
Constructors & Destructor

PRESENTED BY –ANJALI SONA

DEPARTMENT OF COMPUTER SCIENCE

INTRODUCTION

 Constructors are special class functions which performs initialization of every

object. The Compiler calls the Constructor whenever an object is created.

Constructors initialize values to object members after storage is allocated to

the object.

 Whereas, Destructor on the other hand is used to destroy the class object.

 Before moving forward with Constructors and Destructors in C++ language,

check these topics out to understand the concept better:

1. Function in C++

2. Class and Objects in C++

3. Data Members

 Let's start with Constructors first, following is the syntax of defining a

constructor function in a class:

class A

{

public: int x;

// constructor A()

{

// object initialization

}

};

While defining a contructor you must remeber that

the name of constructor will be same as the name of

the class, and contructors will never have a return type.

Constructors can be defined either inside the class definition or

outside class definition using class name and scope resolution :: operator.

class A

{

public:

int i;

A(); // constructor declared

};

// constructor definition

A::A()

{

i = 1;

}

Types of Constructors in C++

Constructors are of three types:

1. Default Constructor

2. Parametrized Constructor

3. Copy COnstructor

Default Constructors

 Default constructor is the constructor which doesn't take any argument. It

has no parameter.

SYNTAX-

class_name(parameter1, parameter2, ...)

{

// constructor Definition

}

EXAMPLE

class Cube

{

public:

int side;

Cube()

{

side = 10;

}

};

int main()

{

Cube c;

cout << c.side;

}

OUTPUT – 10

Parameterized Constructors

 These are the constructors with parameter. Using this Constructor you can

provide different values to data members of different objects, by passing

the appropriate values as argument.

EXAMPLE

class Cube

{

public:

int side;

Cube(int x)

{

side=x;

}

};

int main()

{

Cube c1(10);

Cube c2(20);

Cube c3(30);

cout << c1.side; OUTPUT

cout << c2.side; 10

cout << c3.side; 20

} 30

Copy Constructors

 These are special type of Constructors which takes an object as argument,

and is used to copy values of data members of one object into other

object. We will study copy constructors in detail later.

Constructor Overloading in C++

 Just like other member functions, constructors can also be overloaded.

Infact when you have both default and parameterized constructors

defined in your class you are having Overloaded Constructors, one with no

parameter and other with parameter.

 You can have any number of Constructors in a class that differ in

parameter list.

What is a Destructor in C++?

 Destructor is a member function that is instantaneously called whenever an
object is destroyed. The destructor is called automatically by the compiler
when the object goes out of scope i.e. when a function ends the local
objects created within it also gets destroyed with it. The destructor has the
same name as the class name, but the name is preceded by a tilde

 Syntax of Destructor:

class scaler {

public:

scaler(); //constructor

~scaler(); //destructor

};

Characteristics of a Destructor in C++

 A destructor deallocates memory occupied by the object when it’s deleted.

 A destructor cannot be overloaded. In function overloading, functions are
declared with the same name in the same scope, except that each function
has a different number of arguments and different definitions. But in a class,
there is always a single destructor and it does not accept any parameters,
hence, a destructor cannot be overloaded.

 A destructor is always called in the reverse order of the constructor. In C++,
variables and objects are allocated on the Stack. The Stack follows LIFO (Last-In-
First-Out) pattern. So, the deallocation of memory and destruction is always
carried out in the reverse order of allocation and construction. This can be seen
in code below.

 A destructor can be written anywhere in the class definition. But to bring an
amount of order to the code, a destructor is always defined at the end of the
class definition.

Implementation of Constructors and

Destructors in C++

#include <iostream>

using namespace std;

class Department {

public:

Department() {

//constructor is defined

cout << "Constructor Invoked for Department class" << endl;

}

~Department() {

//destructor is defined

cout << "Destructor Invoked for Department class" << endl;

}

};

class Employee {

public:

Employee() {

//constructor is defined

cout << "Constructor Invoked for Employee class" << endl;

}

~Employee() {

//destructor is defined

cout << "Destructor Invoked for Employee class" << endl;

}

};

int main(void) {

Department d1; //creating an object of Department

Employee e2; //creating an object of Employee

return 0;

}

OUTPUT

Constructor Invoked for Department class

Constructor Invoked for Employee class

Destructor Invoked for Employee class

Destructor Invoked for Department class

Explanation:

 When an object named d1 is created in the first line of main() i.e

(Department d1), it’s constructor is automatically invoked during the

creation of the object. As a result, the first line of output “Constructor

Invoked for Department class” is printed. Similarly, when the e2 object of

Employee class is created in the second line of main() i.e (Employee e2),

the constructor corresponding to e2 is invoked automatically by the

compiler and “Constructor Invoked for Employee class” is printed.

 A destructor is always called in the reverse order as that of a constructor.

When the scope of the main function ends, the destructor corresponding to

object e2 is invoked first. This leads to printing “Destructor Invoked for

Employee class”. Lastly, the destructor corresponding to object d1 is called

and “Destructor Invoked for Department class” is printed.

Difference Between Constructors and

Destructors

Conclusion

 The constructor may be defined as the special feature of the programming

languages which is used to make the program effective and efficient. It

can also be considered as a special type of method that has the same

name as that of the class and can be invoked whenever the object of that

class is created. Based on the requirement of the constructor once can

choose between the default and the parameterized constructor. It has to

be understood that it can only be used in the case when there is something

that has to be called immediately right after the instance of the class has

been created.

THANK YOU

