explicitly refer to the class member. For example, this -> age refers
to the class member variable, whereas age refers to the argument.

121
…cont’d

Where the argument
name and class member
names are different, the
this -> class pointer is
not needed in the setter
method definitions.

l4	 In the method definition block, insert three statements to
assign values from passed arguments to class variables
this -> age = age ;
this -> weight = weight ;
this -> color = color ;

l5	 Between the braces of the main method, replace the
calls to the three setter methods by a single call to the
combined setter method – passing three arguments
fido.setValues(3, 15, “brown”) ;

l6	 In the main method, declare a second instance of the Dog
class named “pooch”
Dog pooch ;

l7	 Add a second call to the combined setter method
– passing three arguments for the new object
pooch.setValues(4, 18, “gray”) ;

l8	 Add statements calling each getter method to retrieve the
assigned values
cout << “Pooch is a “ << pooch.getAge() ;
cout << “ year old “ << pooch.getColor() ;
cout << “ dog who weighs “ << pooch.getWeight() ;
cout << “ pounds .” ;

l9	 Now add second call to the regular output method
pooch.bark() ;

l10	 Save, compile, and run the program to see the output
Fido

Pooch

12
2

C
re

at
in

g
cl

as
se

s
an

d
ob

je
ct

s

Initializing class members

The definition of a
class method is also
known as the method
“implementation”.

++

constructor.cpp

Class variable members can be initialized by a special “constructor”
method that is called whenever an instance of the class is created.
The constructor method is always named exactly as the class name
and requires arguments to set the initial value of class variables.

When a constructor method is declared, an associated “destructor”
method should also be declared – that is called whenever an
instance of the class is destroyed. The destructor method is always
named as the class name, prefixed by a ~ tilde character.

Constructor and destructor methods have no return value and are
called automatically – they cannot be called explicitly.

Values to initialize class variables are passed to the constructor
method in the statement creating an object, in parentheses
following the object name.

l1	 Rename a copy of the previous example “multiple.cpp” as
a new program “constructor.cpp”

l2	 In the public section of the Dog class declaration, replace
the setValues method prototype with this constructor
prototype
Dog (int, int, string) ;

l3	 Now add an associated destructor prototype
~Dog() ;

l4	 After the Dog class declaration, replace the setValues
definition block with a constructor definition block
Dog::Dog (int age, int weight, string color)
{

}

l5	 In the constructor definition block, insert three statements
to assign values from passed arguments to class variables
this -> age = age ;
this -> weight = weight ;
this -> color = color ;

123
…cont’d

Although the initial
values of the variable
members are set by
the constructor, setter
methods can be added
to subsequently change
the values – and those
new values can be
retrieved by the getter
methods.

The destructor definition
begins with the class
name “Dog”, the scope
resolution operator “::”,
then the destructor
method name “~Dog”.

l6	 After the constructor definition, add a destructor
definition block
Dog::~Dog()
{
	
}

l7	 In the destructor definition, insert a statement to output a
confirmation whenever an instance object gets destroyed
cout << “Object destroyed.” << endl ;

l8	 In the main method, edit the statement creating the “fido”
object – to pass values to its constructor method
Dog fido(3, 15, “brown”) ;

l9	 Similarly, edit the statement creating the “pooch” object
– to pass values to the constructor method
Dog pooch(4, 18, “gray”) ;

l10	 Delete the statements calling the setValues method of
the “fido” and “pooch” objects – the constructor has now
replaced that method

l11	 Save, compile, and run the program – see the output
appear as before, plus confirmation when the objects get
destroyed

12
4

C
re

at
in

g
cl

as
se

s
an

d
ob

je
ct

s

The this -> pointer is
used to explicitly identify
class members when
arguments have the
same name as members.

Overloading methods

++

overloaded.cpp

Just as C++ allows functions to be overloaded, class methods
can be overloaded too – including constructor methods. An
overloaded constructor method is useful to assign default values to
member variables when an object is created without passing values
to the constructor.

l1	 Rename a copy of the previous example “constructor.cpp”
as a new program “overload.cpp”

l2	 In the public section of the Dog class declaration, add
inline an overloaded bark method – to output a passed
string argument when called
void bark (string noise) { cout << noise << endl ; }

l3	 Now declare a constructor method prototype that takes
no arguments (a default constructor method) and an
overloaded constructor method prototype that takes two
arguments
Dog() ;
Dog (int, int) ;

l4	 After the Dog class declaration, add a definition for the
default constructor method – assigning default values to
class variables when an object is created without passing
any arguments
Dog::Dog()
{
 age = 1 ;
 weight = 2 ;
 color = “black” ;
}

l5	 Now add a definition for the overloaded constructor
method – assigning default values to class variables when
an object is created passing two arguments
Dog::Dog (int age, int weight)
{
 this -> age = age ;
 this -> weight = weight ;
 color = “white” ;
}

125
…cont’d

This is the final rendition
of the Dog class. Be
sure you can readily
identify its public and
private members before
proceeding.

Don’t add parentheses
after the object name
when creating an
object without passing
arguments – notice it’s
Dog rex ; not Dog rex() ;.

l6	 In the main method, insert a statement to create a Dog
object without passing any arguments – calling the default
constructor
Dog rex ;

l7	 Add statements calling each getter method to retrieve the
default values – set by the default constructor method
cout << “Rex is a “ << rex.getAge() ;
cout << “ year old “ << rex.getColor() ;
cout << “ dog who weighs “ << rex.getWeight() ;
cout << “ pounds .” ;

l8	 Now add a call to the overloaded output method
rex.bark(“GRRR!”) ;

l9	 Insert a statement to create a Dog object passing two
arguments – to call the overloaded constructor
Dog sammy(2, 6) ;

l10	 Add statements to retrieve the values set by the
overloaded constructor method and call the overloaded
output method
cout << “Sammy is a “ << sammy.getAge() ;
cout << “ year old “ << sammy.getColor() ;
cout << “ dog who weighs “ << sammy.getWeight() ;
cout << “ pounds .” ;
sammy.bark(“BOWOW!”) ;

l11	 Save, compile, and run the program

12
6

C
re

at
in

g
cl

as
se

s
an

d
ob

je
ct

s

Inheriting class properties
A C++ class can be created as a brand new class, like those in
previous examples, or can be “derived” from an existing class.
Importantly, a derived class inherits members of the parent (base)
class from which it is derived – in addition to its own members.

The ability to inherit members from a base class allows derived
classes to be created that share certain common properties, which
have been defined in the base class. For example, a “Polygon” base
class may define width and height properties that are common to
all polygons. Classes of “Rectangle” and Triangle” could be derived
from the Polygon class – inheriting width and height properties,
in addition to their own members defining their unique features.

The virtue of inheritance is extremely powerful and is the second
principle of Object Oriented Programming (OOP).

A derived class declaration adds a colon : after its class name,
followed by an access specifier and the class from which it derives.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Declare a class named “Polygon” containing two protected
variables, accessible only to members of this class and
classes derived from this class, along with a public
method to assign values to those variables
class Polygon
{
 protected:
 int width, height ;
 public:
 void setValues(int w, int h) { width = w; height = h ; }
} ;

++

derived.cpp

 Inheritance OOP

Rectangle

Polygon

Triangle

127
…cont’d

A class declaration can
derive from more than
one class. For example,
class Box : public A,
public B, public C { } ;

l3	 After the Polygon class, declare a Rectangle class that
derives from the Polygon class and adds a unique method
class Rectangle : public Polygon
{
 public:
 int area() { return (width * height) ; }
} ;

l4	 After the Rectangle class, declare a Triangle class that
derives from the Polygon class and adds a unique method
class Triangle : public Polygon
{
 public:
 int area() { return ((width * height) / 2) ; }
} ;

l5	 After the Triangle class, add a main method containing
a final return statement and creating an instance of each
derived class
int main()
{
 Rectangle rect ; Triangle trgl ;
 return 0 ;
}

l6	 Insert calls to the method inherited from the Polygon
base class – to initialize the inherited variables
rect.setValues(4, 5) ;
trgl.setValues(4, 5) ;

l7	 Output the value returned by the unique method of each
derived class
cout << “Rectangle area : “ << rect.area() << endl ;
cout << “Triangle area : “ << trgl.area() << endl ;

l8	 Save, compile, and run the program to see the output

Don’t confuse class
instances and derived
classes – an instance is a
copy of a class, whereas
a derived class is a
new class that inherits
properties of the base
class from which it is
derived.

12
8

C
re

at
in

g
cl

as
se

s
an

d
ob

je
ct

s

Calling base constructors
Although derived classes inherit the members of their parent base
class they do not inherit its constructor and destructor. However,
it should be noted that the default constructor of the base class is
always called when a new object of a derived class is created – and
the base class destructor is called when the object gets destroyed.
These calls are made in addition to those made to the constructor
and destructor methods of the derived class.

The default constructor of the base class has no arguments – but
that class may also have overloaded constructors which do. If you
prefer to call an overloaded constructor of the base class when a
new object of a derived class is created, you can create a matching
overloaded constructor in the derived class – having the same
number and type of arguments.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Declare a class named “Parent”, which will be a base class
class Parent
{
 // Class members go here.
} ;

l3	 Between the braces of the Parent class declaration, insert
a public access specifier and add a default constructor to
output text – identifying when it has been called
public:
 Parent()
 { cout << “Default Parent constructor called.” ; }

l4	 Add an overloaded constructor, which takes a single
integer argument, and also outputs identifying text
 Parent (int a)
 { cout << endl <<
	 “Overloaded Parent constructor called.” ; }

l5	 After the Parent class, declare a derived “Daughter” class
class Daughter : public Parent
{

} ;

++

basecon.cpp

Son – Parent – Daughter

129
…cont’d

Each class automatically
has an empty default
constructor and
destructor – for example,
Son(){ } and ~Son(){ }.

Notice that the syntax in
the overloaded Son class
constructor passes the
integer argument to the
overloaded base class
constructor.

l6	 In the Daughter class declaration, insert a public access
specifier and add a default constructor to output text
– identifying when it has been called
public :
 Daughter ()
 { cout << endl <<
 “ Derived Daughter class default constructor called.” ; }

l7	 After the Daughter class, declare a derived “Son” class
class Son : public Parent
{

} ;

l8	 In the Son class declaration, insert a public access
specifier and add an overloaded constructor which takes a
single integer argument, and also outputs identifying text
public :
 Son (int a) : Parent (a)
 { cout << endl <<
 “ Derived Son class overloaded constructor called.” ; }

l9	 After the Son class, add a main method containing a final
return statement and creating an instance of each derived
class – calling base class and derived class constructors
int main()
{
 Daughter emma ;
 Son andrew(0) ;
 return 0 ;
}

l10	 Save, compile, and run the program to see the output
from each constructor in turn as it gets called

13
0

C
re

at
in

g
cl

as
se

s
an

d
ob

je
ct

s

Overriding base methods

The method declaration
in the derived class must
exactly match that in the
base class to override
it – including the const
keyword if it is used.

A method can be declared in a derived class to override a
matching method in the base class – if both method declarations
have the same name, arguments, and return type. This effectively
hides the base class method as it becomes inaccessible unless it is
called explicitly, using the :: scope resolution operator for precise
identification.

The technique of overriding base class methods must be used
with care however, to avoid unintentionally hiding overloaded
methods – a single overriding method in a derived class will hide
all overloaded methods of that name in the base class!

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Declare a class named “Man”, which will be a base class
class Man
{
 // Class members go here.
} ;

l3	 Between the braces of the Man class declaration, insert a
public access specifier and an inline output method
public :
 void speak() { cout << “Hello! ” << endl ; }

l4	 Now insert an overloaded inline output method
 void speak(string msg)
 { cout << “ ” << msg << endl ; }

l5	 After the Man class declaration, declare a class named
“Hombre” that is derived from the Man class
class Hombre : public Man
{
 // Class members go here.
} ;

++

override.cpp

131
…cont’d

The overriding method
declared in the derived
class hides both
overloaded classes in the
base class. Try calling
enrique.speak() – the
compiler will complain
there is no matching
method for that call.

l6	 Between the braces of the Hombre class declaration,
insert an access specifier and a method that overrides the
overloaded base class method – without a tab output
public :
 void speak(string msg) { cout << msg << endl ; }

l7	 After the Hombre class declaration, add a main method
containing a final return statement and creating two
objects – an instance of the base class and an instance of
the derived class
int main()
{
 Man henry ;
 Hombre enrique ;
 // Add more statements here.
 return 0 ;
}

l8 	 In the main method, insert statements calling both
methods of the base class
henry.speak() ;
henry.speak(“It’s a beautiful evening.”) ;

l9	 Next insert a statement calling the overriding method in
the derived class – producing output without a tab
enrique.speak(“Hola!”) ;

l10	 Now insert a statement explicitly calling the overridden
method in the base class
enrique.Man::speak(“Es una tarde hermosa.”) ;

l11	 Save, compile, and run the program to see the output
from the overriding and overridden methods

Henry Enrique

13
2

C
re

at
in

g
cl

as
se

s
an

d
ob

je
ct

s

Summary

•	 The first principle of Object Oriented Programming is the
encapsulation of data and functionality within a single class

•	 Access specifiers public, private, and protected control the
accessibility of class members from outside the class

•	 A class declaration describes a data structure from which
instance objects can be created

•	 Public setter and getter class methods store and retrieve data
from private class variable members

•	 The scope resolution operator :: can explicitly identify a class

•	 Class members that have the same name as a passed argument
can be explicitly identified by the this -> pointer

•	 A constructor method is called when an object gets created
and a destructor method is called when it gets destroyed

•	 Class variables can be automatically initialized by a constructor

•	 Class methods can be overloaded like other functions

•	 The second principle of Object Oriented Programming is the
virtue of inheritance that allows derived classes to inherit the
properties of their parent base class

•	 In a derived class declaration the class name is followed by a :
colon character, an access specifier, and its base class name

 •	When an instance object of a derived class is created the
default constructor of the base class gets called in addition to
the constructor of the derived class

•	 A derived class method can override a matching method in
its base class – also overriding all overloaded methods of that
name within the base class

This chapter demonstrates how to separate
programs into modular components and
introduces the topic of polymorphism – the
third principle of C++ Object Oriented
Programming.

Harnessing
polymorphism8

13
4

H
ar

ne
ss

in
g

po
ly

m
or

ph
is

m

Pointing to classes
The three cornerstones of Object Oriented Programming (OOP)
are encapsulation, inheritance, and polymorphism. Examples
in the previous chapter have demonstrated how data can be
encapsulated within a C++ class, and how derived classes inherit
the properties of their base class. This chapter introduces the final
cornerstone principle of polymorphism.

The term “polymorphism” (from Greek, meaning “many forms”)
describes the ability to assign a different meaning, or purpose, to
an entity according to its context.

In C++, overloaded operators can be described as polymorphic.
For example, the * character can represent either the multiply
operator or the dereference operator according to its context.
Similarly, the + character can represent either the add operator or
the concatenate operator according to its context.

More importantly, C++ class methods can also be polymorphic.
The key to understanding polymorphism with classes is to
recognize that a base class pointer can be created that is also
bound to a particular derived class by association.

A pointer to a base class can be assigned the memory address of
a derived class to provide a “context” – to uniquely identify that
derived class. For example, with a Base base class and a derived
Sub class a pointer can be created like this:

	 Sub inst ;
	 Base* pSub = &inst ;

or more simply using the new keyword like this:

	 Base* pSub = new Sub ;

Where there are multiple derived classes, base class pointers
can be created binding each derived class by its unique memory
address – which can be revealed using the addressof & operator.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

Turn back to chapter six
for more on pointers.

++

classptr.cpp

Polymorphism OOP

135
…cont’d

The hexadecimal
address is passed as
an int data type then
displayed in hexadecimal
format by the hex
output manipulator.
The addresses will be
different each time the
program executes – they
are assigned dynamically.

l2	 Declare a Base class containing a method to output a
passed integer value in hexadecimal format
class Base
{
 public:
 void Identify(int adr) const
 {
 cout << “Base class called by 0x”
		 << hex << adr << endl ; }
} ;

l3	 Declare two empty derived classes, SubA and SubB
class SubA : public Base {	 } ;
class SubB : public Base {	 } ;

l4	 Declare a main method containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l5	 In the main method, insert statements to create two base
class pointers – each binding to a specific derived class
Base* ptrA = new SubA ;
Base* ptrB = new SubB ;

l6	 Now insert statements that use the pointers to call the
base class method, passing the memory address of each
for output
ptrA -> Identify((int) &ptrA) ;
ptrB -> Identify((int) &ptrB) ;

l7	 Save, compile, and run the program to see the addresses

The -> class pointer
operator is used here to
call class methods.

13
6

H
ar

ne
ss

in
g

po
ly

m
or

ph
is

m

Calling a virtual method

Pointers to a base class
cannot be used to call
non-inherited methods in
a derived class.

A base class pointer that is bound to a specific derived class can
be used to call derived class methods that have been inherited
from the base class. Methods that are unique to the derived class
must, however, be called via an instance object.

A base class pointer that is bound to a specific derived class can
also be used to explicitly call a method in the base class using the
:: scope resolution operator.

Most usefully, an inherited method in a derived class can override
that in the base class when the base method has been declared as
a “virtual” method. This is just a regular method declaration in the
base class preceded by the virtual keyword. The declaration of a
virtual method indicates that the class will be used as a base class
from which another class will be derived, which may contain a
method to override the virtual base method.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Declare a base class named “Parent” containing a regular
method declaration and a virtual method declaration
class Parent
{
 public :
 void Common() const
 { cout << “I am part of this family, “ ; }

 virtual void Identify() const
 { cout << “I am the parent” << endl ; }
} ;

l3	 Declare a derived class named “Child” containing a
method to override the virtual base method
class Child : public Parent
{
 public :
 void Identify() const
 { cout << “I am the child” << endl ; }
} ;

++

virtual.cpp

137
…cont’d

l4	 Declare a “Grandchild” class, derived from the “Child”
class, containing a method to override the virtual base
method and a regular method declaration
class Grandchild : public Child
{
 public :
 void Identify() const
 { cout << “I am the grandchild” << endl ; }

 void Relate() const
 { cout << “Grandchild has parent and grandparent” ; }
} ;

l5	 Declare a main method containing a final return statement
and creating instances of each derived class, plus base
class pointers binding those derived classes
int main()
{
 Child son ;		
 Grandchild grandson ;
 Parent* ptrChild = &son ;
 Parent* ptrGrandchild = &grandson ;
 // Add more statements here.
 return 0 ;
}

l6	 In the main method, insert calls to each method
 ptrChild -> Common() ; 		 // Inherited.
 ptrChild -> Identify() ;			 // Overriding.
 ptrGrandchild -> Common() ; 		 // Inherited.
 ptrGrandchild -> Identify() ;		 // Overriding.
 ptrChild -> Parent::Common() ;		 // Explicit.
 ptrChild -> Parent::Identify() ;	 	 // Explicit.
 grandson.Relate() ;			 // Via instance.

l7	 Save, compile, and run the program to see the output

Here the Grandchild class
inherits the properties
of the Child class, which
inherits the properties of
the Parent class.

Parent
Child

Grandchild

13
8

H
ar

ne
ss

in
g

po
ly

m
or

ph
is

m

Directing method calls

Overriding methods
in derived class may,
optionally, include the
virtual prefix – as a
reminder it is overriding
a base class method.

The great advantage of polymorphism with multiple derived class
objects is that calls to methods of the same name are directed to
the appropriate overriding method.

A base class may contain only virtual methods which each
derived class may override with their own methods, but base class
methods can still be called explicitly using the :: scope resolution
operator. This can allow inconsistencies, however – this example
would seem to imply that chickens can fly!

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Declare a base class named “Bird” containing two virtual
method declarations
class Bird
{
 public :
 virtual void Talk() const
 { cout << “A bird talks... ” << endl ; }

 virtual void Fly() const
 { cout << “A bird flies... ” << endl ; }
} ;

l3	 Declare a derived class named “Pigeon” containing two
methods to override those in the base class
class Pigeon : public Bird
{
 public :
 void Talk() const
 { cout << “Coo! Coo!” << endl ; }

 void Fly() const
 { cout << “A pigeon flies away... ” << endl ; }
} ;

++

birds.cpp

139
…cont’d

The backslash \ character
is required to escape the
apostrophe in strings.

l4	 Declare a derived class named “Chicken” containing two
methods to override those in the base class
class Chicken : public Bird
{
 public :
 void Talk() const
 { cout << “Cluck! Cluck!” << endl ; }

 void Fly() const
 { cout << “I\’m just a chicken – I can\’t fly!” << endl ; }
} ;

l5	 Declare a main method containing a final return statement
and creating base class pointers binding derived classes
int main()
{
 Bird* pPigeon = new Pigeon ;
 Bird* pChicken = new Chicken ;
 // Add more statements here.
 return 0 ;
}

l6	 In the main method, insert calls to each method
pPigeon -> Talk() ;
pPigeon -> Fly() ;
pChicken -> Talk() ;
pChicken -> Fly() ;
pPigeon -> Bird::Talk() ;
pChicken -> Bird::Fly() ;		 // Inappropriate call.

l7	 Save, compile, and run the program to see the output

Chicken
(Bird)

Pigeon
(Bird)

14
0

H
ar

ne
ss

in
g

po
ly

m
or

ph
is

m

Providing capability classes

The return value of
overriding methods in
derived classes must
match those declared in
the base class.

Classes whose sole purpose is to allow other classes to be derived
from them are known as “capability classes” – they provide
capabilities to the derived classes.

Capability classes generally contain no data but merely declare a
number of virtual methods that can be overridden in their derived
classes.

The following example builds upon the previous example to
demonstrate how the “Bird” class can be better written as a
capability class. Its methods no longer contain output statements
but return a -1 (error) value if they are called explicitly.

It is necessary to change the return type of those methods from
void to int and these changes must also be reflected in each
overriding method in the derived classes.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Declare a base capability class named “Bird” containing
two virtual method declarations that will signal an error if
called explicitly
class Bird
{
 public :
 virtual int Talk() const { return -1 ; }
 virtual int Fly() const { return -1 ; }
} ;

l3	 Declare a derived class named “Pigeon” containing two
methods to override those in the base class
class Pigeon : public Bird
{
 public :
 int Talk() const
 { cout << “Coo! Coo!” << endl ; return 0 ; }

 int Fly() const
 { cout << “A pigeon flies away...” << endl ; return 0 ; }
} ;

++

capability.cpp

141
…cont’d

Refer back to pages 90-
95 for more details on
error handling.

Capability class methods
are intended to be
overridden in derived
classes – they should not
be called explicitly.

l4	 Declare a derived class named “Chicken” containing two
methods to override those in the base class
class Chicken : public Bird
{
 public :
 int Talk() const
 { cout << “Cluck! Cluck!” << endl ; return 0 ; }

 int Fly() const
 { cout << “I\’m just a chicken – I can\’t fly!”
				 << endl ; return 0 ; }
} ;

l5	 Declare a main method creating base class pointers
binding the derived classes
int main()
{
 Bird* pPigeon = new Pigeon ;
 Bird* pChicken = new Chicken ;
}

l6	 In the main method, insert method calls and a statement
to terminate the program when an error is met by
explicitly calling a base class method
pPigeon -> Talk() ;
pChicken -> Talk() ;

pPigeon -> Bird::Talk() ;
if (-1) { cout << “Error! - Program ended.”
				 << endl ; return 0 ; }

pPigeon -> Fly() ;	 // Call will not be made.
pChicken -> Fly() ;	 // Call will not be made.
return 0 ;		 // Statement will not be executed

l7	 Save, compile, and run the program to see the output

14
2

H
ar

ne
ss

in
g

po
ly

m
or

ph
is

m

Making abstract data types

It is illegal to create an
instance object of an
ADT – attempting to do
so will simply create a
compiler error.

An Abstract Data Type (ADT) represents a concept, rather than
a tangible object, and is always the base to other classes. A base
class can be made into an ADT by initializing one or more of its
methods with zero. These are known as “pure virtual methods” and
must always be overridden in derived classes.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Declare a base ADT class named “Shape” containing
three pure virtual methods
class Shape
{
 public :
 virtual int getArea() = 0 ;
 virtual int getEdge() = 0 ;
 virtual void Draw() = 0 ;
} ;

l3	 Declare a derived class named “Rect”, containing two
private variables
class Rect : public Shape
{
 private :
 int height, width ;
} ;

l4	 In the derived class declaration, insert a public constructor
and destructor
public :
 Rect(int initWidth, int initHeight)
 {
 height = initHeight ;
 width = initWidth ;
 }

 ~Rect() ;

++

adt.cpp

143
…cont’d

A base class need only
contain one pure virtual
method to create an
Abstract Data Type.

l5	 In the derived “Rect” class declaration, declare three
public methods to override the pure virtual methods
declared in the “Shape” base class
int getArea() { return height * width) ;
int getEdge() { return (2 * height) + (2 * width) ; }

void Draw()
{
 for (int i = 0 ; i < height ; i++) {
 for (int j = 0 ; j < width ; j++) { cout << “x ” ; }
 cout << endl ; }
}

l6	 Declare a main method containing a final return statement
and creating two instances of the derived “Rect” class – to
represent a Square and a Quadrilateral shape
int main
{
 Shape* pQuad = new Rect(3, 7) ;
 Shape* pSquare = new Rect(5, 5) ;
 // Add more statements here.
 return 0 ;
}

l7	 In the main method, insert calls to each method then
save, compile, and run the program to see the output
pQuad -> Draw() ;
cout << “Area is ” << pQuad -> getArea() << endl ;
cout << “Perimeter is ” << pQuad -> getEdge() << endl ;

pSquare -> Draw() ;
cout << “Area is ” << pSquare -> getArea() << endl ;
cout << “Perimeter is ”<< pSquare -> getEdge() <<endl ;

Quadrilateral
(Rect)

Square
(Rect)

14
4

H
ar

ne
ss

in
g

po
ly

m
or

ph
is

m

Building complex hierarchies

The Boat class has
properties common
to any boat whereas
the Sailboat class has
properties specific to
boats that have sails.

It is sometimes desirable to derive an ADT from another ADT
to construct a complex hierarchy of classes. This provides great
flexibility and is perfectly acceptable providing each pure method
is defined at some point in a derived class.

l1	 Start a new program by specifying the C++ library classes
to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l2	 Declare a base ADT class named “Boat” containing a
variable and accessor method together with one pure
virtual method
class Boat
{
 protected:
 int length ;
 public :
 int getLength() { return length ; }
 virtual void Model() = 0 ;
} ;

l3	 Declare an ADT class (derived from the Boat class)
named “Sailboat” – also containing a variable and accessor
method together with one pure virtual method
class Sailboat : public Boat
{
 protected :
 int mast ;
 public :
 int getMast() { return mast ; }
 virtual void Boom() = 0 ;
} ;

l4	 Declare a regular class (derived from the Sailboat class)
named “Laser” in which all members will allow public
access
class Laser : public Sailboat
{
 public :

} ;

++

hierarchy.cpp

145
…cont’d

Try adding a Powerboat
class derived from the
Boat class (to contain
engine information) and
a Cruiser class derived
from the Powerboat
class – to assign variable
values and to define
virtual methods.

l5	 In the Laser class, insert a call to its constructor method
to assign values to the variables in each class from which
this class is derived – and call the destructor method
Laser() { mast = 19 ; length = 35 ; }
~Laser() ;

l6	 In the Laser class, define the pure virtual methods
declared in each class from which this class is derived
void Model() { cout << “Laser Classic” << endl ; }
void Boom() { cout << “Boom: 14ft” << endl ; }

l7	 Declare a main method containing a final return statement
and creating an instance of the derived class on the
bottom tier of the hierarchy
int main()
{
 Laser* pLaser = new Laser ;
 // Add more statements here.
 return 0 ;
}

l8	 In the main method, insert calls to each defined method
pLaser -> Model() ;
cout << “Length: “ <<
	 pLaser -> getLength() << “ft” << endl ;
cout << “Height: “<<
	 pLaser -> getMast() << “ft” << endl ;
pLaser -> Boom() ;

l9	 Save, compile, and run the program to see the output

Laser
Sailboat (Boat)

14
6

H
ar

ne
ss

in
g

po
ly

m
or

ph
is

m

Isolating class structures

Using an #include
directive to reference a
header file works in a
similar manner to using
an #include directive
to reference a standard
C++ library.

The source code for each example program in this book is
generally contained in a single .cpp file to save space but in reality
OOP programs are often contained in three separate files:

For example, a sum calculator program might comprise three files
named ops.h (a header file declaring operation classes),
ops.cpp (an implementation file defining the operation methods),
and sum.cpp (a client file calling the various operations).

When compiling sum.cpp the compiler incorporates the included
header file and implementation file into the program. It first
translates the header file and implementation file into a binary
object file (ops.o), then it translates the header file and client
file into a second binary object file (sum.o). Finally, the Linker
combines both object files into a single executable file (sum.exe).

Isolating class structures in separate “modular” files has the
advantage of improving portability and makes code maintenance
easier by clearly identifying the purpose of each file.

The client file is
sometimes referred to as
a “driver” file.

•	 Header .h file – contains only class declarations

•	 Implementation .cpp file – contains class definitions to
implement the methods declared in the header file, which is
referenced by an #include directive

•	 Client .cpp file – contains a main method that employs
the class members declared in the header file, which is also
referenced by an #include directive

ops.cpp

sum.cpp

ops.h

11010010101001
00010110101100
11010010101001
00010110101100
11010010101001

ops.o

11010010101001
00010110101100
11010010101001
00010110101100
11010010101001

sum.o

11010010101001
00010110101100
11010010101001
00010110101100
11010010101001

sum.exe

LinkerCompiler

147
…cont’d

Notice that the header
file name must be
surrounded by quotes
in an #include directive
– not by the < > angled
brackets used to include
a standard C++ library.

To have the compiler combine all three source code files into
a single executable file it is only necessary to explicitly specify
the .cpp files in the compiler command – an #include directive
ensures the header file will also be recognized.

For example, with the statement #include “ops.h” in both
ops.cpp and sum.cpp the command to compile the example
described opposite need not specify the ops.h header in the
compiler command, but is just c++ ops.cpp sum.cpp -o sum.exe.

This example will allow the user to input a simple arithmetical
expression and output the calculated result. It will provide
instructions when first launched and allow the user to make
subsequent expressions – or exit by entering a zero character.

l1	 Start a header file by declaring a class named “Calculator”
class Calculator
{

} ;

l2	 In the class declaration, insert public method declarations
public :
 Calculator() ;		 // (Constructor) To set initial status.
 void launch() ;		 // To display initial instructions.
 void readInput() ;	 // To get expression.
 void writeOutput() ;	 // To display result.
 bool run() ;		 // (Accessor) To get current status.

l3	 In the class declaration, insert private variable declarations
private :
 double num1, num2 ;	 // To store input numbers.
 char oper ; 		 // To store input operator.
 bool status ;		 // To store current status.

l4	 Save the header file as “ops.h”

l5	 Turn to the next page to continue this example by
creating an implementation file – containing definitions
for the Calculator class methods declared in the
“ops.h” header file

Calculator

ops.h

14
8

H
ar

ne
ss

in
g

po
ly

m
or

ph
is

m

Employing isolated classes

Due to space limitation
this program makes
barely no attempt at
input validation – it
assumes the user will
enter a valid expression,
such as 8 * 3.

l6	 Start an implementation file with include directives for
the header file created on the previous page and the
standard C++ library supporting input/output statements
#include “ops.h”		 // Reference header file.
#include <iostream>
using namespace std ;

l7	 Add the following definitions for each method in the
header file, then save the implementation file as “ops.cpp”
Calculator::Calculator()
{ status = true ; } 		 // Initialize status.

void Calculator::launch()		 // Display instructions.
{
 cout << endl << “*** SUM CALCULATOR ***” << endl ;
 cout << “Enter a number, an operator(+,-,*,/), and
 	 another number.” << endl << “Hit Return to
 	 calculate. Enter zero to exit.” << endl ;
}

void Calculator::readInput()		 // Get expression.
{
 cout << “> “ ; cin >> num1 ; 	 // Get 1st number.
 if (num1 == 0) status = false ;	 // Exit if it’s zero.
 else { cin >> oper ; cin >> num2 ; }	 // Or get the rest.
}

void Calculator::writeOutput()	 	 // Display result.
{
 if (status) switch(oper)		 // If continuing.
 {					 // Show result.
 case ‘+’ : { cout << (num1 + num2) << endl ; break ; }
 case ‘-’ : { cout << (num1 - num2) << endl ; break ; }
 case ‘*’ : { cout << (num1 * num2) << endl ; break ; }
 case ‘/’ : if (num2 != 0)
	 cout << (num1 / num2) << endl ;
	 else cout << “Cannot divide by zero” << endl ;
 }
}

bool Calculator::run()	 	 // Get the current status.
{ return status ; }

++

ops.cpp

149
…cont’d

This program loops until
the user types a zero and
hits Return – changing
the “status” control
variable to false, and so
exiting the program.

l8	 Start a client file with an include directive to incorporate
the header file created on page 147
#include “ops.h”

l9	 Declare a main method containing a final return statement
and creating a pointer plus a call to display instructions
int main()
{
 Calculator* pCalc = new Calculator ;
 pCalc -> launch() ;
 // Add more statements here.
 return 0 ;
}

l10	 In the main method, insert a loop to read expressions and
write results while the program status permits
while (pCalc -> run())
{	
 pCalc -> readInput() ;
 pCalc -> writeOutput() ;
}

l11	 Save the client file as “sum.cpp”, alongside “ops.h” and
“ops.cpp”, then compile the program with this command
c++ ops.cpp sum.cpp -o sum.exe

l12	 Run the program and enter simple expressions to see the
results, then enter zero and hit Return to exit the program

++

sum.cpp

15
0

H
ar

ne
ss

in
g

po
ly

m
or

ph
is

m

Summary

•	 The three cornerstones of Object Oriented Programming are
encapsulation, inheritance, and polymorphism

•	 Polymorphic entities have a different meaning, or purpose,
according to their context

•	 A base class pointer can be used to call inherited methods in
the derived class to which it is bound

•	 A base class pointer can also be used to explicitly call base class
methods using the :: scope resolution operator

•	 Virtual base class methods are intended to be overridden in
derived classes

•	 Polymorphism allows calls to methods of the same name to be
directed to the appropriate overriding method

•	 Capability classes generally contain no data but merely declare
virtual methods that can be overridden in derived classes

•	 Virtual methods that return a -1 value signal an error to
indicate they should not be called directly

•	 An Abstract Data Type represents a concept and is always the
base to other classes

•	 Declaration of a pure virtual method, with the assignation =0,
indicates that class is an ADT

•	 Classes can be derived from an ADT – but you cannot create
an instance of an ADT

•	 An ADT can be derived from another ADT to create a
complex hierarchy of classes

•	 Programs can be separated into header, implementation, and
client files to aid portability and to ease code maintenance

•	 Header files that are referenced by #include directives will be
automatically included by the compiler during compilation

This chapter demonstrates how the C++
compiler can be made to perform useful
tasks before compiling a program.

Processing macros9

15
2

Pr
oc

es
si

ng
 m

ac
ro

s

Exploring compilation
Whenever the C++ compiler runs, it first calls upon its
preprocessor to seek any compiler directives that may be included
in the source code. Each of these begin with the # hash character
and will be implemented first to effectively modify the source
code before it is assembled and compiled.

The changes made by compiler directives to the preprocessor
create new temporary files that are not normally seen. It is these
temporary files that are used to create a binary object file:

•	 The first temporary file created during compilation expands
the original source code by replacing its compiler directives
with library code that implements those directives. This text
file is named like the source file but with a .ii file extension

•	 The second temporary file created during compilation is a
translation of the temporary expanded .ii file into low-level
Assembly language instructions. This text file is named like the
source file but with a .s file extension

•	 The third temporary file created during compilation is a
translation of the temporary Assembly language .s file into
machine code. This binary object file is named like the source
file but with a .o file extension

So the compilation process employs the Preprocessor to compile
source code, an “Assembler” to translate this into machine code,
and a Linker to convert one or more binary objects into an
executable program.

You can see the temporary files by instructing the compiler to save
them using the -save-temps compiler option. Both temporary text
files can then be examined by opening them in a plain text editor.

Most significantly, you can see that the temporary file with the .ii
file extension contains the complete function definitions from any
included library. For example, it replaces an #include <iostream>
directive with definitions for the cin, cout, cerr functions, and the
clog function that can be used to redirect error messages to a file.
The end of the .ii file shows the defined functions to be part of
the “std” namespace – so they can appear without the std:: prefix.

Source Code (.cpp)

Preprocessor

Assembly Code (.s)

Object Code (.o)

Compiler

Assembler

Linker

Executable (.exe)

Substitutions (.ii)

153

++

prog.cpp

…cont’d

l1	 Create a simple program named “prog.cpp” that will
output a message when it gets executed
#include <iostream>
using namespace std ;

int main()
{
 cout << “This is a simple test program” << endl ;
 return 0 ;
}

l2	 Issue a command using the -save-temps option, to save
temporary files, and a -c option to compile this program’s
source files into an object file – with no executable file
c++ prog.cpp -save-temps -c

l3	 Open the .ii file in
a plain text editor,
such as Notepad,
then scroll to the end
of the file to see the
modified source code
– notice how the
<iostream> library
functions are defined
in the std namespace

You can combine
these steps, creating
an executable file and
saving temporary files, by
issuing the command
c++ prog.cpp
-save-temps -o prog.exe.

l4	 Open the .s file in a plain text editor to see the low-level
assembler instructions – notice how the message string is
now terminated by the special \0 character

l5	 Issue a command to output an executable file from the
.o object file, then run the program to see the message
c++ prog.o -o prog.exe

One or more object files
can be used to create
an executable file – as
described on page 146.

15
4

Pr
oc

es
si

ng
 m

ac
ro

s

Defining substitutes

Numeric constants are
often best declared as
const variables – because
values substituted by
the preprocessor are not
subject to type-checking.

++

define.cpp

Just as the preprocessor substitutes library code for #include
directives other preprocessor directives can be used to substitute
text or numeric values before assembly and compilation.

The #define directive specifies a macro, comprising an identifier
name and a string or numeric value, to be substituted by the
preprocessor for each occurrence of that macro in the source code.

Like #include preprocessor directives, #define directives can
appear at the start of the source code. As with constant variable
names the macro name traditionally uses uppercase, and defined
string values should be enclosed within double quotes. For
numeric substitutions in expressions the macro name should be
enclosed in parentheses to ensure correct precedence.

l1	 Start a new program by declaring three define directives
#define BOOK “C++ Programming in easy steps”
#define NUM 200
#define RULE “*******************************”

l2	 Specify the library classes to include and the namespace
#include <iostream>
using namespace std ;

l3	 Add a main function containing a final return statement
and three statements to output substituted values
int main()
{
 cout << RULE << endl << BOOK << endl << RULE ;
 cout << endl << “NUM is: ” << NUM << endl ;
 cout << “Double NUM: ” << ((NUM) * 2) << endl ;
 return 0 ;
}

l4	 Save, compile, and run the program to see the output

155

Attempting to compile
a program in which an
identifier has not been
defined will produce
a “not declared in this
scope” error.

Linux users can employ
escaped double quotes
\””string”\” or plain
single quotes ‘“string”’
to enclose a quoted
string in a command.

…cont’d

l5	 Recompile the program saving the temporary files
c++ define.cpp -save-temps -o define.exe

l6	 Open the temporary “define.ii” file in a plain text editor
and scroll to the end of the file to see the substitutions

Substitutions can alternatively be made from the command-line
using a -Dname option to replace macros with specified values.
Note that string values within double-quotes must also be
enclosed in escaped quotes in the command – so the substitution
will include the double-quote characters.

l7	 Delete, or comment-out, the define directives for both the
BOOK and NUM identifiers – then save the program file to
apply the changes

l8	 Recompile the program, specifying substitute macro
values, then run the program once more
c++ -DNUM=50 -DBOOK=\””XML in easy steps”\”
define.cpp -o define.exe

15
6

Pr
oc

es
si

ng
 m

ac
ro

s

Defining conditions

++

ifdef.cpp

The preprocessor can make intelligent insertions to program
source code by using macro functions to perform conditional tests.
An #ifdef directive performs the most common preprocessor
function by testing to see if a specified macro has been defined.
When the macro has been defined, so the test returns true, the
preprocessor will insert all directives, or statements, on subsequent
lines up to a corresponding #endif directive.

Conversely, an #ifndef directive tests to see if a specified
macro has not been defined. When that test returns true it will
insert all directives, or statements, on subsequent lines up to a
corresponding #endif directive.

To satisfy either conditional test it should be noted that a #define
directive need only specify the macro name to define the identifier
– it need not specify a value to substitute.

Any previously defined macro can be removed later using the
#undef directive – so that subsequent #ifdef conditional tests fail.
The macro can then be redefined by a further #define directive:

l1	 Start a new program with a conditional test to insert a
directive when a macro is not already defined
#ifndef BOOK
 #define BOOK “C++ Programming in easy steps”
#endif

l2	 Specify the library classes to include and the namespace
#include <iostream>
using namespace std ;

l3	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l4	 In the main function, add a conditional preprocessor test
to insert an output statement when the test succeeds
#ifdef BOOK
 cout << BOOK ;
#endif

157

Each preprocessor
directive must appear on
its own line – you cannot
put multiple directives on
the same line.

…cont’d

On Windows systems
string macro values
specified in a command
must be enclosed in
escaped double quotes.

l5	 Add another conditional preprocessor test to both define
a new macro and insert an output statement when the
test succeeds
#ifndef AUTHOR
 #define AUTHOR “Mike McGrath”
 cout << “ by ” << AUTHOR << endl ;
#endif

l6	 Next add a conditional test to undefine a macro if it has
already been defined
#ifdef BOOK
 #undef BOOK
#endif

l7	 Now add a conditional test to redefine a macro if it is no
longer defined and to insert an output statement
#ifndef BOOK
 #define BOOK “Linux in easy steps”
 cout << BOOK “ by “ << AUTHOR << endl ;
#endif

l8	 Save, compile, and run the program to see the insertions

l9	 Recompile the program, this time defining the BOOK
macro in the command, then run the program again to
see the specified value appear in the first line of output
c++ -DBOOK=\”“Java in easy steps”\” ifdef.cpp -o ifdef.exe

15
8

Pr
oc

es
si

ng
 m

ac
ro

s

Providing alternatives

Use the cpp command
to call the preprocessor
directly (not the c++
command) and ensure
the -dM option is
capitalized correctly.

The #elif macro simply
combines else and if to
offer an alternative test.

++

else.cpp

The conditional test performed by #ifdef and #ifndef can be
extended to provide an alternative by adding an #else directive.
For example:

#ifdef WEATHER
 cout << WEATHER ;
#else
 #define WEATHER “Sunny”
#endif

Similarly, #if, #else, and #elif macros can perform multiple
conditional tests much like the regular C++ if and else keywords.

For testing multiple definitions the #ifdef macro can be expressed
as #if defined and further tests made by #elif defined macros.

While most macros are defined in the source file with a #define
directive, or on the command line with the -D option, some
macros are automatically predefined by the compiler. Typically
these have names beginning with a double underscore __ to avoid
accidental confusion with chosen names. The compiler’s predefined
macros are platform-specific so a program can employ a multiple
definition test to identify the host platform:

l1	 Launch a plain text editor and save a new file (without
any content) as “empty.txt” in your program’s directory

l2	 To see a list of the compiler’s predefined macros issue a
command calling the cpp preprocessor directly with a
“-dM” option on the empty file
cpp -dM empty.txt

l3	 Scroll through the list to find the “_WIN32” macro on
Windows or the “__linux” macro on Linux systems

159

The conditional test of
predefined macros could
be extended to seek
those of other operating
systems and a final #else
directive added to specify
an “Unknown” default.

…cont’d

The predefined
_WIN32 macro has one
underscore but the
__linux macro has two
underscore characters.

l4	 Start a new program with a conditional test to seek the
_WIN32 and __linux macros – to identify the platform
#if defined _WIN32
 #define PLATFORM “Windows”
#elif defined __linux
 #define PLATFORM “Linux”
#endif

l5	 Specify the library classes to include and the namespace
#include <iostream>
using namespace std ;

l6	 Now add a main function containing a final return
statement and a statement to identify the host platform
int main()
{
 cout << PLATFORM << “ System” << endl ;
 return 0 ;
}

l7	 In the main function, insert statements to execute for
specific platforms
if (PLATFORM == “Windows”)
 cout << “Performing Windows-only tasks...” << endl ;
if (PLATFORM == “Linux”)
 cout << “Performing Linux-only tasks...” << endl ;

l8	 Save, compile, and run the program to see platform-
specific output

16
0

Pr
oc

es
si

ng
 m

ac
ro

s

Guarding inclusions

++

guard.cpp

Typically a C++ program will have many .h header files and a
single .cpp implementation file containing the main program.
Header files may often contain one or more #include directives to
make other classes or functions available from other header files
and can cause duplication where definitions appear in two files.
For example, where a header file includes another header file
containing a function definition, the compiler will consider that
definition to appear in each file – so compilation will fail.

The popular solution to this problem of re-definition employs
preprocessor directives to ensure the compiler will only be exposed
to a single definition. These are known as “inclusion guards” and
create a unique macro name for each header file. Traditionally
the name is an uppercase version of the file name, with the dot
changed to an underscore. For example, RUM_H for a file rum.h.

In creating a macro to guard against duplication an #ifndef
directive first tests to see if the definition has already been
made by another header file included in the same program. If
the definition already exists the compiler ignores the duplicate
definition, otherwise a #define directive will permit the compiler
to use the definition in that header file:

l1	 Create a header file named “add.h” containing the inline
declaration of an “add” function
inline int add (int x, int y) { return (x + y) ; }

l2	 Now create a header file named “triple.h” containing a
processor directive to make the add function available for
use in the inline declaration of a “triple” function
#include “add.h”

inline int triple (x) { return add(x, add(x, x)) ; }

l3	 Start a new program with preprocessor directives to make
both the add and triple functions available
#include “add.h”
#include “triple.h”

l4	 Specify the library classes to include and the namespace
#include <iostream>
using namespace std ;

add.h

triple.h

Inclusion guards are
also known as “macro
guards” or simply as
“include guards”.

161

All header files should
contain header guards
– add a TRIPLE_H macro
to the triple.h file.

Use the conventional
naming scheme, where
the macro name
resembles the file name,
to avoid conflicts.

…cont’d

l5	 Add a main function containing statements that call both
the add and triple functions from the included headers
int main()
{
 cout << “9 + 3 = “ << add(9, 3) << endl ;
 cout << “ 9 x 3 = “ << triple(9) << endl ;
 return 0 ;
}

l6	 Save the files then attempt to compile the program to see
compilation fail because the add function appears to be
defined twice – in “add.h” and by inclusion in “triple.h”

l7	 Edit the header file “add.h” to enclose the inline function
declaration within a preprocessor inclusion guard
#ifndef ADD_H
#define ADD_H

inline int add (int x, int y) { return (x + y) ; }

#endif

l8	 Save the modified file then compile and run the program
– compilation now succeeds because the inclusion guard
prevents the apparent re-definition of the add function

16
2

Pr
oc

es
si

ng
 m

ac
ro

s

Using macro functions

++

macro.cpp

The #define directive can be used to create macro functions that
will be substituted in the source code before compilation.

A preprocessor function declaration comprises a macro name
immediately followed by parentheses containing the function’s
arguments – it is important not to leave any space between the
name and the parentheses. The declaration is then followed by the
function definition within another set of parentheses. For example,
a preprocessor macro function to half an argument looks like this:

#define HALF(n) (n / 2)

Care should be taken when using macro functions because, unlike
regular C++ functions, they do not perform any kind of type
checking – so it’s quite easy to create a macro that causes errors.
For this reason inline functions are usually preferable to macro
functions but, because macros directly substitute their code, they
avoid the overhead of a function call – so the program runs faster.
The resulting difference can be seen in the first temporary file
created during the compilation process:

l1	 Start a new program by defining two macro functions to
manipulate a single argument
#define SQUARE(n) (n * n)
#define CUBE(n) (n * n * n)

l2	 After the macro function definitions, specify the library
classes to include and a namespace prefix to use
#include <iostream>
using namespace std ;

l3	 Next declare two inline functions to manipulate a single
argument – just like the macro functions defined above
inline int square (int n) { return (n * n) ; }
inline int cube (int n) { return (n * n * n) ; }

l4	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

163

An inline function saves
the overhead of checking
between a function
prototype declaration
and its definition.

…cont’d

l5	 At the start of the main function block, declare and
initialize an integer variable
int num = 5 ;

l6	 Now insert statements to call each macro function and
each comparable inline function
cout << “Macro SQUARE: ” << SQUARE(num) << endl ;
cout << “Inline square: ” << square(num) << endl ;
cout << “Macro CUBE: ” << CUBE(num) << endl ;
cout << “Inline cube: ” << cube(num) << endl ;

l7	 Save the file, then compile the program saving the
temporary files and run the program
c++ macro.cpp -save-temps -o macro.exe

l8	 Open the temporary “.ii” file in a plain text editor, like
Notepad, to see that the macro functions have been
directly substituted in each output statement

Using uppercase for
macro names ensures
that macro functions will
not conflict with regular
lowercase function names.

16
4

Pr
oc

es
si

ng
 m

ac
ro

s

Building strings

++

strung.cpp

The preprocessor # operator is known as the “stringizing” operator
as it converts a series of characters passed as a macro argument
into a string – adding double quotes to enclose the string.

All whitespace before or after the series of characters passed
as a macro argument to the stringizing operator is ignored and
multiple spaces between characters is reduced to just one space.

The stringizing operator is useful to pass string values to a
preprocessor #define directive without needing to surround each
string with double quotes.

A macro definition can combine two terms into a single term
using the ## merging operator. Where the combined term is a
variable name its value is not expanded by the macro – it simply
allows the variable name to be substituted by the macro.

l1	 Start a new program by defining a macro to create a
string from a series of characters passed as its argument,
to substitute in an output statement
#define LINEOUT(str) cout << #str << endl

l2	 Define a second macro to combine two terms passed as
its arguments into a variable name, to substitute in an
output statement
#define GLUEOUT(a, b) cout << a##b << endl

l3	 After the macro definitions, specify the library classes to
include and a namespace prefix to use
#include <string>
#include <iostream>
using namespace std ;

l4	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

165

The merging operator
is alternatively known
as the “token-pasting”
operator as it pastes two
“tokens” together.

Notice that the second
statement contains
multiple spaces, which
will be removed by the
stringizing operator.

…cont’d

l5	 At the start of the main function block, declare and
initialize a string variable then append a further string
string longerline = “They carried a net ” ;
longerline += “and their hearts were set” ;

l6	 Now add statements to output text using the macros
LINEOUT(In a bowl to sea went wise men three) ;
LINEOUT(On a brilliant night in		 June) ;
GLUEOUT(longer, line) ;
LINEOUT(On fishing up the moon.) ;

l7	 Save the file, then compile the program saving the
temporary files and run the program
c++ strung.cpp -save-temps -o strung.exe

l8	 Open the temporary “.ii” file in a plain text editor, like
Notepad, to see that the string values and the variable
name have been substituted in the output statements

16
6

Pr
oc

es
si

ng
 m

ac
ro

s

Debugging assertions

Do not place a backslash
continuation character
on the last line of the
definition, and remember
to use the # stringizing
operator to output the
expression as a string.

++

assert.cpp

It is sometimes helpful to use preprocessor directives to assist with
debugging program code – by defining an ASSERT macro function
to evaluate a specified condition for a boolean value.

The condition to be evaluated will be passed from the caller as
the ASSERT function argument. The function can then execute
appropriate statements according to the result of the evaluation.
Multiple statements can be included in the macro function
definition by adding a backslash \ at the end of each line, allowing
the definition to continue on the next line.

Numerous statements calling the ASSERT function can be added to
the program code to monitor a condition as the program proceeds.
For example, to check the value of a variable as it changes.

Usefully an ASSERT function can be controlled by a DEBUG macro.
This allows debugging to be easily turned on and off simply by
changing the value of the DEBUG control macro:

l1	 Start a new program by defining a DEBUG macro with
an “on” value of one – to control an ASSERT function
#define DEBUG 1

l2	 Next add a macro if-elif statement block to define the
ASSERT function according to the control value
#if(DEBUG == 1)
	 // Definition for “on” goes here.
#elif(DEBUG == 0)
	 // Definition for “off” goes here.
#endif

l3	 In the top part of the ASSERT function statement block
insert a definition for when the debugging control is set
to “on” – to output failure details from predefined macros
#define ASSERT(expr)					 \
cout << #expr << “ ...” << num ;			 \
if (expr != true)					 \
{							 \
 cout << “ Fails in file: ” << __FILE__ ;			 \
 cout << “ at line: ” << __LINE__ << endl ;		 \
}							 \
else cout << “ Succeeds” << endl ;

You can comment-out
sections of code when
debugging using C-style
/* */ comment operators.

167

Additionally, the current
date and time can
be output from the
__DATE__ and __TIME__
predefined macros.

Predefined macro names
are prefixed by a double-
underscore and suffixed
by a double-underscore.

…cont’d

l4	 In the bottom part of the ASSERT function statement
block insert a definition for when the debugging control
is set to “off ” – to simply output the current variable value
#define ASSERT(result) 				 \
cout << “Number is “ << num << endl ;

l5	 After the macro definitions, specify the library classes to
include and a namespace prefix to use
#include <iostream>
using namespace std ;

l6	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l7	 At the start of the main function block declare and
initialize an integer variable, then call the macro ASSERT
function to check its value as it gets incremented
int num = 9 ;	 ASSERT(num < 10) ;
num++ ;	 ASSERT(num < 10) ;

l8	 Save, compile, and run the program to see the output

l9	 Edit the program to turn debugging off by changing the
control value, then recompile and re-run the program
#define DEBUG 0

16
8

Pr
oc

es
si

ng
 m

ac
ro

s

Summary

•	 The C++ compiler’s -save-temps option saves the temporary
files created during the compilation process for examination

•	 Compilation first writes program code and included library
code into a single .ii text file, which is then translated into
low-level Assembly language as a .s text file

•	 Assembly language .s files are translated to machine code as .o

object files, which are used to create the executable program

•	 A #define directive defines a macro name and a value that the
preprocessor should substitute for that name in program code

•	 The preprocessor can be made to perform conditional tests
using #ifdef, #ifndef, and #endif directives

•	 Preprocessor alternatives can be provided using #if, #else, and
#elif directives, and a definition can be removed using #undef

•	 Each header file should use inclusion guards to prevent
accidental multiple definition of the same class or function

•	 The macro name of an inclusion guard is an uppercase version
of the file name, but with the dot replaced by an underscore

•	 A #define directive may also define a macro function that will
be substituted in program code in place of the macro name

•	 Inline functions are usually preferable to macro functions
because, unlike macro functions, they perform type-checking

•	 The preprocessor # stringizing operator converts a series of
characters passed as a macro argument into a string value

•	 Two terms can be combined into a single term by the
preprocessor ## merging operator

•	 An ASSERT macro function is useful for debugging code and
may be controlled by a DEBUG macro to easily turn debugging
on or off

This chapter brings together elements from
previous chapters to build a complete C++
application in a visual programming
environment.

Programming visually10

17
0

Pr
og

ra
m

m
in

g
vi

su
al

ly

Generating random numbers

The srand function must
only be called once in a
program – at the start,
before any calls to rand.

The zero argument to
the time function is
required, and specifies
that the returned time
need not be stored.

The graphical application developed on subsequent pages of
this book will generate six random numbers within a specific
range. Initially, its functionality can be developed as a console
application, then transferred later to illustrate how text-based
programming relates to visual programming.

A pseudo-random number from 0.0 to 32,767 can be generated
by calling the rand function from the C++ <cstdlib> library.
The range of generated numbers can be set using the % modulus
operator to specify a maximum value. For example, to generate a
whole number within the range of one to nine:

int num = (rand() % 9) + 1) ;

The numbers generated by rand are not truly random, however, as
it generates the same sequence each time the program is executed.
To generate a different sequence of numbers a “seed” must be
specified as an argument to a special srand function, such as:

srand(12345).

Although calls to rand will then generate a different sequence
of numbers, it is still one that will be repeated each time the
program is executed. To generate a changing sequence the
argument to srand must be something other than a static integer.
The solution is to seed the rand function using the current time
as the argument to srand, by calling the time function from the
standard C++ <ctime> library. This returns the time as a time_t
data type, which can be cast as an integer data type like this:

srand((int) time(0)) ;

The time function returns the number of seconds elapsed since the
epoch at midnight (00:00:00), January 1, 1970, and ensures the
numbers generated by rand will now appear to be truly random
– unless it’s called again within the same second.

A series of random numbers generated by rand can be used to
randomize a consecutive sequence of numbers in array elements.
These could represent the range of numbers to choose from when
making a lottery selection – and retrieving the value from the
required number of arrays could represent a random lottery entry.
For example, choosing six numbers between one and 49.

171
…cont’d

You can edit the final
loop to output all array
elements to see how
they are randomized.

…cont’d

l1	 Start a new program by specifying the library classes to
include and a namespace prefix to use
#include <cstdlib>		 // Include random support.
#include <ctime>		 // Include time support.
#include <iostream>
using namespace std ;

l2	 Add a main function containing a final return statement
int main()
{
 // Program code goes here.
 return 0 ;
}

l3	 At the start of the main function block, declare three
trivial integer variables and an array for fifty integers
int i, j, k, nums[50] ;

l4	 Seed the random number generator with the current time
srand((int) time(0)) ;

l5	 Fill array elements 1-49 with integers 1-49
for (i = 1 ; i < 50 ; i++) nums[i] = i ;

l6	 Randomize the values in array elements 1-49
for (i = 1 ; i < 50 ; i++)
{
 j = (rand() % 49) + 1 ;
 k = nums[i] ; nums[i]= nums[j] ; nums[j] = k ;
}

l7	 Now output the values in array elements 1-6
cout << “Your six lucky numbers are: ” ;
for (i = 1 ; i < 7 ; i++) cout << nums[i] << “ “ ;

l8	 Save, compile, and run the program to see the output

++

lotto.cpp

17
2

Pr
og

ra
m

m
in

g
vi

su
al

ly

Planning the program
The most widely used visual development environment is the
excellent Microsoft® Visual Studio® suite of products. The
streamlined Visual C++ Express Edition is a free simplified
version for C++ programming and is used in this chapter to
demonstrate how to create a graphical application.

When creating a new application it is useful to first spend some
time planning its design. Clearly define the program’s precise
purpose, decide what application functionality will be required,
then decide what interface components will be needed.

A plan for a simple application to pick numbers for a lottery entry
might look like this:

Program

•	 The program will generate a series of six different random
numbers in the range 1-49, and have the ability to be reset

Functionality required

•	 An initial call to start the random number generator

•	 A routine to generate and display six different random numbers

•	 A routine to clear the last series from display

Components needed

•	 Six Label controls to display the series of numbers – one
number per Label

•	 One Button control to generate and display the numbers in
the Label controls when this Button gets clicked. This Button
will not be enabled when the numbers are on display.

•	 One Button control to clear the numbers on display in the
Label controls when this Button gets clicked. This Button will
not be enabled when no numbers are on display.

•	 One PictureBox control to display a static image – just to
enhance the appearance of the interface

Toggle the value of
the Buttons’ Enabled
property to steer the
user – in this case the
application must be
reset before a further
series of numbers can be
generated.

The free Visual C++
Express edition, and a
Visual Studio Professional
Trial version, can both
be downloaded
from the Microsoft
Download Center at
www.microsoft.com/
downloads.

173

You can alternatively
drag items from the
Toolbox and drop them
onto the Form in the
Designer window.

…cont’d

Having established a program plan means you can now create the
application basics by adding components to a Form.

l1	 In Visual C++ Express click File, New, Project and create
a new Windows Forms Application named “Lotto”

You can press Shift+F7
to see the Form Designer
window at any time.

l2	 When an empty Form appears in the Form Designer
window, click the View, Toolbox menu (or press
Ctrl+Alt+X) to open the Toolbox window

l3	 In the Toolbox, expand the Common Controls list then
double-click its Label item six times – see six Label
controls get added to the Form in the Designer window

l4	 Now add two Buttons and a PictureBox to the Form

17
4

Pr
og

ra
m

m
in

g
vi

su
al

ly

Assigning static properties
Having created the application basics, on the previous page, you
can now assign static values using the Properties window.

You can open the
Properties window by
pressing Alt+Enter, or by
clicking the View, Other
Windows, Properties
Window menus. l2	 Select the “button1” control then, in the Properties

window, change its (Name) property to “getBtn” and its
Text property to “Get My Lucky Numbers”

l3	 Select the “button2” control then, in the Properties
window, change its (Name) property to “resetBtn” and its
Text property to “Reset”

l1	 Click anywhere on
the Form to select it
then, in the Properties
window, set the Form’s
Text property to
“Lotto Number
Generator”

The Label controls in
this program will have
their Text property values
assigned dynamically
at runtime – no static
properties are required.

The new Text property
values now appear in
the Form design – the
“getBtn” control will be
resized later to display
its entire text value

175
…cont’d

Remember to save your
project periodically as
you build it using File,
Save All on the Menu
Bar or Ctrl+Shift+S keys.

You can use the
dropdown list at the top
of the Properties window
to select any control.

l5	 Click the ellipsis button to launch the Open File dialog
then navigate to an illustrative image file and click Open

l4	 Select the “pictureBox1” control on the Form then, in the
Properties window, click the column alongside the Image
property to see an [...] ellipsis button appear

The image item gets added
to the properties window as a
System.Drawing.Bitmap object

...and the image
now appears in the
“pictureBox1” control
on the Form

17
6

Pr
og

ra
m

m
in

g
vi

su
al

ly

Designing the interface
Having assigned static property values, on the previous page,
you can now design the interface layout. The size of both the
“pictureBox1” control and the “getBtn” control first need to
be adjusted to accommodate their content. This can easily be
achieved by specifying an AutoSize value so that Visual C++
Express will automatically fit the control neatly around its content.

l1	 Select the
“pictureBox1” control
then, in the Properties
window, change its
SizeMode property to
“AutoSize”

l2	 Next select the
“getBtn” control then,
in the Properties
window, set its
AutoSize property to
“True”

You can alternatively
use the Smart Tag arrow
button on a PictureBox
control to set its
SizeMode property.

l3	 Hold down
the left mouse
button and
drag around
the Labels
to select all
Label controls

Ensure that all PictureBox
Margin properties are
set to zero if you do not
require margins around
the image.

Now you can use the Form Designer’s Format menu and Snap
Lines to arrange the interface components to your liking.

177
…cont’d

l4	 Click Format,
Align, Tops.
on the Menu
Bar to stack
the Labels

l5	 Now click
Format,
Horizontal
Spacing, Make
Equal, to
arrange the
Labels in a row

You can set the Form’s
MaximizeBox property
to False then specify
the current size as both
MaximumSize and
MinimumSize to fix the
window’s size.

l6	 Use the Form’s right grab handle to extend its width to
accommodate the row of Labels and “pictureBox1”, then
drag the row and both Buttons to top right of the Form

l7	 Drag the “pictureBox1” control to top left of the Form,
then use the Form’s bottom grab handle to adjust its
height to match that of the image

In this case it does not
matter in what order the
Labels appear in the row.

l8	 Use the Snap Lines that appear when you drag controls
around the Form to position the row of Labels and the
Buttons to make the interface look like this

17
8

Pr
og

ra
m

m
in

g
vi

su
al

ly

Initializing dynamic properties
Having designed the interface, on the previous page, you can
now add some functionality to dynamically set the initial Text
properties of the Label controls and the initial Button states.

l1	 Double-click the Form, or click View, Code on the Menu
Bar, or press Ctrl+Alt+0, to open the Code editor

l2	 Scroll down the code, to see what you can recognize...

The code begins with a platform-specific #pragma once directive,
which is an inclusion guard that the Microsoft compiler used
by Visual C++ Express understands to mean “only open this file
once” during the compilation process.

Of more importance is the using namespace System; declaration
that comes next – the System class namespace provides functions
to work with graphical controls, whereas the familiar std class
namespace provides functions to work with the console.

Code following the namespace declarations defines a derived
class named “Form1” whose class members are the interface
components and whose class methods are their functions. These
can be easily referenced using the familiar this -> class pointer.

l3	 Near the bottom of the code, locate the empty declaration
of the function named “Form1_Load”

l4	 Immediately after the closing brace of the Form1_Load
function block add a new private “Clear” function – to
return a graphical “System::Void” data type
private: System::Void Clear()
{
 // Function code goes here.
}

l5	 In this new function block, insert statements to set each
Label’s Text value to an ellipsis when called upon
this->label1->Text = “...” ;
this->label2->Text = “...” ;
this->label3->Text = “...” ;
this->label4->Text = “...” ;
this->label5->Text = “...” ;
this->label6->Text = “...” ;

Form1.h
(Generated)

179
…cont’d

l6	 Now in the “Form1_Load” function block, insert a call to
the new function – to run whenever the Form loads
private: System::Void Form1_Load
(System::Object^ sender, System::EventArgs^ e)
{
 Clear() ;
}

l7	 Click the Debug, Start Debugging menu, or press F5, to
build the application and see each label name get replaced
by an ellipsis when the Form loads

l8	 Click the X button to close the window as usual and to
stop application debugging in Visual C++ Express

l9 	 Return to the code window and insert further statements
in the Clear function block to control button states
this->getBtn->Enabled = true ;
this->resetBtn->Enabled = false ;

l10 	 Press F5 to run the application again and see that the
Reset button is now disabled when the Form gets loaded

The ^ character denotes
a “handle” reference to a
managed System object
that has automatic
“garbage collection” to
prevent memory leaks.
Form components are
such managed objects.

18
0

Pr
og

ra
m

m
in

g
vi

su
al

ly

Adding runtime functionality
Having created code to initialize dynamic properties, on the
previous page, you can now add runtime functionality to respond
to clicks on the Buttons.

l1	 In Form Designer, double-click on the resetBtn Button
control to open the Code Editor in the resetBtn_Click
event-handler then add this call to the Clear function
Clear() ;

This is all that is needed to provide dynamic functionality for
the resetBtn control. The main dynamic functionality of this
application is provided by the getBtn control which requires the
random number generator to be started when the Form loads.
This will require the srand and time functions so the <cstdlib>
and <ctime> class libraries need to be included in the program:

l2	 At the start of the program, right after the “pragma once”
directive, specify the library classes to include
#include <cstdlib>
#include <ctime>

l3	 In Form Designer, double-click on the Form to open the
Code Editor in its “Form1_Load” event-handler then
insert this code to start the random number generator
srand((int) time(0)) ;

Now you can create the code to provide dynamic functionality for
the getBtn Button control itself:

l4	 In Form Designer, double-click on the “getBtn” Button
control to open the Code Editor in the “getBtn_Click”
event-handler then insert this line to declare variables
int i, j, k, nums[50] ;

l5	 In the “getBtn_Click” event-handler, add a loop to fill the
“nums” array elements 1-49 with the integer values 1-49
for (i = 1 ; i < 50 ; i++) nums[i] = i ;

These steps provide
comparable functionality
to that of the console
application on page 171.

Form1.h
(Generated)

181
…cont’d

l6	 Next in the “getBtn_Click” event-handler, randomize the
values in array elements 1-49
for (i = 1 ; i < 50 ; i++)
{
 j = (rand() % 49) + 1 ;
 k = nums[i] ; nums[i] = nums[j] ; nums[j] = k ;
}

l7	 Now in the “getBtn_Click” event-handler, output the
values in elements 1-6 to the Form’s Label components
this->label1->Text = Convert::ToString(nums[1]) ;
this->label2->Text = Convert::ToString(nums[2]) ;
this->label3->Text = Convert::ToString(nums[3]) ;
this->label4->Text = Convert::ToString(nums[4]) ;
this->label5->Text = Convert::ToString(nums[5]) ;
this->label6->Text = Convert::ToString(nums[6]) ;

l8	 Finally in the “getBtn_Click” event-handler, add these two
lines to set the Button states ready to reset the application
this->getBtn->Enabled = false ;
this->resetBtn->Enabled = true ;

You can click the box
buttons in the left
margin to expand or
collapse function blocks.

The System::Convert
class provides many
functions that make type
conversion simple – like
the ToString function
that is used here to
convert int values to
System::String values.

18
2

Pr
og

ra
m

m
in

g
vi

su
al

ly

Testing the program
Having worked through the program plan, on the previous pages,
the components needed and functionality required have now been
added to the application – so it’s ready to be tested:

l1	 Click the Start Debugging button, or press F5, to run the
application and examine its initial appearance

The Form1_Load event-handler has set the initial dynamic values
of each Label control and disabled the reset button as required.

l2	 Click the “getBtn” Button control to execute the
instructions within its “getBtn_Click” event-handler

A series of numbers within the desired range is displayed and
the Button states have changed as required – a further series of
numbers cannot be generated until the application has been reset.

l3	 Make a note of the numbers generated in this first series
for comparison later

l4	 Click the “resetBtn” control to execute the instructions
within its “resetBtn_Click” event-handler and see the
application resume its initial appearance as required.

Notice that no number is
repeated in any series.

183
…cont’d

l5	 Click the “getBtn” Button control again to execute its
“getBtn_Click” event-handler code a second time

Failing to call the
srand function to seed
the Random Number
Generator will cause the
application to repeat
the same sequence each
time it runs.

Another series of numbers within the desired range is displayed
and are different to those in the first series when compared
– good, the numbers are being randomized as required.

l6	 Click the Stop Debugging button then the Start
Debugging button to restart the application and click the
“getBtn” Button control once more

The generated numbers in this first series of numbers are different
to those noted in the first series the last time the application ran
– great, the random number generator is not repeating the same
sequence of number series each time the application runs.

18
4

Pr
og

ra
m

m
in

g
vi

su
al

ly

Deploying the application
Having satisfactorily tested the application, on the previous page,
you can now create an optimized Release version for deployment.

l5	 Enter a name for the Setup Project and choose “Add To
Solution” from the drop-down list, then click OK to add
the project files in Solution Explorer

l2	 Now click the Build, Build Solution menu item, or press
F7, to build a Release version of the application

In order to deploy the application a “Setup Project” can now be
added to the solution to create the necessary installation files.

l3	 Click the File, New, Project menu item to launch the
“New Project” dialog

l4	 In the New Project dialog choose the “Other Project
Types”, “Setup and Deployment” , “Visual Studio
Installer” node, then the “Setup Project” template item

l1	 Click the “Solution
Configuration” button on
the toolbar then launch
the Configuration
Manager and choose the Release item from its “Active
Solution Configuration” listThe Visual C++ Express

edition does not
support Setup Projects,
but the Visual Studio
Professional edition
(used here) is available
on free 90-day trial from
www.microsoft.com/
downloads.

Select the appropriate
version of the .NET
Framework supported
by the target computer
where the application
will be deployed.

185
…cont’d

This Setup Wizard
does not create a Start
Menu item but lets you
choose where to place
the executable Lotto.exe
file – place it on your
desktop for convenience.

l6	 In Solution Explorer
right-click on
the Setup Project
and choose Add,
Project Output to
launch the “Project
Output Group”
dialog then select
“Primary Output”
and “Release
Win32” from the
Configuration
drop-down list

The installation files are
not created in the Lotto/
Release folder but in
LuckyNumbers/Release.

l7	 Click OK to close the dialog then back in Solution
Explorer expand the Setup Project node, right-click
on “Detected Dependencies”, and choose “Refresh
Dependencies” to update the configuration

l8	 Finally right-click the Setup Project node and choose
Build – to create the installer files (setup.exe and a .msi
file) inside the Release folder of the Setup Project

l9	 Copy both files onto a computer without the Visual C++
libraries, then run setup.exe and launch the application

18
6

Pr
og

ra
m

m
in

g
vi

su
al

ly

Summary

•	 The <cstdlib> library provides rand and srand functions that
can be used to generate pseudo-random numbers

•	 Unless first seeded by srand the rand function will generate the
same sequence of numbers each time it is called

•	 The time function provided by the <ctime> library can be used
to seed rand so it appears to generate truly random numbers

•	 Microsoft Visual C++ Express Edition is a free development
environment for visual C++ programming

•	 A visual program plan should define the program’s purpose,
required functionality, and interface components needed

•	 When a new Windows Forms Application project is created in
Visual C++ an empty Form appears in Form Designer

•	 Controls can be dragged from the Toolbox and dropped onto
an empty Form, then arranged to construct the interface

•	 The appearance and performance of any control can be
modified by changing its properties

•	 In visual programming with Visual C++ the System class
provides functions to work with graphical controls

•	 Statements can be added to the Form’s Load function block to
dynamically initialize control properties

•	 Statements can be added to a Button control’s Click function to
provide runtime functionality in response to user actions

•	 Upon completion a program should be tested to ensure it
meets all requirements of the program plan

•	 The Release version of a program is optimized for deployment

•	 Visual C++ applications can run on any machine where the
appropriate .NET Framework is supported

187
Index

A
Abstract Data Type (ADT)â•† 142

complex hierarchiesâ•† 144
accessor methods, setter and getterâ•† 118
access specifiersâ•† 116

privateâ•† 116
protectedâ•† 116
publicâ•† 116

addition operator, +â•† 26
addressof operator, &â•† 134
alias. Seeâ•¯referenceâ•†
American National Standards Institute (ANSI)â•† 9
AND operator, &&â•† 32
appending to a text fileâ•† 82
append string, +=â•† 62
applications

a.exe, a.outâ•† 14
Lotto.exeâ•† 185

arguments, functionâ•† 13, 52
arithmetical operatorsâ•†

addition, +â•† 26
decrement, --â•† 26
division, /â•† 26
increment, ++â•† 26
modulus, %â•† 26
multiplication, *â•† 26
subtraction, -â•† 26

array, variableâ•† 18
ASCII, character codesâ•† 41
Assembly language instructionsâ•† 152
ASSERT, macro functionâ•† 166
assignment operatorsâ•†

add and assign, +=â•† 28
assign, =â•† 28
divide and assign, /=â•† 28
modulus and assign, %=â•† 28
multiply and assign, *=â•† 28
subtract and assign, -=â•† 28

B
base classâ•† 126

constructor methodâ•† 128
overriding methodsâ•† 130

binary object fileâ•† 152
bit flags, stringstream objectâ•† 67
bool data typeâ•† 16
boolean values, true and falseâ•†â•† 44
bound base class pointerâ•† 134
braces, { }â•† 12
break statement, in loopsâ•† 50
break statement, in switchâ•† 46

C
C++ library classâ•†

<cstdlib>â•† 170
<ctime>â•† 170
<fstream>â•† 80
<iostream>â•† 13
<sstream>â•† 66
<stdexcept>â•† 93
<string>â•† 62, 68
<typeinfo>â•† 94
<vector>â•† 20

capability classâ•† 140
case statementâ•† 46
casting data typesâ•† 40
catch blockâ•† 90
cerr functionâ•† 92
character arrayâ•† 18
char data typeâ•† 16
cin.ignore functionâ•† 64
cin input stream function, >>â•† 54, 64
class

baseâ•† 126
constructor and destructorâ•† 122
declarationâ•† 116
derivedâ•† 126
instanceâ•† 117
memberâ•† 116

initializingâ•† 122

In
de

x
18

8

methodâ•† 116
overloadingâ•† 124
setter and getterâ•† 118

class member operator, .â•† 38
class pointer operator, ->â•† 38, 120
client file, .cppâ•† 146
clog functionâ•† 152
close function, output filestreamâ•† 80
comments, //, /* */â•† 13
comparison operatorsâ•†

equality, ==â•† 30
greater or equal, >=â•† 30
greater than, >â•† 30
inequality, !=â•† 30
lesser or equal, <=â•† 30
lesser than, <â•† 30

compilation processâ•† 146, 152
compile-time errorsâ•† 90
compilerâ•† 10

-c optionâ•† 153
-D optionâ•† 155, 158
-o optionâ•† 14
-save-temps optionâ•† 152
-v optionâ•† 10
predefined macrosâ•† 158

compiler directives. Seeâ•¯preprocessor directivesâ•†
complex hierarchiesâ•† 144
concatenation operator, +â•† 62, 70
conditional branchingâ•†

if-else statementsâ•† 44
switch statementsâ•† 46

conditional operator, ? :â•† 34
constant, declarationâ•† 22
constructor methodâ•† 122
continue statement, in loopsâ•† 50
converting

data typesâ•† 40
string valuesâ•† 66

cout output stream function, <<â•† 13
fill functionâ•† 88
precision functionâ•† 88
width functionâ•† 88

D
data hidingâ•† 116
data type qualifiersâ•†

longâ•† 36
shortâ•† 36
unsignedâ•† 36

data typesâ•† 16
boolâ•† 16
charâ•† 16
doubleâ•† 16
floatâ•† 16
intâ•† 16
time_tâ•† 170

DEBUG, macroâ•† 166
declaring

arraysâ•† 18
capability classesâ•† 140
classesâ•† 116
constantsâ•† 22
derived classesâ•† 126
functionsâ•† 52
pointersâ•† 100
preprocessor functionsâ•† 162
pure virtual methodsâ•† 142
referencesâ•† 108
variablesâ•† 16
vectorsâ•† 20
virtual methodsâ•† 136

decrement operator, --â•† 26, 102
default argument valuesâ•† 54
default statement, in switchâ•† 46
defining

ASSERT macro functionâ•† 166
DEBUG control macroâ•† 166

defining functionsâ•† 52
deploying applicationsâ•† 184
dereference operator, *â•† 100
derived classâ•† 126

multiple objectsâ•† 138
destructor methodâ•† 122
division operator, /â•† 26
do-while loopâ•† 48, 50
double data typeâ•† 16
double quotes, “ “â•† 62
driver file. Seeâ•¯client fileâ•†

E
elements, arrayâ•† 18
else statementâ•† 44
encapsulationâ•† 117
endl library functionâ•† 13
enumerated constantsâ•† 22
equality operator, ==â•† 30

189

errors
exceptionâ•† 90
logicâ•† 90
return -1â•† 70
syntaxâ•† 90

escape, \â•† 23
escape sequences, \n, \tâ•† 81
exceptionâ•† 93

bad_allocâ•† 93
bad_castâ•† 93
bad_typeidâ•† 93
logic_errorâ•† 93

domain_errorâ•† 93
invalid_argumentâ•† 93
length_errorâ•† 93
out_of_rangeâ•† 93

runtime_errorâ•† 93
overflow_errorâ•† 93
range_errorâ•† 93

exception handlingâ•† 92, 94
throw statementâ•† 93
what functionâ•† 92

F
file modesâ•† 82
float data typeâ•† 16
for loopâ•† 48
function

argumentsâ•† 52, 54
declarationâ•† 52
definitionâ•† 52
inlineâ•† 59
overloadingâ•† 56
prototypeâ•† 52
recursiveâ•† 58
resolutionâ•† 56

G
General Public License (GPL)â•† 10
getline functionâ•† 64, 86
getter methods, classâ•† 118
GNU C++ compilerâ•† 10
greater than operator, >â•† 30

H
handle operator, ^ (Windows)â•† 179
header file, .hâ•† 146

I
if statementâ•† 44
ifstream filestream objectâ•† 84

eof functionâ•† 84
get functionâ•† 84

ignore input bufferâ•† 64
implementation file, .cppâ•† 146
include directiveâ•† 62, 148
inclusion guardsâ•† 160
increment operator, ++â•† 26, 102
index, array elementsâ•† 18
indirection operator. Seeâ•¯dereference operatorâ•†
Industry Organization for Standardization (ISO)â•† 9
inequality operator, !=â•† 30
inheritanceâ•† 126
initializer, in loopsâ•† 48
initializing

class membersâ•† 122
variablesâ•† 17

inline
functionâ•† 59
methodsâ•† 120

input
bufferâ•† 64
filestream object, ifstreamâ•† 80
stream operator, >>â•† 66

insertion operatorsâ•† 88
instance, classâ•† 117

multiple objectsâ•† 120
int data typeâ•† 16
interface designâ•† 176
ios namespaceâ•† 82
iostream, C++ libraryâ•† 13
isolated classesâ•† 148

In
de

x
19

0

L
L-valueâ•† 99
less than operator, <â•† 30
linkerâ•† 146
logical operatorsâ•†

AND operator, &&â•† 32
NOT operator, !â•† 32
OR operator, ||â•† 32

logic errorsâ•† 90
long, data type qualifierâ•† 36
loops

do-while statementâ•† 48
for statementâ•† 48
while statementâ•† 50

lowerCamelCaseâ•† 17

M
macro

ASSERT functionâ•† 166
DEBUG controlâ•† 166
functionsâ•† 162
guards. Seeâ•¯inclusion guardsâ•†

main functionâ•† 12, 13
members, classâ•† 116
memory addressâ•† 98
memory allocationâ•† 36
merging operator, ##â•† 164
methods, classâ•† 116

setter and getterâ•† 118
Microsoft .NET Frameworkâ•† 184
Microsoft Visual C++ Express Editionâ•† 8, 172
Microsoft Visual Studioâ•† 184
Minimalist GNU for Windows (MinGW)â•† 10
modes, fileâ•† 82
modulus operator, %â•† 26, 170
multiplication operator, *â•† 23, 26

N
naming conventionsâ•† 16

accessor methodsâ•† 118
argumentsâ•† 55
class destructor, ~â•† 122
classesâ•† 116
constantsâ•† 22
inclusion guardsâ•† 160
referencesâ•† 108
variablesâ•† 16

newline character, \nâ•† 64, 81
NOT operator, !â•† 32

O
objectâ•† 117
Object Oriented Programming (OOP)â•† 116

encapsulationâ•† 116
inheritanceâ•† 126
polymorphismâ•† 134

operator
arithmeticalâ•† 26
assignmentâ•† 28
comparisonâ•† 30
logicalâ•† 32
precedenceâ•† 38
sizeofâ•† 36
ternary, conditionalâ•† 34

OR operator, ||â•† 32
output

filestream object, ofstreamâ•† 80
stream manipulatorsâ•† 88
stream operator, <<â•† 13, 66

overloading
class methodsâ•† 124
functionsâ•† 56

overriding base class methodsâ•† 130

191

P
parameters, functionâ•† 52
parenthesesâ•† 32
passing by referenceâ•† 104
passing by valueâ•† 54, 110
pointerâ•† 98

arithmeticâ•† 102
arraysâ•† 106
comparison to referencesâ•† 112
declarationâ•† 100
getting valuesâ•† 100
passing to functionsâ•† 104

polymorphismâ•† 134
postfix, increment and decrementâ•† 27
precedenceâ•† 38
predefined macrosâ•† 158

__DATE__â•† 167
__FILE__â•† 166
__LINE__â•† 166
__TIME__â•† 167

predicting problemsâ•† 90
prefix, increment and decrementâ•† 27
preprocessorâ•† 152

-dM optionâ•† 158
function declarationâ•† 162
inclusion guardsâ•† 160

preprocessor directivesâ•† 12
##, merging operatorâ•† 164
#, stringizing operatorâ•† 164
#defineâ•† 154
#elifâ•† 158
#elseâ•† 158
#endifâ•† 156
#ifdefâ•† 156
#ifndefâ•† 156
#includeâ•† 13, 62
#pragma once (for Microsoft compiler)â•† 178
#undefâ•† 156

private, access specifierâ•† 116
program planâ•† 172
protected, access specifierâ•† 116
prototype, functionâ•† 52
public, access specifierâ•† 116
pure virtual methodâ•† 142

Q
qualifier, data typesâ•† 36
quotesâ•† 13, 16

character, ‘ ‘â•† 62
string, “ “â•† 62

R
R-valueâ•† 99
random number generationâ•† 170

rand functionâ•† 170
srand functionâ•† 170

reading a text fileâ•† 84
recursive, functionâ•† 58
referenceâ•† 108

comparison to pointersâ•† 112
naming conventionâ•† 108
passing to functionsâ•† 110

reference operator, &â•† 98
return statementâ•† 13
run-time errorsâ•† 90
running programsâ•† 15
runtime functionalityâ•† 180

S
scope, variableâ•† 53
scope resolution operator, ::â•† 120, 130, 136, 138
setter methods, classâ•† 118
Setup Projectâ•† 184
short, data type qualifierâ•† 36
single quotes, ‘ ‘â•† 62
sizeof operatorâ•† 36
statementâ•† 12
static_cast type conversionâ•† 40
std namespaceâ•† 13, 62
stream manipulationâ•†

fillâ•† 88
precisionâ•† 88
widthâ•† 88

string functionsâ•†
appendâ•† 70

In
de

x
19

2

assignâ•† 72
atâ•† 76
capacityâ•† 68
clearâ•† 68
compareâ•† 70
emptyâ•† 68
eraseâ•† 76
findâ•† 74
find_first_not_ofâ•† 74
find_first_ofâ•† 74
find_last_not_ofâ•† 74
find_last_ofâ•† 74
insertâ•† 76
lengthâ•† 68
replaceâ•† 76
sizeâ•† 68
substrâ•† 76
swapâ•† 72

stringizing operator, #â•† 164
stringstream objectâ•† 66
string variableâ•† 62
substringâ•† 74, 76
subtraction operator, -â•† 26
switch statementâ•† 46
syntax errorsâ•† 90
System namespaceâ•† 178

T
tab character, \tâ•† 81
temporary filesâ•† 152
ternary operator, ? :â•† 34
throw functionâ•† 90
time functionâ•† 170
token-pasting operator.	

Seeâ•¯merging operator	
try-catch statementâ•† 90
typedef statementâ•† 22
typeid().name() functionâ•† 94
type of exceptionâ•† 94

U
unsigned, data type qualifierâ•† 36
using namespace directiveâ•† 62

V
variableâ•† 16

initializationâ•† 17
naming conventionsâ•† 16
scopeâ•† 53
stringâ•† 62

vector arrayâ•† 20
at functionâ•† 20
back functionâ•† 20
clear functionâ•† 20
empty functionâ•† 20
front functionâ•† 20
pop_back functionâ•† 20
push_back functionâ•† 20
size functionâ•† 20

virtual methodâ•† 136
Visual C++â•† 172

Align Topsâ•† 177
AutoSizeâ•† 176
Build, Build Solutionâ•† 184
Button controlâ•† 173
Code Editorâ•† 180
Form Designerâ•† 173
Horizontal Spacing, Make Equalâ•† 177
Label controlâ•† 173
Picture Box controlâ•† 173
Properties windowâ•† 174
Snap linesâ•† 176
Start Debugging buttonâ•† 182
Stop Debugging buttonâ•† 183
Text propertiesâ•† 178
Toolboxâ•† 173
Windows Form Applicationâ•† 173

void, return data typeâ•† 52

W
while loopâ•† 48, 50
whitespaceâ•† 13
writing a text fileâ•† 80

	Contents
	Foreword
	1 Getting started
	Introducing C++
	Installing a compiler
	Writing your first program
	Compiling & running programs
	Creating variables
	Employing variable arrays
	Employing vector arrays
	Declaring constants
	Summary

	2 Performing operations
	Doing arithmetic
	Assigning values
	Comparing values
	Assessing logic
	Examining conditions
	Establishing size
	Setting precedence
	Casting data types
	Summary

	3 Making statements
	Branching with if
	Switching branches
	Looping for
	Looping while
	Declaring functions
	Passing arguments
	Overloading functions
	Optimizing functions
	Summary

	4 Handling strings
	Creating string variables
	Getting string input
	Solving the string problem
	Discovering string features
	Joining & comparing strings
	Copying & swapping strings
	Finding substrings
	Replacing substrings
	Summary

	5 Reading and writing files
	Writing a file
	Appending to a file
	Reading characters & lines
	Formatting with getline
	Manipulating input & output
	Predicting problems
	Recognizing exceptions
	Handling errors
	Summary

	6 Pointing to data
	Understanding data storage
	Getting values with pointers
	Doing pointer arithmetic
	Passing pointers to functions
	Making arrays of pointers
	Referencing data
	Passing references to functions
	Comparing pointers & references
	Summary

	7 Creating classes and objects
	Encapsulating data
	Creating an object
	Creating multiple objects
	Initializing class members
	Overloading methods
	Inheriting class properties
	Calling base constructors
	Overriding base methods
	Summary

	8 Harnessing polymorphism
	Pointing to classes
	Calling a virtual method
	Directing method calls
	Providing capability classes
	Making abstract data types
	Building complex hierarchies
	Isolating class structures
	Employing isolated classes
	Summary

	9 Processing macros
	Exploring compilation
	Defining substitutes
	Defining conditions
	Providing alternatives
	Guarding inclusions
	Using macro functions
	Building strings
	Debugging assertions
	Summary

	10 Programming visually
	Generating random numbers
	Planning the program
	Assigning static properties
	Designing the interface
	Initializing dynamic properties
	Adding runtime functionality
	Testing the program
	Deploying the application
	Summary

	Index

