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PREFACE vii

Preface to the Second Edition

This edition is a revision of 2002 edition of the book. Considerable attention has been given to improve
the first edition. As far as possible efforts were made to keep the book free from typographic and other
errors. Most of the changes were made at the suggestions of the individuals who have used the first
edition of the book and who were kind enough to send their comments. Enhancements to the material
devoted to mathematical logic methods of proof, combinations and graph theory are designed to help
the readers master the subject.

I am thankful to the chief editor and the editors of New Age International (P) Limited, Publishers
for the interest and cooperation during the production of the second edition of the book.

The author would like to express his appreciation to Sri Saumya Gupta, Managing Director, New
Age International (P) Limited, for his encouragement.

Any suggestions for future improvements of this book will be gratefully received

G. SHANKER RAO
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PREFACE ix

Preface to the First Edition

This book explains some of the fundamental concepts in discrete structures. It can be used by the students
in mathematics and computer science as an introduction to the fundamental ideas of discrete mathematics.
The topics mathematical logic, sets, relations, function, Boolean algebra, logic gates, combinations,
algebraic structures, graph theory and finite state machines have been discussed in this book. Throughout
I have made an extensive use of worked examples to develop the general ideas.

Chapter 1 deals with mathematical logic. Propositions, logical equivalence, tautologies, fallacies,
quantifiers, and methods of proof were briefly discussed in this chapter.

Chapter 2 is devoted to set theory.

Chapter 3 deals with relations. Reflexive, symmetric and transitive relations, have been discussed.

Chapter 4 deals with functions and recurrence relations.

Chapter 5 covers Boolean algebra. Lattices, Boolean functions, karnaugh maps, canonical forms have
been discussed in this chapter.

Chapter 6 covers logic gates.

Chapter 7 deals with Elementary combinatorics. Permutation combinations and Binomial theorem have
been discussed in this chapter.

Chapter 8 deals with graph theory. Isomorphism, colouring of graphs, trees, spanning trees have been
explored in this chapter.

Chapter 9 covers Algebraic Structures. Groups, rings and fields, their properties have been briefly
discussed in this chapter.

Chapter 10 explains finite state machines.

I am much indebted to Sri Siva Kumar, Manager, New Age International (P) Limited, Publishers
Hyderabad Branch, whose suggestions and criticism helped me in writing the book. I am thankful to
Sri Arvind Mishra of New Age International (P) Limited, Publishers.

G. SHANKER RAO
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MATHEMATICAL LOGIC 1

1

Mathematical Logic

��� �����	
�����

In this chapter we shall study mathematical logic, which is concerned with all kinds of reasoning.
Mathematical logic has two aspects. On one hand it is analytical theory of art of reasoning whose goal is
to systematize and codify principles of valid reasoning. It may be used to judge the correctness of
statements which make up the chain. In this aspect logic may be called ‘classical’ mathematical logic.
The other aspect of Mathematical logic is inter-related with problems relating the foundation of
Mathematics. G. Frege (1884–1925) developed the idea, regarding a mathematical theory as applied
system of logic.

Principles of logic are valuable to problem analysis, programming and logic design.

��� ��������

A statement is a declarative sentence which is either true or false but not both. The truth or falsity of a
statement is called its truth value. The truth values ‘True’ and ‘False’ of a statement are denoted by T
and F respectively. They are also denoted by 1 and 0.

Example 1: Bangalore is in India.

Example 2: 3 + 7 = 9.

Example 3: Roses are red.

Statements are usually denoted by the letters p, q, r, .... The capital letters A, B, C, ..., P, Q, ... with
the exception of T and F are also used.

��� �������������������

Now we state two famous laws of Formal Logic.

����� ��������������� ����

According to the law of Contradiction the same predicate cannot be both affirmed and denied precisely
of the same subject; i.e., for every proposition p it is not the same that p is both true and false.

����� ��������! "#�$������"$

If p is a statement (proposition), then either p is true or p is false, and there cannot be middle ground.
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��% ��������&����	����'�
�	���������

Statements can be connected by words like ‘not’, ‘and’, etc.
These words are known as logical connectives. The statements which do not contain any of the

connectives are called atomic statements or simple statements.

The common connectives used are: negation (~) [or ( )],¬  and ( )∧  or ( ),∨  if ... then ( ),→  if and
only if ( ),↔  equivalence ( )≡  or ( ).⇔  We will use these connectives along with symbols to combine
various simple statements.

��%�� ��()�#������$($��

A statement that is formed from atomic (Primary) statements through the use of sentential connectives is
called a compound statement.

��%�� ��#�*���+"$

The table showing the Truth values of a statement formula is called ‘Truth Table’.

��%�� ���,#� ����

A compound statement obtained by combining two simple statements say p and q, by using the connective
“and” is called conjunction, i.e., the conjunction of two statements p and q is the statement p ∧ q. It is
read as “p and q”.

The statement p ∧ q has the truth value T, whenever both p and q have the truth value T, otherwise
p ∧ q has the truth value F. The above property can also be written in the form of the table below, which
we regard as defining p ∧ q:

Table 1.1 Truth table for conjunction

p q p ∧ q

T T T

T F F
F T F
F F F

Example 1: Form the conjunction of
p: Delhi is in India.
q: 5 + 7 = 12.

Solution: p ∧ q is the statement:
“Delhi is in India and 5 + 7 = 12”

Example 2: From the conjunction of
p: It is raining.
q: The sun is shining.

Solution: p ∧  q. It is raining and the sun is shining.
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Example 3: Construct a Truth Table for the conjunction of “n > 3” and “n < 10” when .n N∈
Solution: When n > 3 and n < 10 are true, the conjunctive statement “n > 3 and n < 10” is true. The
Truth Table is given below:

Table 1.2

n > 3 n < 10 n > 3 and n < 10

T T T
T F F

F T F
F F F

��%�% 	�-,#� ����

Any two simple statements can be combined by the connective “or” to form a statement called the
disjunction of the statements; i.e., if p and q are simple statements, the sentence “p or q” is the disjunction
of p and q.

The disjunction of p and q is denoted symbolically by p ∨ q

p ∨ q is read as “ p or q”
If p is ‘True’ or q is ‘True’ or both p and q are ‘True’, then p ∨ q is true, otherwise p ∨ q is false.

The truth table of p ∨ q is given below:

Table 1.3 Truth table of p ∨  q

p q p ∨ q

T T T
T F T

F T T
F F F

Example 1: Let p: 5 + 2 = 7, q: 9 + 2 = 10 then

p ∨ q: 5 + 2 = 7 or 9 + 2 = 10

Example 2: Let p: Roses are red
q: Violets are blue, then,
p ∨ q: Roses are red or violets are blue.

��%�. �$/�����

Let p be any simple statement, then the negation of p is formed by writing “it is false that” before p. The
negation of p is also obtained by writing “p is false”.

The negation is p is denoted by ~p.
If the statement p is true, then “~p is false” and if p is false then ~p is true. The Truth Table for

negation is given below:
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Table 1.4

p ~p

T F
F T

Example 1: Let p: Tajmahal is in New York.
Then the negation of p is
~p: it is false that Tajmahal is in New York.

Example 2: Form the negation of the statement
p: It is cold

Solution: ~p: It is not cold.

Example 3: Form the negation of the statement
p: n > 12

Solution: ~p: n > 12 is false.

��. '��'������

If p, q, r, s, ... are Simple Statements then the Compound Statement P ( p, q, r, s, ...) is called a Proposition.
The statement p, q, r, ... are called the Sub-statements or Variables of P.

The truth value of proposition P depends on the truth values of the variables, p, q, r, .... If the truth
values of the variables are known to us, then we can find the truth value of the proposition P. A truth
table is a simple way to show this relationship.

Example: Find the truth table of the Proposition ~p ∧ q

Solution: The truth table of ~p ∧  q is:

Table 1.5 Truth table ~p ∧  q

p q ~p ~p ∧ q

T T F F
T F F F

F T T T
F F T F

��0 ��&�	��1��'��

Example 1: Let p be “it is cold” and q be “it is raining”. Give a simple verbal sentence which describes
each of the following:

(i) ~p (ii) ~p ∧  ~q

Solution:
(i) ~p: It is not cold

(ii) ~p ∧  ~q: It is not cold and it is not raining.
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Example 2: Let p be “He is tall” and let q be “He is Handsome”. Write each of the following statements
in symbolic form using p and q.

(i) He is tall and handsome.
(ii) He is neither tall nor handsome.

Solution: (i) p ∧ q (ii) ~p ∧  ~q

Example 3: Write the disjunction of:
Roses are red. Violets are blue.

Solution: Let p: Roses are red
q: Violets are blue then the disjunction of p and q is p ∨ q: Roses are red or violets are blue.

Example 4: Determine the truth value of each of the following statements (Propositions):
(i)  3 + 5 = 8 or 2 +1 = 9

(ii) 4 +3 = 7 and 5 + 2 = 7
(iii) Agra is in England or 1 + 9 = 8

Solution: (i) Let p: 3 + 5 = 8, q: 2 + 1 = 9
p is true, q is false

hence  p ∨ q is true
i.e., Truth Value of p ∨ q is T

(ii) Let p: 4 + 3 = 7, q: 5 + 2 = 7

p is true and q is true ⇒ p ∧ q is true (T)

(iii) Let p: Agra is in England
q: 1 + 9 = 8

p is false; q is false ⇒ p ∨ q is false.

Example 5: Construct a truth table for p ∧  ~p.
Solution: The truth table for p ∧  ~p is given below:

Table 1.6

p ~p p ∧ ~p

T F F
F T F

Example 6: Construct the truth table for p ∨  ~p

Solution:

Table 1.7

p q ~q p ∨  ~q

T T F T
T F T T
F T F F

F F T T
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Example 7: Find the truth table for p ∧  (q ∨ r)
Solution:

Table 1.8

p q r q ∨ r p ∧  (q ∨ r)

T T T T T
T T F T T
T F T T T

T F F F F
F T T T F
F T F T F

F F T T F
F F F F F

Example 8: Find the truth table for ~(~p) (Double negation)
Solution:

Table 1.9

p ~p ~ (~p)

T F T

F T F

�1��� �  � ����

1. Determine the truth value of each of the following:
(a) 4 + 2 = 6 and 2 + 2 = 4
(b) 5 + 4 = 9 and 3 + 3 = 5
(c) 6 + 4 = 10 and 1 + 1 = 3
(d ) Charminar is in Hyderabad or 7 + 1 = 6
(e) It is not true that Delhi is in Russia

( f ) It is false that 3 + 3 = 6 and 2 + 2 = 8
2. Construct truth tables for the following:

(a) ~(p ∨ q) (b) ~(p ∨  ~q)
(c) (p ∧ q) ∨  (p ∧ q) (d ) (p ∨ q) ∨ ~p
(e) ~(~p ∨  ~q) ( f ) p ∧  (q ∧ p)
(g) p ∨  ~(p ∧ q)
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3. Write the negation of each statement
(a) Violets are blue (b) Delhi is in America
(c) 3 + 3 = 7

4. Let p be “Mark is rich” and q be “Mark is happy”
Write each of the following in symbolic form.

(a) Mark is poor but happy
(b) Mark is neither rich nor happy
(c) Mark is either rich or happy
(d ) Mark is either poor or else; he is both rich and happy

5. Let p be “It is cold” and let q be “It is raining”
Give a simple verbal sentence which describes each of the following statements:

(a) ~p (b) p ∧ q

(c) p ∨ q (d ) ~p ∧  ~q

6. Write the symbols for connectives in the following sentences:
(a) Either p or not p (b) p and not q
(c) not p or not q (d ) not p and q

7. Write the conjunction of:
(a) It is raining; It is snowing (b) 4 + 7 = 11; 2 × 4 = 7

8. Let p be “He is tall” and q be “He is handsome”
Write each of the following statements in symbolic form using p and q

(a) He is tall and handsome
(b) He is tall but not handsome
(c) He is neither tall nor handsome

Answers:
2. (a)

p q p ∨ q ~(p ∨ q)

T T T F

T F T F
F T T F
F F F T

(b)

p q ~q p ∨  ~q ~(p ∨  ~q)

T T F T F
T F T T F

F T F F T
F F T T F
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(c)

p q p ∧ q (p ∧ q) ∨  (p ∧ q)

T T T T
T F F F

F T F F
F F F F

(d)

p q p ∨ q ~p (p ∨ q) ∨  ~p

T T T F T

T F T F T
F T T T T
F F F T T

(e)

p q ~p ~q ~p ∨ ~q ~(~p ∨  ~q)

T T F F F T
T F F T T F

F T T F T F
F F T T T F

(f)

p q q ∧ p p ∧  (p ∧ q)

T T T T

T F F F
F T F F
F F F F

(g)

p q p ∧ q ~(p ∧ q) p ∧  ~(p ∧ q)

T T T F T
T F F T T

F T F T F
F F F T T

3. (a) Violets are not blue

(b) Delhi is not in America

(or It is not the case that Delhi is in America)
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(c) 3 + 3 = 7

(or It is not the case that 3 + 3 = 7)

4. (a) ~p ∧ q (b) ~p ∧  ~q (c) p ∨  ~q (d) ~p ∨  (p ∧  ~q)

5. (a) It is not cold (b) It is cold and raining

(c) It is cold or it is raining (d ) It is not cold and it is not raining.

6. (a) p ∨  ~p (b) p ∧  ~q (c) ~p ∨  ~q (d ) ~p ∧ q

7. (a) It is raining and it is snowing

(b) 4 + 7 = 11 and 2 × 4 = 7

8. (a) p ∧ q (b) ~p ∧  ~q (c) ~p ∧  ~q

��2 ���	����������������

��2�� ����������"���→ ��

If p and q are any two statements then the statement p → q which is read as “if p then q” is called a
Conditional statement.

The symbol →  is used to denote connective “If ... then”

The conditional p → q can also be read:

(a) p only if q (b) p implies q (c) p is sufficient for q (d ) q if p

The conditional p → q has two simple statements p and q connected by “if ... then”

The statement p is called the antecedent and the statement q is called the consequent (or conclusion).
If p is true and q is false, then conditional p → q is false. In other cases p → q is true.

The truth values of p → q are given in Table 1.10.

Table 1.10 Truth table for p →  q

p q p → q

T T T

T F F
F T T
F F T

Example 1: If Delhi is in India, then 3 + 3 = 6

Example 2: Let p: He is a graduate
q: He is a lawyer then,

p → q: If he is a graduate, then he is a lawyer.

��2�� 3� ���������"

A statement of the form “p if and only if q” is called a Biconditional statement. It is denoted by p � q

(or by p ↔  q).

A Biconditional statement contains the connective “if and only if ” and has two conditions. If p and
q have the same truth value, then p ↔ q is true. The truth values p ↔ q are given in Table 1.11.
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Table 1.11 Truth table for p ↔  q

p q p ↔  q

T T T

T F F
F T F
F F T

Example 1: Bangalore is in India, if and only if 4 + 4 = 8.

Example 2: 3 + 3 = 6 if and only if 4 + 3 =7.

��2�� ���4$�-$5���4$�-$�����������)�-���4$�'��)�-�����-

If p → q, is a conditional statement, then

(a) q → p is called its converse

(b) ~p →  ~q is called its inverse

(c) ~q →  ~p is called its contrapositive.

The truth values of these propositions are given in Tables 1.12, 1.13 and 1.14, respectively.

Table 1.12 Truth table for the converse of p →  q

p q p → q q → p

T T T T
T F F T

F T T F
F F T T

Table 1.13 Truth table for the inverse of p → q

p q ~p ~q ~p →  ~q

T T F F T

T F F T T
F T T F F
F F T T T
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Table 1.14 Truth table for contraposition

p q ~q ~p ~q →  ~p

T T F F T

T F T F F
F T F T T
F F T T T

Example: Write the contrapositive of the implication
“if it is raining, then I get wet”

Solution: let p: It is raining
q: I get wet

then the contrapositive is

~q →  ~p: If I do not get wet, then it is not raining.

��6 ����������	�����
��

Statement formulas contain one or more simple statements and some connectives. If p and q are any two
statements, then

p ∨ q, (p ∧ q) ∨  (~p), (~p) ∧ q

are some statement formulas derived from the statement variables p and q where p and q called the
components of the statement formulas. A statement formula has no truth value. It is only when the
statement variables in a statement formula are replaced by definite statements that we get a statement,
which has a truth value that depends upon the truth values of the statements used in replacing the
variables. A statement formula is a string consisting of variables, parentheses and connective symbols.
A statement formula is called a well formed (w f f ) if it can be generated by the following rules:

1. A statement variable p standing alone is a well formed formula.
2. If p is a wellformed formula, then ~p is a well formed formula.

3. If p and q are wellformed formulas, then (p ∧ q), (p ∨ q), (p → q) and (p ↔ q) are well
formed formulas.

4. A string of symbols is a well formed formula if and only if it is obtained by finitely many
applications of the rules 1, 2 and 3.

According to the above recursive definition of a well formed formula ~(p ∨ q), (~p ∧ q), (p →  (p
∨ q)) are well formed formulas.

A statement formula is not a statement and has no truth values. But if we substitute definite statements
in place of variables in given formula we get a statement. The truth value of this resulting statement
depends upon the truth values of the statements substituted for the variables, which appears as one of the
entries in the final column of the truth table constructed. Therefore the truth table of a well formed
formula is the summary of truth values of the resulting statements for all possible assignments of values
to the variables appearing in the formula. The final column entries of the truth table of a well formed
formula gives the truth values of the formula.
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��7 ��
�����8

A statement formula that is true for all possible values of its propositional variables is called a Tautology.

Example 1: (p ∨ q) ↔  (q ∨ p) is a tautology.

Example 2: p ∨  ~p is a tautology.

���9 ������	������

A statement formula that is always false is called a contradiction (or absurdity).

Example: p ∧  ~p is an absurdity.

���� ����������8

A statement formula that can either be true or false depending upon the truth values of its propositional
variables is called a contingency.

Example: (p → q) ∧  (p ∧ q) is a contingency.

���� ���������:
�&������

Two propositions P and Q are said to be logically equivalent or simply equivalent if P → Q is a
tautology.

Example: ~(p ∧ q) and ~p ∨  ~q are logically equivalent.
Two formulas may be equivalent, even if they do not contain the same variables. Two statement

formulas P and Q are equivalent if P � Q is a tautology and conversely, if P � Q is a tautology then
P and Q are equivalent. If “P is equivalent Q” then we can represent the equivalence by writing “P ⇔
Q” which can also be written as P ⇔ Q. The symbol “ ”⇔  is not a connective. We usually drop the
quotation marks.

���� ��&�	��1��'��

Example 1: The converse of a statement is given. Write the inverse and the contrapositive statements
“if I come early, then I can get the car”.
Solution: Inverse: “If I cannot get the car, then I shall not come early”

Contrapositive: If I do not come early, then I cannot get the car.

Example 2: The inverse of a statement is given. Write the converse and contrapositive of the statement.
“If a man is not a fisherman, then he is not a swimmer”.
Solution: Converse: “If he is a swimmer, then the man is a fisherman”.

Contrapositive: “If he is not a swimmer, then the man is not a fisherman”.

Example 3: Determine a truth table of ~p →  (q → p)



MATHEMATICAL LOGIC 13

Solution:

Table 1.15

p q ~p q → p ~p →  (q → p)

T T F T T
T F F T T
F T T F F

F F T T T

Example 4: Show that p ∧  ~p is a contradiction.
Solution: The truth table for p ∧  ~p is given below:

Table 1.16

p ~p p ∧  ~p

T F F
T F F

 p ∧  ~p is always false, hence p ∧  ~p is a contradiction.

Example 5: Show that p ∨  ~p is a tautology.
Solution: We construct the truth table for (p ∨  ~p)

Table 1.17

p ~p (p ∨  ~p)

T F T

T T T

p ∨  ~p is always true.
Hence p ∨  ~p is a tautology.

Example 6: Show that (p ∧ q) → p is tautology.
Solution: Let us construct the truth table for the statement (p ∧ q) → p

Table 1.18

p q p ∧ q (p ∧ q) → p

T T T T
T F F T

F T F T
F F F T
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In Table 1.18, we notice that the column (4) has all its entries as T. Hence (p ∧ q) → p is a
tautology.

Example 7: Show that ~(p → q) ≡ ( p ∧  ~q)

Solution: Let us construct the truth table for the given propositions:

Table 1.19

p q p → q ~(p → q) ~q p ∧  ~q

T T T F F F
T F F T T T
F T T F F F

F F T F T F

From the truth table it is clear that the truth values of ~(p → q) and p ∧  ~q are identical.

Hence  ~(p → q) ≡ p ∧  ~q.

���% ������������

1. Idempotent Laws:
(a) p ∨ p ≡ p (b) p ∧ p ≡ p

2. Commutative Laws:
(a) p ∨ p ≡ q ∨ p (b) p ∧ q ≡ q ∧ p

3. Associative Laws:
(a) (p ∨ q) ∨ r ≡ p ∨  (q ∨ r) (b) (p ∧ q) ∧ r ≡ p ∧  (q ∧ r)

4. Distributive Laws:
(a) p ∨  (q ∧ r) ≡  (p ∨ q) ∧  (p ∨ r)
(b) p ∧  (q ∨ r) ≡  (p ∨ q) ∨  (p ∧ r)

5. Identity Laws:
(a) (i) p ∨ f ≡ p (ii) p ∨ t ≡ t

(b) (i) p ∧ f ≡ f (ii) p ∧ t ≡ p

6. Complement Laws:
(a) (i) p ∧  ~p ≡ t (ii) p ∧  ~p ≡ f

(b) (i) ~~p ≡ p (ii) ~t ≡ f, ~ f ≡ t

7. De Morgan’s Laws:
(a) ~(p ∨ q) ≡  ~p ∧  ~q (b) ~(p ∧ q) ≡  ~p ∨  ~q

where t and f are used to denote the variables which are restricted to the truth values true and false
respectively.
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The Principle of duality states that any established result involving statement formulas and connectives
∨  and ∧  gives a corresponding dual result by replacing ∧  by ∨  and ∨  by .∧  If the formula contains
special variables t and f, the corresponding dual is obtained by replacing t by f and f  by t. The connectives
∧  and ∨  are called duals of each other.

Definition 1.1: Two statement formulas P and P* are said to be duals of each other if either one can be
obtained from the other by replacing ∧  and ∨  and ∨  by .∧

Example: Write the duals of
(a) (p ∧ q) ∨ r (b) (p ∧ q) ∨ r (c) ~(p ∧ q)

Solution: The duals are
(a) (p ∨ q) ∧ r (b) (p ∨ q) ∧ r (c) ~(p ∨ q)

���0 ��&�	��1��'��

Example 1: Simplify the following statements:
(a) ~(p ∨  ~q) (b) ~(~p ∧ q) (c) ~(~p ∨  ~q) (d) (p ∨ q) ∧  ~p

Solution:
(a)  ~(p ∨  ~q) = ~p ∧  ~~q (De Morgan’s law)

= ~p ∧ q

(b) ~(~p ∧ q) = ~~ p ∨  ~q (De Morgan’s law)
= p ∨  ~q

(c) ~(~p ∧  ~q) = ~~p ∨  ~q

= p ∨  ~q

(d) (p ∨ q) ∧  ~p = ~p ∧  (p ∨ q)
= (~p ∧ p) ∨  (~p ∧ q)
= f ∨  (~p ∧ q)
= ~p ∧ q

Example 2: Show that

(~p ∧  (~q ∧ r) ∨  (q ∧ r) ∨  (p ∧ r) ⇔ r

where ⇔  is the symbol for equivalence

Solution: ~p ∧  (~q ∧ r) ∨  (q ∧ r) ∨  (p ∧ r)

⇔  (~p ∧  (~q ∧ r) ∨  [(q ∨ p) ∧ r]

⇔  [(~p ∧  ~q) ∧ r] ∨  [(q ∨ p) ∧ r]

⇔  [(~p ∧  ~q) ∨  [(q ∨ p)] ∧ r

⇔  [(~p ∨  ~q) ∨  (p ∨ q)] ∧ r

⇔ t ∧ r (t denotes tautology)

⇔ r

Example 3: Simplify
(i) p ∨  (p ∧ q) (ii) (p ∨ q) ∧  (~p ∧ q)
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Solution: (i) p ∨  (p ∧ q) = (p ∨ t) ∧  (p ∨ q)
= p ∧  (t ∨ q) (t: tautology)
= p ∧ t

= p

(ii) (p ∨ q) ∧  (~p ∧ q)
= (~p ∧  ~q) ∨  (~p ∧ q)
= ~p ∧  (~q ∨ q)
= ~p ∧ t (t: tautology)
= ~p

Example 4: Show that (p ∧ q) →  (p ∨ q) is a tautology.

Solution: Let us construct the truth table:

Table 1.20

p q p ∧ q p ∨ q p ∧ q → p ∨ q

T T T T T
T F F T T

F T F T T
F F F F T

All the entries in the last column of the truth table are True (T). Hence given proposition is a
tautology.

Example 5: Show that

~(p → q) ≡ p ∧  ~q

Solution: We construct the truth table for given propositions:

Table 1.21

p q p → q ~(p → q) ~q p ∧  ~q

T T T F F F
T F F T T T

F T T F F F
F F T F T F

From the truth table it is clear that the truth values of ~(p → q) and p ∧  ~q are identical.
Hence

~(p → q) ≡ p ∧  ~q

Example 6: Show that

~(p ↔ q) ≡  ~p ↔ q ≡ p ↔  ~q

Solution: We prove the equivalence by means of a truth table.
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Table 1.22

p q p ↔  q ~(p ↔  q) ~p ~p ↔  q ~q p ↔  ~q

T T T F F F F F

T F F T F T T T
F T F T T T F T
F F T F T F T F

The truth values of columns (4), (6) and (8) are alike; which proves the equivalence of the formulas
~(p ↔ q), ~p ↔ q, and p ↔  ~q.

Example 7: There are two restaurants next to each other. One has a sign that says “Good food is not
cheap”, and the other has the sign that says “cheap food is not good”.

Are the signs saying the same thing?
If so verify.

Solution: Let p: food is good
q: food is cheap

Then we have, ~p: food is not good
~q: food is not cheap

Therefore, the given statements are

p →  ~q: Good food is not cheap

q →  ~p: Cheap food is not good

The truth table for the statements is given below:

Table 1.23

p q ~p ~q p →  ~q q →  ~p

T T F F F F
T F F T T T
F T T F T T

F F T T T T

From the table, it is clear that both the signs say the same thing.

���2 ����������'��������

We state the following theorem:

Theorem 1.1: Let P ( p1, p2, ...) and Q ( p1, p2,...) be two propositions. Then the following conditions
are equivalent:

1. ~P ( p1, p2, ...) ∨ Q ( p1, p2, ...) is a Tautology.
2. P ( p1, p2, ...) ∧ Q ( p1, p2, ...) is a Contradiction.

3. P ( p1, p2, ...) → Q ( p1, p2, ...) is a Tautology.
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Definition 1.2: A proposition P ( p1, p2, ...) is said to logically imply a proposition Q ( p1, p2, ...) if one
of the conditions in Theorem 1.1 holds.

If P ( p1, p2, ...) logically implies Q ( p1, p2, ...) then we symbolically denote it by writing
P ( p1, p2, ...) ⇒ Q ( p1, p2, ...)

Example 1: (p ∧ q) ∧  ~(p ∨ q) is a contradiction.

Hence p ∧ q ⇒ p ∨ q

Example 2: (p → q) ∧  (q → r) →  (p → r) is a tautology.

Hence (p → q) ∧  (q → r) ⇒  (p → r)

Theorem 1.2: The relation in propositions defined by

P (p1, p2, ...) ⇒ Q (p1, p2, ...)

is reflexive, anti-symmetric and transitive.

Note: The symbols ,→ ⇒  are not the same ⇒  is not a connective nor P ⇒ Q is a statement formula

(proposition). P ⇒ Q defines a relation in composite propositions P → Q. The symbol →  is a connective and
note that P → Q is just a proposition.

���6 ��;�����������&�

We now introduce the connectives NAND, NOR which have useful applications in the design of
Computers.

The word NAND is a combination of “NOT” and “AND” where “NOT” stands for negation and

“AND” for the conjunction. It is denoted by the symbol .↑

If P and Q are two formulas then P ↑ Q ↔  ~(P ∧ Q)

The connective ↑  has the following equivalence:

P ↑ P ↔  ~(P ∧ P) ↔  ~ P ∨  ~ P ⇔  ~P

(P ↑ Q) ↑  (P ↑ Q) ↔  ~ (P ↑ Q) ↔ P ∧ Q

(P ↑ P) ↑  (Q ↑ Q) ↔  ~ P ↑  ~Q ⇔  ~ (~P ∧  ~Q) ↔ P ∨ Q

The connective NAND is commutative but not associative:

i.e., P ↑ Q ↔ Q ↑ P but P ↑  (Q ↑ R) ↔  ~ P ∨  (Q ∧ R) and

(P ↑ Q) ↑ R ↔  ~ (P ∧ Q) ~ R. Therefore the connective ↑  is not associative.

The connective NOR is a combination of “NOT” and “OR”, where NOT stands for negation and
“OR” stands for the disjunction.

The connective NOR is denoted by the symbol .↓
The connective �  has the following equivalence:

P ↓ P ↔  ~ (P ∨ P) ↔  ~ P ∧  ~ P ⇔  ~ P

(P ↓ P) ↓  (P ↓ Q) ↔  ~ (P ↓ Q) ↔ P ∨ Q
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(P ↓ P) ↓  (Q ↓ Q) ↔  ~ P ↑  ~ Q ↔ P ∧ Q

The connective �  is commutative, but not associative, i.e.

P ↓ Q ⇔ Q ↓  P but (P ↓  Q) ↓ Q ↔  (P ∨ Q) ∧  ~ R

P ↓  (Q ↓ R) ↔  ~ P ∧  (Q ∨ R)

Therefore the connective ↓  is not associative.

The connectives , , ~∧ ∨  can be expressed in terms of the connective ↓  as follows:

(i) ~ p ≡ p ↓ p (ii) ~ q ≡ q ↓ q

(iii) p ∧ q ≡  (p ↓ p) ↓  (q ↓ q) (iv) p ∨ q ≡  (p ↓ q) ↓  (p ↓ q)

Let us verify the above by means of the following truth tables:

Table 1.24

p q ~p P ↓ p

T T F F
T F F F
F T T T

F F T T

From the above truth table it is clear that ~ p ≡ p ↓ p

Similarly, ~ q ≡ q ↓ q

Now consider the table

Table 1.25

p q p ∧ q p ↓ p q ↓ q (p ↓ p) ↓  (q ↓ q)

(1) (2) (3) (4) (5) (6)

T T T F F T
T F F F T F

F T F T F F
F F F T T F

The identical truth values of columns (3) and (6) reveal that

p ∧ q ≡  (p ↓ p) ↓  (q ↓ q)

In order to verify (iv) we construct the truth table
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Table 1.26

p q p ∨ q p ↓ q (p ↓ q) ↓  (p ↓ q)

(1) (2) (3) (4) (5)

T T T F T
T F T F T

F T T F T
F F F T F

The truth values of columns (3) and (5) are alike, which proves the equivalence

p ∨ q ≡  (p ↓ q) ↓ (p ↓ q)

���7 �����������

Definition 1.3: If a given statement formula A ( p1, p2, ... pn) involves n atomic variables, we have 2n

possible combinations of truth values of statements replacing the variables.
The formula A is a tautology if A has the truth value T for all possible assignments of the truth

values to the variables p1, p2, ... pn and A is called a contradiction if A has the truth value F for all
possible assignments of the truth values of the n variables. A is said to be satisfiable if A has the truth
value T for atleast one combination of truth values assigned to p1, p2, ... pn.

The problem of determining whether a given statement formula is a Tautology, or a Contradiction is
called a decision problem.

The construction of truth table involves a finite number of steps, but the construction may not be
practical. We therefore reduce the given statement formula to normal form and find whether a given
statement formula is a Tautology or Contradiction or atleast satisfiable.

A formula, which is a product (conjunction) of the variables and their negations is called an
Elementary product.

If p and q are atomic values then p, ~p, ~p ∧ q, p ∧  ~p are some examples of Elementary products.
The sum of (disjunction) of variables and their negations in a formula is called Elementary sum.
If p and q are any two atomic variables p, ~p ∨ q, p ∨  ~p and ~q ∨ p ∨  ~p are some examples of

Elementary sums.

���7�� 	�-,#� ��4$����(�"����(

Definition 1.4: Let A denote a given formula. Another formula B which is equivalent to A is called a
Disjunctive normal form of A if B is a sum of elementary products.

A disjunctive normal form of a given formula is constructed as follows:

(i) Replace ‘ ’, ‘ ’→ ↔  by using the logical connectives ,∧ ∨  and ~.

(ii) Use De Morgan’s laws to eliminate ~ before sums or products.
(iii) Apply distributive laws repeatedly and eliminate product of variables to obtain the required

normal form.

Example 1: Obtain disjunctive normal form of p ∧  (p → q)
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Solution: p ∧  (p → q) ≡ p ∧  (~p ∨ q) ≡  (p ∧  ~p) ∨  (p ∧ q)

Example 2: Obtain disjunctive normal form of

p ∨  (~p →  (q ∨  (q →  ~r)))

Solution: p ∨  (~p →  (q ∨  (q →  ~r)))

≡ p ∨  (~p → q ∨  (~q ∨  ~r)))

≡ p ∨  (p ∨  (q ∨  (~q ∨  ~r)))

≡ p ∨ p ∨ q ∨  ~q ∨  ~r

≡ p ∨ q ∨  ~q ∨  ~r

Therefore, the disjunctive normal form of

p ∨  (~p →  (q ∨  ( ~q →  ~r))) is p ∨ q ∨  ~q ~r

���7�� ���,#� ��4$����(�"����(

Let A denote a given formula, another formula B which is equivalent to A is called conjunctive normal
formula if B is a product of an elementary sum.

Example: Obtain conjunctive normal of

p ∧  (p → q)

Solution: p ∧  (p → q) ≡ p ∧  (~p ∨ q)

Hence p ∧  (~p ∨ q) is the conjunctive normal form of p ∧  (p → q)

���7�� '��� �)�"�	�-,#� ��4$����(�"����(

Let p and q be the two statement variables. Then p ∧ q, p ∧  ~q, ~p ∧ q, and ~p ∧  ~q are called
minterms of p and q. They are called Boolean Conjunctives of p and q. Each minterm has the truth value
T for exactly one combination of truth values of the variables p and q. There are 22 possible minterms for
the two variables p and q. Note that none of the minterms should contain both a variable and its negation.
The number of minterms in n variables is 2n.

We now introduce one more normal form called the principal normal form in the next definition.

Definition 1.5: If A is a given formula, then an equivalent formula B, consisting of disjunctives of
minterms only is called the Principal disjunctive normal form of the formula A.

The principle disjunctive normal formula of A is also called the sum-of-products canonical form
of A.

Example: Obtain the principal disjunctive normal form of ( ) ( )~ ~ ~p q p r∨ → ∧

Solution: ( ) ( )~ ~ ~p q p r∨ → ∧

( ) ( )~ ~ ~ ~p q p r⇔ ∨ ∨ ∧

( ) ( )~ ~( ) ~p q p r⇔ ∧ ∨ ∧

( ) ( )~p q p r⇔ ∧ ∨ ∧

( )( ) ( )( )~ ~ ~p q r r p r q q⇔ ∧ ∧ ∨ ∨ ∧ ∧ ∨

( ) ( ) ( ) ( )~ ~ ~ ~p q r p q r p r q p r q⇔ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧
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The principal disjunctive normal form of the given formula is

( ) ( ) ( ) ( )~ ~ ~ ~p q r p q r p q r p q r∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧

���7�% '��� �)�"����,#� ��4$����(�"����(

The dual of a minterm is called a Maxterm. For a given number of variables the maxterm consists of
disjunctions in which each variable or its negation, but not both, appears only once. Each of the maxterm
has the truth value F for exactly one combination of the truth values of the variables. Now we define the
principal conjunctive normal form.

Definition 1.6: If A is a given formula, then an equivalent formula B is called principle conjunctive
normal form of A if B is a product of maxterms.

The principal conjunctive normal form of A is also called the Product-of-sums canonical form.

Example: Obtain the principal conjunctive normal form of

( ) ( )~p q p r∧ ∨ ∧

Solution: ( ) ( )~p q p r∧ ∨ ∧

( )( ) ( )( )~p q p p q r⇔ ∧ ∨ ∨ ∧ ∨

( ) ( ) ( )~ ~ ( )p p q p p r q r⇔ ∨ ∧ ∨ ∧ ∨ ∧ ∨

( )( ) ( )( ) ( )( )~ ~ ~ ~q p r r p r q q q r p p⇔ ∨ ∨ ∧ ∧ ∨ ∨ ∧ ∧ ∨ ∨ ∧

( ) ( ) ( )~ ~ ~q p r q p r p r q⇔ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨

( ) ( ) ( )~ ~p r q q r p q r p∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨

( ) ( ) ( ) ( )~ ~ ~ ~p q r p q r p q r p q r⇔ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨

�1��� �  � ����

1. The following statement is of the form p ∨ q. Write out the contradictory statement in the form
~p ∧  ~q:

“Either he is a fool or he has some evil design.”
2. Let p: A triangle is equilateral

q: It is equiangular

then write p → q the conditional p → q

3. The converse of a statement is given. Write the inverse and contrapositive statements.
“If he is considerate of others, then a man is a gentleman.”

4. The converse of a statement is: If a steel rod or stretcher, then it has been heated:
Write inverse and contrapositive statements.

5. The contrapositive of a statement is given as
“If x < 2, then x +4 < 6”
Write the converse and inverse.
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6. Let p: It is cold and q: It is raining. Give a simple verbal sentence which describes each of the
following statements:

(a) p ∧  ~(q) (b) q → p (c) p ↔  ~q

7. Write an equivalent formula for ( ) ( )p q r r p∧ ↔ ∨ ↔  which does not contain biconditional.

8. Show that

(a) ( ) ( ) ( )~ ~ ~ ~∧ → ∨ ∨ ⇔ ∨p q p p q p q

(b) ( ) ( )( ) ( )~ ~ ~p q p p q p q∨ ∧ ∧ ∧ ⇔ ∧

(c) ~p q p q→ ⇔ ∨
9. By means of a truth table prove that

( ) ( ) ~ ~∧ ≡ ↓ ↓ ↓ ≡ ↓p q p q q p p q

10. Show that ( ) ( )p q p q q p↔ ≡ → ∧ →

11. Show that ( ) ( )~p q p q∧ ∧ ∨  is a contradiction.

12. Show that ( ) ( )~ ~ ~p q p q∨ ↔ ∧  is a tautology.

13. By means of a truth table prove that

(a) ( ) ( ) ( )p q r p q q r∧ ∨ ≡ ∧ ∨ ∧

(b) ( ) ( ) ( )p q r p q p r→ ∨ ≡ → ∨ →
14. Let p be “He is rich” and let q be “He is honest”. Write each of the following statements in

symbolic forms using p and q:
(a) To be poor is to be honest.
(b) It is necessary to be poor in order to be honest.
(c) He is poor only if he is dishonest.
(d ) If he is poor if he is dishonest.

15. Prove that

(a) ~ ~p q p q→ ≡ → (b) ~p q p q→ ≡ ∨
16. Write the contradiction of each of the following disjunction statements:

(1) x = 2 or x = 4 (2) x > 3 or x < 3

17. Show that p ↔  ~ q does not logically imply that p → q

18. Prove the following:
(a) p ∨  ~(p ∧ q) is a Tautology.
(b) (p ∧ q) ∧  ~ (p ∨ q) is a Contradiction.

(c) (p ∧ q) →  (p ∨ q) is a Tautology.

19. Show that p ∧ q logically implies p ↔ q.

20. Decide whether each of the following is true or false:

(a) p ⇒ p ∧ q (b) p ⇒ p ∨ q (c) p ∧ q ⇒ p

(d) p ∨ q ⇒ p (e) q ⇒ p → q
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21. Write the disjunction, the conjunction, and two implications involving the two statements. I like
cats. I like dogs.

22. If
A: The Eiffel Tower is in Australia
B: Australia is below the Equator
C: The Eiffel Tower is in Paris
D: Paris is in France
E: France is in Australia

Prove the following:

(1) The argument (A ∧  B) →  is valid

(2) (C ∧  D) →  is invalid

(3) (A ∨  E) →  is invalid

23. Simplify the following compound propositions

(a) ( ) [( ]∨ ∧ ∨� �p q p q

(b) [ {( ) } ]∨ ∧ ∨� � �p q r q

24. Show that [( ) {( ) ( )}] [ ]→ ∧ → → → → ∨�r s r s t u t u  is a tautology

Answers:
1. Either the man is born free or he is nowhere in chains.

2. If a triangle is equilateral, then it is equiangular.
3. Inverse: If a man is not a gentleman, then he is not considerate of others.

Contrapositive: If he is not considerate of others, then the man is not a gentleman.

4. Inverse: If a steel rod is not heated, then it does not stretch.

Contrapositive: If a steel rod does not stretch, then it has not been heated.

5. Converse: If x > 2, then x + 4 > 6

Inverse: If x + 4 > 6, then x > 2

6. p →  ~q: It is cold, then it is not raining.

q ↔ p: It is raining if and only if it is raining.

p ↔  ~q: It is cold if and only is it is not raining.

7. p ∧  (q → r) ∧  (r → q) ∨  (r → p) ∧  (p → r)

14. (a) ~p ↔  ~q (b) q →  ~p

(c) ~p →  ~q (d ) ~p ∧ q

16. (1) x ≠  2 and x > ≠  4 (2) x > 3 and x = 3

20. (a) False (b) True (c) True (d) False (e) True

21. (1) I like cats or I like dogs.
(2) I like cats and I like dogs.

(3) If I like cats then I like dogs.

(4) I like cats if I like dogs.

23. (a) ( )∧ �p q (b) ∧q r
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Example 1: Show that
(p ∧  (~p ∨ q)) ∨  (q ∧  ~ (p ∧ q) ≡ q

Solution: Consider L.H.S.
(p ∧  (~p ∨ q)) ∨  (q ∧  ~ (p ∧ q)

≡  ((p ∧  ~p) ∨  (p ∧ q)) ∨  (q ∧  (~p ∨  ~q))

≡ f ∨  (p ∧ q) ∨  (q ∧  ~p) ∨  (q ∧  ~p) ∨  (q ∧  ~q) (� p ∧  ~p = f )

≡  (p ∧ q) ∨  (q ∧  ~p) ∨ f

≡  (p ∧ q) ∨  (q ∨  ~p)

≡  (q ∧ p) ∨  (q ∨  ~p)

≡ q ∧  (p ∨  ~p)

≡ q ∧  (p ∨  ~p)

≡ q ∧ t (� p ∨  ~p = t)

≡ q

≡  R.H.S.
Hence  (p ∧  (~p ∨ q)) ∨  (q ∧  ~(p ∧ q) ≡ q

Example 2: Obtain the disjunctive normal form of

(a) p ∨  (~p →  (q ∨  (q →  ~r)))
Solution:

(a) ( ( ( )))∨ → ∨ →� �p p q q r

( ( ))≡ ∨ → ∨ ∨� � �p p q q r

( ( ))≡ ∨ ∨ ∨ ∨� �p p q q r

≡ ∨ ∨ ∨ ∨� �p p q q r

≡ ∨ ∨ ∨� �p q q r

Example 3: Show that
((p ∨  ~q) ∧  (~p ∨  ~q)) ∨ q is a tautology.

Solution: Consider
((p ∨  ~q) ∧  (~p ∨  ~q)) ∨ q

≡  ((p ∨  ~q) ∧  ~p ∨  (p ∨  ~q) ∧  ~q) ∨ q

≡  ((p ∧  ~p) ∨  (~q ∧  ~p) ∨  (p ∧  ~q) ∨  (~q ∧  ~q)) ∨ q

≡  (f ∨  (~q ∧  ~p) ∨  (p ∧  ~q) ∨  ~q) ∨ q

≡  (~ q ∧  ~p) ∨  (p ∧  ~q) ∨  ~q ∨ q

≡  (~ q ∧  ~p) ∨  (p ∧  ~q) ∨ t (Since ~q ∨ q ≡ t)

≡ t

Hence ((p ∨  ~q) ∧  (~p ∨  ~q)) ∨ q is a tautology.

Example 4: Obtain the principal disjunctive normal form of ~p ∨ q

Solution: ~p ∨ q ≡  (~p ∧  (q ∨  ~q)) ∨  (q ∧  (p ∨  ~p))

≡  (~p ∧ q) ∨  (~p ∧  ~q) ∨  (q ∧ p) ∨  (q ∧  ~p)
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≡  (~p ∧ q) ∨  (~p ∧  ~q) ∨  (p ∧ q)
Hence (~p ∧ q) ∧  (~p ∧  ~q) ∧  (p ∧ q) is the required principal disjunctive normal form.

Example 5: Prove the following logical equivalencies:

(i) [( ) ( ~ )]p q p q q p q∨ ∧ ∨ ∨ ⇔ ∨

(ii) [ ( )]p p p q p∨ ∧ ∨ ⇔

(iii) [ (~ ~ )]p q p q r p q r∨ ∨ ∧ ∧ ⇔ ∨ ∨

(iv) [(~ ) ( ( ))]p q p p q p q∨ ∧ ∧ ∧ ⇔ ∧
Solution:

(i) ( ) ( ~ ) ( ~ )p q p q p q q∨ ∧ ∨ ⇔ ∨ ∧ (by distributive law)

p f⇔ ∨ (f: fallacy)

p⇔ (by using identity law)

(ii) [ ( )]p p p q p q∨ ∧ ∨ ⇔ ∨
p⇔ (by an idempotent law)

(iii) [ (~ ~ )] ( ) [(~ ( ) )]∨ ∨ ∧ ∧ ⇔ ∨ ∨ ∨ ∧p q p q r p q p q r

[( ) ~ ( )] [( ) ]⇔ ∨ ∨ ∨ ∧ ∨ ∨p q p q p q r

( )t p q r⇔ ∧ ∨ ∨ (t: tautology)

p q r⇔ ∨ ∨

(iv) (~ ) [ ( )] (~ ) ( )∨ ∧ ∧ ∧ ⇔ ∨ ∧ ∧p q p p q p q p q

[~ ( )] [ ( )]⇔ ∧ ∧ ∨ ∧ ∧p p q q p q

[(~ ) ] [ ( )]⇔ ∧ ∧ ∨ ∧ ∧p p q q p q

[( ) ( ( ))]⇔ ∧ ∨ ∧ ∧f q q p q (f: fallacy)

( )f p q⇔ ∨ ∧
p q⇔ ∧

�1��� �  � ����

1. Construct truth tables for the following:

(a) ~(~p ∧  ~q)

(b) p ∧  (p ∨ q)

(c) (q ∧  (p → q)) → p

2. Prove (p → q) ⇔  (~p ∨ q)

3. Show that p →  (q → r) ⇔  (~q ∨ r) ⇔  (p ∧ q) → r

4. Show that ((p ∨ q) ∧  ~ (~p ∧  (~q ∨  ~r))) ∨  (~p ∧  ~q) ∨  (~p ∧  ~r) is a tautology.
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5. Write the duals of
(a) (p ∨ q) ∧ r
(b) (p ∧ q) ∨ t

(c) ~(p ∨ q) ∧  (p ∨  ~ (q ∧  ~s))

6. Show that (p ∨ q) ∧  (~p ∧  (~p ∧ q)) ⇔  ~p ∧ q

7. Prove the following implication:

(a) (p ∧ q) ⇒  (p → q)

(b) (p →  (q → r) ⇒  (p → q) →  (p → r))

8. Write an equivalence formula for p ∧  (q ↔ r) ∨  (r ↔ p) which does not contain biconditional.
9. Obtain disjunctive normal forms of

(a) p ∧  (p → q)

(b) ~(p ∨ q) ↔  (p ∧ q)
10. Obtain the principal disjunctive normal forms of

(i) ~p ∨ q
(ii) (p ∧ q) ∨  (~p ∧ r) ∨  (q ∧ r)

(iii) p →  ((p → q) ∧  ~(~q ∨  ~p))
11. Obtain the principal conjunctive normal forms of

(i) (~p → r) ∧  (q ↔ p)

(ii) (q → p) ∧  (~p ∧ q)
(iii) q ∧  (p ∨  ~q).

12. Show that (P → Q) ∧  (R → Q) and (P ∨ R) → Q are equivalent. (MCA, Oct., 2001, MKU)

13. Define Tautology and contradiction. Find which of the following is a tautology and which is a
contradiction:

(P ∧ Q) ∧ ⎤  (P ∨ Q), P ∨ ⎤  (P ∧ Q) (MCA, Oct., 2001, MKU)

14. Show that if p → q, q → r, ⎤  (p ∧ r) and (p ∨ r) then r. (MCA, Oct., 2001, MKU)

15. Construct a truth table for the formula

(P ∧ Q) ∨  ( ⎤ P ∧ Q) ∨  (P ∧ ⎤ Q) ∨ ( ⎤ P ∧ ⎤ Q) (MCA, May 2001, MKU)

16. (a) Construct the truth table for the following compound statements and which of them are
tautologies:

(i) (q ∧ r) →  (p ∧ ⎤ r)

(ii) p →  q �  ( ⎤ p ∨ q)

write an equivalent formula for

P ∧  (Q � R) ∨  (R �  P)

which contains neither the biconditional nor the conditional
(b) Show that R ∧  (P ∨ Q) is a valid conclusion from the premises

P ∨ Q, Q → R, P → M and ⎤  M. (MCA, May 2001, MKU)
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17. For any propositions p, q prove the following:

(a) ( ) ( )↓ ⇔ ↑� � �p q p q

(b) ( ) ( )↑ ↓� � � �p q p q

18. For any proposition p, q, r prove the following:

(a) ( ) ( )↑ ↑ ∨ ∧� �p q r p q r

(b) ( ) ( ).↓ ↓ ∧ ∨� �p q r p q r

���� :
��������

In this section we introduce, two logical notions called quantifiers. So far we have discussed the
propositions in which each statement has been about a particular object. In this section we shall see how
to write propositions that are about whole classes of objects.

In grammar a predicate is the word in a sentence which expresses what is said of the object. It is a
part of a declarative sentence describing the properties of an object or relation among objects (The word
‘Predicate’ and property will be used to mean the same thing) for example ‘is a cricket player’, ‘is a
teacher’ ‘is short’ are predicates. In logic the word predicate has a broader role than in grammar. The
basis for this is the observation that a predicate is supplemented by, including a variable x as a place
holder, for the intended subject, the result behaves as ‘a statement function’, in the sense that for each
value of x a statement results. Consider the statement

p : x is an even number
The truth value of p depends on the value of x. p is true when x = 4, and false when x = 11. The

statement p is not a proposition. In this section we extend the system of logic to include such statements.
In grammar ‘Rajan loves’ is not a predicate. If ‘x’ is introduced as a place holder for the object, then

we get the result as
‘Rajan loves x’.

which is a statement function. Thus we can define, a predicate p(x) as an expression having the quality
that on an assignment of values to the variable x, from an appropriate domain, a statement results.

Definition 1.7: Let P (x) be a statement involving variable x and a set D. We call P a propositional
function if for each x in D, P (x) is a proposition. The set D is called the domain of discourse (or universe
of discourse) of P. It is the set of all possible values which can be assigned to variables in statements
involving predicates.

For example the domain of discourse for P (x): “x is a cricket player” can be taken as the set of all
human beings and the statement.

x2 – 3x – 7 = 0
is a propositional function. The domain of discourse is the set of real numbers.

������ 
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Consider the proposition
‘All odd prime numbers are greater than 2’. The word ‘all’ in this proposition is a logical quantifier.

The proposition can be translated as follows:
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“For every x, if x is an odd prime then x is greater than 2”
Similarly, the proposition:

‘Every rational number is a real number’ may be translated as.
For every x, if x is a rational and number, then x is a real number.

The phrase ‘for every x’ is called a universal quantifier. In symbols it is denoted by .x∀
The phrases ‘for every x’, ‘for all x’ and ‘for each x’, have the same meaning and we can symbolize

each by .x∀

If P (x) denotes a predicate (propositional function), then the universal quantification for P (x), is
the statement.

“For all values of x, P (x) is true”

Example 1: Let A = {x : x is a natural number less than 9}
Here P (x) is the sentence “x is a natural number less than 9”
The common property is “is a natural number less than 9”

P (1) is true, therefore, 1 ∈ A

P (12) is not true, therefore 12 ∉ A

Example 2: Let P (x): x + 5 < 9, then for all x ≥ 0 , P (x) is a false statement because P (5) is not true.

������ �!�-�$����"�:#������$�

In some situations we only require that there be at least one value for each the predicate is true. This can

be done by prefixing P (x) with the phrase “there exists an ”.x′  The phrase “there exists an ”x′  is called
an existential quantifier. The existential quantification for a predicate is the statement “There exists a
value of x” for which P (x).

The symbol ,∃  is used to denote the logical quantifier ‘there exists’ the phrases ‘There exists an x’,
‘There is a x’, for some x’ and ‘for at least one x’ have the same meaning.

The existential quantifier for P (x) is denoted by ∃ x P (x).

Example 1: The proposition:
There is a dog without a tail can be written as

(∃  a dog) (the dog without tail)

Example 2: The proposition:
There is an integer between 2 and 8 inclusive may be written as

(∃  an integer) (the integer is between 2 and 8)

The propositions which include quantifiers may be negated as follows:

Example 3: Negate the proposition
All integers are greater than 8.

Solution:  We can write the given proposition as

(∀  integers x) (x > 8)

The negation is
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(∃  an integer x) ( 8)x ≤
i.e., the negated proposition is: There is an integer less than or equal to 8.

In the negation a proposition ‘for all’ becomes ‘there is’ and ‘there is’ becomes ‘for all’ i.e., the

symbol ∀  becomes ∃  and ∃  becomes .∀

Example 4: The negated proposition of

(∃  an integer x) (0 8)x≤ ≤  is

(∀  integers x) (x < 0 or x > 8)

The following table gives us the equivalences involving quantifiers.

Table 1.27 Equivalences involving quantifiers

1
1I Distributivity of ∃  over ∨

( ) ( )( ) ( ) ( )x P x Q x x P x x Q x∃ ∨ ≡ ∃ ∨ ∃

( )( ) ( )( )x P Q x P x Q x∃ ∨ ≡ ∨ ∃
1
2I Distributivity of ∀  over ∧

( ) ( )( ) ( ) ( )x P x Q x x P x x Q x∀ ∧ ≡ ∀ ∧ ∀

( )( ) ( )( )x P Q x P x Q x∀ ∧ ≡ ∧ ∀
1
3I ( ) ( )( )) (x P x x P x⎤ ∃ ≡ ∀ ⎤
1
4I ( ) ( )( )) (x P x x P x⎤ ∀ ≡ ∃ ⎤
1
5I ( )( ) ( )( )x P Q x P x Q x∃ ∧ ≡ ∧ ∃
1
6I ( )( ) ( )( )x P Q x P x Q x∀ ∨ ≡ ∨ ∀
1
7I ( ) ( )x P x x P x∀ ⇒ ∃
1
8I ( ) ( ) ( ) ( )( )x P x x Q x P x Q x∀ ∨ ∀ ⇒ ∨ ∨
1
9I ( ) ( )( ) ( ) ( )x P x Q x x P x x Q x∃ ∧ ⇒ ∃ ∧ ∃

Rules of inference for addition and deletion of quantifiers are given by the following table:

Table 1.28 Rules of inference for addition and deletion of quantifiers

R1 Universal instantiation.

( )
( )

x P x

P k

∀
∴

k is some element of the universe.

R2 Existential instantiation

( )
( )

x P x

P k

∃
∴

k is some element for which P (k) is true. Contd.



MATHEMATICAL LOGIC 31

R3 Universal generalization

( )
( )

P x

x P x∀
R4 Existential generalization

( )
( )

P k

x P x∴ ∃
k is some element on the universe.

���� ���;�	����'����

In this section, we discuss different types of  Proof: Direct Proof, Indirect Proof, Proof by counter
example and proof by cases.

������ 	��$ ��'����

We assume that P is true, and from the available information the conclusion q is shown to be true by
valid reference. In this methods of proof we construct a chain of statements P, P1, P2, P3, ..., Pn, ... , q
where P is either a hypothesis of the theorem or an axiom and each of the implications

1 1 2, , ..., np p p p p q⇒ ⇒ ⇒  is either an axiom or is implied by the implication preceding it.

Example 1: If x is an even integer then x2 is an even integer.
Solution: Direct Proof

Let p: x is an even integer
q: x2 is an even integer.

Consider, the hypothesis p. If x is an even integer they by the definition of an even integer.
x = 2m for some integer m .

Hence ( )22 2 22 4x m x m= ⇒ =

x2 = 4m2 is clearly divisible by 2. Therefore x2 is an even integer. Thus .p q→

Example 2: If a and b are odd integer, then a + b is an even integer.
Solution: (Direct Proof) An odd integer is of the form 2k + 1, where k is some integer given that a and
b are even integers, therefore a = 2m1 + 1, b = 2m2 + 1 for some integers m1 and m2.

Then a + b = (2m1 + 1) + (2m2 + 1)
= 2m1 + 1 + 2m2 + 1
= 2m1 + 2m2 + 2
= 2 (m1 + m2 + 1)

But m1 + m2 + 1 is an integer, therefore a + b is an even integer.

Example 3: If a is number such that a2 – 7a + 12 = 0, then show that a = 3, a = 4 by direct proof.
Solution: a2 – 7a + 12 = 0 using the rules of algebra, we can write

a2 – 7a + 12 = (a – 3) (a – 4) = 0
i.e., product of the two numbers (a – 3) and (a – 4) is zero. Therefore, a – 3 = 0 or a – 4 = 0
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3 0 3, 4 0 4a a a a− = ⇒ = − = ⇒ =

Hence 3 or 4a a= =

Example 4: Prove that if |x| > |y| then x2 > y2, by direct method.
Solution: Since |x| > |y| then |x|2 > |y|2

Now |x|2 = x2 and |y|2 = y2, hence x2 > y2

������ �$�*������������)�-�����

Indirect Proof: This method of proof is very useful and is powerful at all levels of the subject
mathematics. Indirect method follows from the Tautology ( ) ((~ ) (~ )).p q q p→ ↔ →  This states that
the implication p q⇒  is equivalent to ~ ~ .q p⇒  To prove p q⇒  indirectly, we assume that q is
false and then show that p is false.

Example 1: For any integer n > 2, prove that n Prime ⇒ n odd.

Solution: Let p: n Prime
q: n odd

then ~ q: n even
~ p: n not prime

If n is an even number greater than 2, then n = 2m for some integer m > 1. Thus n is divisible by 2
and 2,n ≠  therefore n cannot be prime thus we have ~ ~q p⇒  i.e., if n is any number bigger than 2,
then n cannot be prime.

Example 2: Prove: If 2α  is an even integer, then α  is an even integer.

Solution: Let p: 2α  is an even integer

q: α  is an even integer
let ~ q be true then, α  is not an even integers therefore α  must be odd. α  is of the form

α  = 2m +1 for some integer m.

2 1mα = +

⇒ 2 2(2 1)α = +n
= 4n2 + 4n + 1
= 2 (2m2 + 2m) + 1

2α  is of the form 2 2 1nα = +  where n = (2m2 + 2m)

i.e., 2α  is odd

Thus, we have ~ ~q p⇒
 Hence by contraposition α  is even.

������ '�����+<��������� ����

In this method of proof, we assume the opposite of what we are trying to prove and get a logical
contradiction. Hence our assumption must have been false. Therefore what we were originally required
to prove must be true. To prove p q→  is true, in this the proof can be constructed as follows:
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(i) Assume (~ )p q∧  is true.

(ii) On the basis of the assumption find some conclusion that is false.

(iii) Then the contradiction discovered in step (ii) leads us to the conclusion that (~ )p q∧  is false
which powers that p q→  is true.

Example 1: Suppose that the integers 1, 2, 3, ..., 10 are randomly positioned around a circular wheel.
Show that the sum of some set of 3 consecutively positioned numbers is at least 15.
Solution: (Proof by Contradiction)

Let ar respect the integer at position r on the wheel. Then we are to prove

or
1 2 3

2 3 4

10 1 2

15

15

15

+ + ≥ ⎫
⎪+ + ≥ ⎪
⎬
⎪
⎪+ + ≥ ⎭

�

a a a

a a a

a a a

... (1)

where a1 + a2 + ... + a10 = 1 + 2 + 3 + ... + 10
Let us assume that, the above conclusion is false. Then we must have

1 2 3

2 3 4

10 1 2

15

15

15

+ + <
+ + <

+ + <
�

a a a

a a a

a a a

We can write the above the inequalities as

1 2 3

2 3 4

10 1 2

14

14

14

+ + ≤
+ + ≤

+ + ≤
�

a a a

a a a

a a a

Taking the sum: we get

( )1 2 103 ... 10 14a a a+ + + ≤ ×

i.e., ( )3 1 2 ... 10 140+ + + ≤

or
( )10 10 1

3 140
2

⋅ +
⋅ ≤

or 3 5 11 140× × ≤
or 165 140≤
a contradiction

Hence the given proposition i.e. (1) is true

or
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Example 2: Show that 2  is not a rational number.

Solution: Let us assume that 2  is rational. Then we can find integers such that

2
p

q
=

where p and q have no common factor. After canceling the common factors squaring on both sides, we
get

2

2
2

p

q
=

2 22p q⇒ =

2p⇒  is even

p⇒  is even

p⇒  = 2m for some integer m.
2 2(2 ) 2⇒ =m q

2 24 2m q⇒ =
2 22q m⇒ =

⇒ q is even
Hence p and q have common factor of 2, which is a contradiction to the statement that a and b

have no common factors.

Hence our assumption that 2  is rational leads to a contradiction. Thus 2  is irrational.
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To show that , ( )x P x∀  it is sufficient to give specific example k, in the universe such that P(k) is false,

where the object k is called a counter example to the assertion , ( ).∀ x P x

Example: Prove or disprove the statement:
If x and y are real number

( )2 2( )x y x y= ⇔ =
–3, 3 are real number and (–3)2 = 32 but 3 3− ≠
Hence the result is false and implication is false.

�����. '�����+<���-$-

To prove p q→  by cases, we take p to be in the form 1 2 ... np p p∨ ∨ ∨  by proving separately, each

of the following 1 2, , ..., np q p q p q→ → →  we can establish 1 2( ... ) .np p p q∨ ∨ ∨ →
In this section, we discuss rules of inference. Which are criteria for determining the validity of an

argument. The rules of inference will be given in terms of statement formulas. Before discussing the
rules of inference, we define consistency, which is an extremely important notion in mathematical logic.
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Definition 1.8: A collection of statements is consistent if the statements can all be true simultaneously.

A set of formulas H1, H2, H3, ..., Hn is said to be consistent if their conjunction 1 2 ... nH H H∧ ∧ ∧
has the truth value T for some assignment of the truth values to the atomic variables appearing in H1, H2,

..., Hn. And a set of formulae H1, H2, ..., Hn is inconsistent if their conjunction 1 2 ... nH H H∧ ∧ ∧
implies a contradiction, that is 1 2 ... nH H H S S∧ ∧ ∧ ⇒ ∧ ⎤  (a contradiction) where is S is any formula.

We use the notion of inconsistency in a method of proof called proof by contradiction (or indirect
proof) we now begin our discussion by stating the following two rules of inference.

Rule P: A premise may be introduced at any point in the derivation.

Rule T: A formula S may be introduced in a derivation if S is tautologically implied by any one or more
of true preceding formulas in the derivation.

�����0��#"$-�������$�$� $

The following tables give us the rules of inference:

Table 1.29

Implications:

1I P Q P∧ ⇒  (Simplification)

2I P Q Q∧ ⇒  (Simplification)

3I P P Q⇒ ∨  (Addition)

4I Q P Q⇒ ∨  (Addition)

5I P P Q⎤ ⇒ →

6I Q P Q⇒ →

( )7I P Q P⎤ → ⇒

( )8I P Q Q⎤ → ⇒ ⎤

9 ,I P Q P Q⇒ ∧

10 ,I P P Q Q⎤ ∨ ⇒  (Disjunctive syllogism)

11 ,I P P Q Q→ ⇒  (Modus Ponens)

12 ,I Q P Q P⎤ → ⇒ ⎤ (Modus Tollens)

13 ,I P Q Q R P R→ → ⇒ →  (Hypothetical syllogism)

14 , ,I P Q P R Q R R∨ → → ⇒  (Dilemma)

Equivalences:

1E P P⎤ ⎤ ⇔  (Double negation)

2E P Q Q P∧ ⇔ ∧  (Commutative law)

3E P Q Q P∨ ⇔ ∨  (Commutative law)

( ) ( )4E P Q R P Q R∧ ∧ ⇔ ∧ ∧  (Associative law)
Contd.
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( ) ( )5E P Q R P Q R∨ ∨ ⇔ ∨ ∨  (Associative law)

( ) ( ) ( )6E P Q R P Q P R∧ ∨ ⇔ ∧ ∨ ∧  (Distributive law)

( ) ( ) ( )7E P Q R P Q P Q∨ ∧ ⇔ ∨ ∧ ∨  (Distributive law)

( )8E P Q P Q⎤ ∧ ⇔ ⎤ ∨ ⎤  (De Morgan’s law)

( )9E P Q P Q⎤ ∨ ⇔ ⎤ ∧ ⎤  (De Morgan’s law)

10E P P P∨ ⇔

11E P P P∧ ⇔

( )12E R P P R∨ ∧ ⎤ ⇔

( )13E R P P R∧ ∨ ⎤ ⇔

( )14E R P P T∨ ∨ ⎤ ⇔

( )15E R P P F∧ ∧ ⎤ ⇔

16E P Q P Q→ ⇔ ⎤ ∨

( )17E P Q P Q⎤ → ⇔ ∧ ⎤

18E P Q Q P→ ⇔ ⎤ → ⎤

( ) ( )19E P Q R P Q R→ → ⇔ ∧ →

20 ( )E P Q P Q⎤ ⇔ ⎤� �

( ) ( )21E P Q P Q Q P⇔ → ∧ →�

( ) ( )22 ( )E P Q P Q P Q⇔ ∧ ∨ ⎤ ∧ ⎤�

The rules ‘Modus Ponens’ and  ‘Hypothetical Syllogism’ are known as the fundamental rules of inference.
De Morgan’s laws and the law of contraposition are the other fundamental rules, from which other

rules follow. Modus Ponens is also called the rule of detachment. It can be stated as follows:

Whenever the statements p and ( )→p q  are accepted as true, then we must accept the statement q

as true.
The tabular form of the rule is given below

→
∴

p

p q

q

In the above tabular presentation p and ( ),→p q which are above the horizontal line are the Premises

(Hypotheses). The assertion q which below the Horizontal line is the conclusion.
The rule of Hypothetical Syllogism is also known as the transitive rule. It can be stated as follows:
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If two implications ( )→p q  and ( )→q r  are true, then the implication ( )→p r  is true.

The tabular form of the rule is given below:

→
→

∴ →

p q

q r

p r

The transitive rule can be extended to a larger number of implications as follows:

→
→

→
∴ →

p q

q r

r s

p s

1 2

2 3

3 4

–1

1

→
→
→

→

∴ →

�

n n

n

p p

p p

p p

p p

p p

Most of the arguments are based on the two fundamental rules of inference. In an argument premises
are always taken to be true. Whereas the conclusion may or may not be true. The conclusion is true only
when the argument is true. To list the validity of an argument we can also employ the laws of logic,
logical equivalences and tautologies

Modus Tollens is a rule of denying. It can be stated as follows:

If →p q  is true and q is false, then p is false.

The tabular form of the rule is gives below:

→

∴
�

�

p q

q

p

Rule of Disjunctive Syllogism, States that if ∨p q  is true and p is false, then q is true.

In tabular form, the rule can be written as follows:

∨

∴
�

�

p q

q

q
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Faulty inferences are know as fallacies. There are three forms of fallacies:
1. The fallacy of affirming the consequent
2. The fallacy of denying the antecedent
3. The non Sequitur fallacy

The fallacy of affirming the consequent has the following tabular form:

→

∴

p q

q

p
(fallacy)

The fallacy of denying antecedent is presented in the following form:

→

∴
�

�

p q

p

q
(fallacy)

Fallacies of assuming converse and all logical errors are Special Cases of the non Sequitur fallacy.
It can be presented as follows.

∴
p

q

Example 1: Prove that the following arguments are valid

(a)

( )

→
→

∴ ∨ →

p r

q r

p q r

(b) →
→

→
∴ →

�

�

p r

p q

q s

r s

Solution (a) Consider

( ) ( )→ ∧ →p r q r

We have

( ) ( ) ( ) ( )→ ∧ → ⇔ ∨ ∧ ∨� �p r q r p r q r

( ) ( )⇔ ∧ ∨�r u p r q (commutative law)

( )⇔ ∨ ∧� �r p q (distributive law)
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( )⇔ ∨ ∨�r p q (De  Morgan's law)

( )⇔ ∨ ∨� p q r (commutative law)

( )⇔ ∨ →p q r

( ) ( ) and ( )→ ∧ → ∨ →p r q r p q r  are logically equivalence. Hence the given argument is valid

(b) we have

( ) ( ) ( ) ( ) ( )→ ∧ → ∧ → ⇒ → ∧ →� �p r p q q s p r p s (by rule of Syllogism)

( ) ( )⇔ → ∧ →� � �r p p s (by the rule of contrapositive)

⇒ →� r s (by rule of Syllogism)

( ) ( ) ( ) and→ ∧ → ∧ → →� �p r p q q s r s  are logically equivalent. Hence, the given argument

is valid

Example 2: Prove that the argument given below is a valid argument

( )→ →
→

∴

� �

p q r

q p

p

r

Solution: Consider [ ( )] ( )→ → ∧ → ∧� �p q r q p p

We have

[ ( )] ( )→ → ∧ → ∧� �p q r q p p

[( ( )) ] ( )⇔ → → ∧ ∧ →� �p q r p q p

( ) ( )⇒ → ∧ →� �q r q p (by the rule of Modus Ponens)

( ) ( )⇔ → ∧ →� � � �q r p q (by contraposition)

( ) ( )⇔ → ∧ →q r p q

⇔ →p r (by the rule of Syllogism)

⇔ r (since p is true)

[ ( ) [ )→ → ∧ → ∧� �p q r q p p  and r are logically equivalent. Therefore the given argument is

valid

Example 3: Text the validity of the argument:
If I drive to work, then I will arrive tired

I am not tired

I do not drive to work∴
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Solution:
Let p: I drive to work

q: I arrive tired
The argument has the following Symolic form

→

∴
�

�

p q

q

p

By the rule of Modus Tollens, the argument is valid

Example 4: Text the validity of the argument
If a person is poor, he is unhappy

If a person is unhappy, he dies young

Poor person die young∴

Solution:
Let p: a person is poor

q: a person is unhappy
r: a person dies young
Then the argument takes the following form:

→
→

∴ →

p q

q r

p r

by the law of hypothetical; Syllogism, (i.e., transitive rule) the argument is valid

Example 5: Prove ,Q P Q P⎤ → ⇒ ⎤
Solution: A formal proof is as follows:

1. P Q→ P

2. Q P⎤ → ⎤ T, (1) and E18

3. Q⎤ P

4. P⎤ T, (2), (3) and I11

Example 6: Show that P⎤  follows, logically from ( ), , .P Q Q P R⎤ ∧ ⎤ ⎤ ∨ ⎤

Solution: A formal proof is as follows:

1. ( )P Q⎤ ∧ ⎤ P

2. P Q⎤ ∨ ( )P Q P Q⎤ ∧ ⇔ ⎤ ∨ ⎤�

3. P Q→ P Q P Q→ ⇔ ⎤ ∨�

4. Q R⎤ ∨ P
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5. Q R→

6. P R→ (3), (5)

7. R⎤ P

8. P⎤ ,Q P Q P⎤ → ⇒ ⎤

We now introduce another rule of inference called rule CP or rule of conditional proof.

Rule CP: If we can derive S from R and a set of premises, then we can derive R S→  from the set of

premises alone.
The above rule is also called deduction theorem.

Example 7: Show that R S→  can be derived from the premises ( ),P P S→ → ,R P⎤ ∨  and Q.

Solution: We include R as an additional premise and show S, so that R S→  can be derived.

1. R S⎤ ∨ P

2. R P (assumed premises)
3. P T, (1), (2) and I10

4. ( )P Q S→ → P

5. Q S→ T, (3), (4) and I11

6. Q P

7. S T, (5), (6) and I11

8. R S→ C P

We shall now give an example to prove inconsistency in the given set of formula.

Example 8: Show that ( ), , ,→ ⎤ ∨ → ⎤R Q R S S Q P Q P→ ⇔ ⎤  are inconsistent.

Solution: A formal proof is:

1. P (assumed)

2. P Q→ Rule P

3. Q (1) and (2)

4. S Q→ ⎤ P

5. Q S→ ⎤ P Q Q P→ ⎤ → ⎤�

6. 7S (3), (5)

7. R S∨ P

8. R S⎤ → P Q P Q→ ⎤ ∨ ⎤�

9. S R⎤ → P Q Q P→ ⎤ → ⎤�

10. R (6), (9)

11. R Q→ ⎤ P

12. Q⎤ (10), (11)

13. Q Q∧ ⎤ (3), (12)

Inconsistent
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1. If a real number x is such that |x| > 5, then x2 > 25 (give the proof by cases).
2. Prove the statement by contradiction: “In a room of 15 people, 2 or more people have their

birthday in the same month.
3. Prove deductively that all right angles are equal.
4. Prove by using direct method: If an integer a is such that a – 2, is divisible by 3, then a2 – 1 is

divisible by 3.
5. Prove by using contrapositive method: If x2 is an odd integer, then x is an odd integer.
6. Prove by using direct method:

(i) Sum of two even integers is an even integer.
(ii) The sum of an even integer and an odd integer is an odd integer.

(iii) The product of an even integer and an odd integer is an even integer.
7. Disprove the proposition (by counter example) for every integer x there is an integer y where

y2 = x.

8. Prove that 5  is not a rational number (prove by contradiction).

9. Prove that if x2 – 4 = 0, then 0n ≠  by the method of contradiction.

10. Prove by direct method:
If x and y are rational numbers then n + y is rational.

11. Find a counter example:
If a > b then a2 > b2

12. Give a direct proof that if a and b are odd integers then a + b is even.
13. Prove using contrapositive that if x2 – 4 < 0, then –2 < x < 2.

14. Rewrite the following propositions using the symbols ∀  and .∃
(a) There is a cat without a tail.
(b) There is an integer between 2 and 15 inclusive.
(c) All odd prime numbers are bigger than 2.
(d) All elephants have trunks.
(e) All cats like cream.
(f) All students are clever.
(g) Every clever student is successful.
(h) There are some successful students who are not clever.

15. Negate the following propositions:

(a) ( 0) ( 0)∀ > ∃ >a b  a + b is prime.

(b)  ( ∀ integers m) (∃  an integer n) (m2 = n).

(c) All good students study hard.

(d) All fish swim.

(e) (∃  an integer x) (5 25)≤ <x .
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(f) There is a triangle whose sum of angles 180≠ � .

(g) If the teacher is absent, then some students do not complete their home work.
(h) All the students completed their home work and the teacher is present.

16. Prove that the following argument is valid. If a baby is hungry, then the baby cries. If the baby is
not mad, then he does not cry. If a baby is mad, then he has a red face. Therefore if a baby is
hungry, then he has a red face.

17. Suppose that the 10 integers 1, 2, …, 10 are randomly positioned around a circular wheel. Show
that the sum of some set of 3 consecutively positioned numbers is at least 17.

18. Compute the truth value of the statement

( ) ( )→ ↔ →� �p q q p (MCA, 2000, VTU)

Answer: T
19. Determine whether each of the following statements are a tautology, a contingency or an absurdity

(a) ( )→ →p q p

(b) ( )∧ →p q p

(c) ( ( ))∧ → →p p q q

(d) ( ( ))∧ ↔�q p r (B.E, Mar. 2001, VTU)

20. Show that ( ) ( ( ))) ( ) ( )∨ ⎤ ⎤ ∧ ⎤ ∨ ⎤ ∨ ⎤ ∧ ⎤ ∨ ⎤ ∧ ⎤P Q P Q R P Q P R  is a tautology (B.E.,

Feb. 2002, VTU)
21. Let k be an integer. If k2 is odd then show that k is an odd integer

(B.E Mar. 2001, VTU)
22. Explain the differences between tautology and contingency

Answer:
19. (a) Tautology (b) Tautology (c) Tautology (d) Contingency
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2

Set Theory

��� ����	
����	�

The notion of a set is elementary to all of Mathematics and every branch of mathematics can be considered
as a study of sets of objects of one kind or another. Cantor was the founder of the theory of sets. The
word set is a primitive term and is regarded as one of the basic undefined ideas of mathematics. But we
must have an Intuitive idea of what we mean by a set. Let us now consider the idea of a set.

��� �����
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Definition 2.1:
A set is collection of well defined objects.

In the above definition the words set and collection for all practical purposes are Synonymous. We
have really used the word set to define itself.

����� ��������

Each of the objects in the set is called a member of an element of the set. The objects themselves can be
almost anything. Books, cities, numbers, animals, flowers, etc.

Elements of a set are usually denoted by lower-case letters. While sets are denoted by capital letters
of English larguage.

The symbol ∈  indicates the membership in a set.
If “a is an element of the set A”, then we write a ∈ A.

The symbol ∈  is read “is a member of ” or “is an element of ”.

The symbol ∉ is used to indicate that an object is not in the given set.

The symbol ∉ is read “is not a member of ” or “is not an element of ”.

If x is not an element of the set A then we write ∉x A .

����� �������������

There are five different ways of specifying sets:

(i) One method of specifying a set is to list all the members of the set between a pair of braces. Thus
{1, 2, 3} represents a set. This method is called “The listing method”.
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Example 1:
(i) {3, 6, 9, 12, 15}

(ii) {a, b, c, d}
This method of listing the elements of the set is also known as ‘Tabulation’. In this method the order

in which the elements are listed is immaterial, and is used for small sets.

(ii) Another method of defining particular sets is by a description of some attribute or characteristic of
the elements of the set. This method is more general and involves a description of the set property.

A = {x | x has the property P}

Designates “the set A of all objects ‘x’ such that x has the property P”. This notation is called Set-
Builder notation. The vertical bar | is read as “such that”.

Example 2:
(i) A = {x | x is a positive Integer greater then 100}.

This is read as “the set of all x is a positive Integer less than 25”.
(ii) B = {x | x is a complex number}.

Note: Repetition of objects is not allowed in a set, and a set is collection of objects without ordering.

(iii) We can describe a set by its characteristic function.

( ) 1 if

0 if

x A
A x

x A
μ

∈⎧= ⎨ ∉⎩
(iv) In another method we describe the set by a recursive formula:

Example 3: Let 0 12, 1x x= =  and 1 –1; 1i i ix x x i+ = + ≥  and { }: 0iA x i= ≥ .

(v) We can also describe a set by an operation on some other sets.

��� ����

Definition 2.2: A set A is a subset of the set B if and only if every element of A is also an element of B.
We also say that A is contained in B, and use the notation .A B⊆

Symbolically: If ,x A x B∈ ⇒ ∈  then .⊆A B

If A B⊆ , it is possible that A = B, to emphasize this fact we write .A B⊆
If A is contained in B, then we may also state that B contains A and write .B A⊇

����� � ��� �!"���

Definition 2.3: A set A is called proper subset of the set B. If (i) A is subset of B and (ii) B is not a
subset A

i.e., A is said to be a proper subset of B if every element of A belongs to the set B, but there is atleast one

element of B, which is not in A. If A is a proper subset of B, then we denote it by .A B⊂

Note: Every set is a subset to itself.
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If A and B are sets such that every element of A is an element of B and every element of B is an element
of, A then A and B are equal (Identical). We write “A = B”, and it is read as A and B are identical.

����� !�� ���

If A is subset of B, then B is called a superset of A.

Example:

(i) If A = A{0, 2, 9}, B = {0, 2, 7, 9, 11} then A B⊂  (A is a proper subset of B).

(ii) If A = {a, a, b}, B = {a, b}, then A and B denoted the same set, i.e., A = B.

(iii) If A = {1, 2, 4}, B = {2, 4, 6, 8} A is proper subset of B and B is a superset of A.

��% ��&&���

Definition 2.4: The set with no elements is called an empty set or null set. A Null set is designated by

the symbol φ .

The null set is a subset of every set, i.e., If A is any set then .Aφ ⊂

Example:
(i) The set of real roots of the polynomial x2 + 9 = 0.

(ii) {x | 5x = 5x + 2}.
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Definition 2.5: A set having only one element is called a singleton.

Example: (i) A = {8}, (ii) { }φ
Theorem 2.1: Two sets A and B are equal if and only if A B⊆  and .B A⊆
Proof: If A = B, every member of A is a member of B and every member of B is a member of A.

Hence ⊆A B  and B A⊆

Conversely let us suppose that ,A B≠  then there is either an element of A that is not in B or there is

an element of B that is not in A. But A B⊆ , therefore every element of A is in B and B A⊆ , therefore

every element of B is in A. Therefore, our assumption that A B≠  leads to a contradiction, hence A = B.

Theorem 2.2: If φ  and φ′  are empty sets, then φ φ′= .

Proof: Suppose φ φ′≠ . Then one of the following statements must be true:

1. There is an element x φ∈  such that x φ′∉

2. There is an element x φ′∈  such that x φ∉ .

But both these statements are false, since neither φ  nor φ′  has any elements. If follows that φ φ′= .
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Definition 2.6: A set is said to be finite, if it has finite number of elements.

Example:
(i) {1, 2, 3, 5}

(ii) The letters of the English alphabet.
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Definition 2.7: A set is infinite, if it is not finite.

Example:
(i) The set of all real numbers.

(ii) The points on a line.
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Definition 2.8: In many discussions all the sets are considered to be subsets of one particular set. This
set is called the universal set for that discussion.

The Universal set is often designated by the script letter U (or by X).
Universal set in not unique, and it may change from one discussion to another.

Example: If A = {0, 2, 7}, B = {3, 5, 6}, C = {1, 8, 9, 10} then the universal set can be taken as the set.

U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

��. �/���	0�����

Definition 2.9: The set of all subsets of a set A is called the power set of A.
The power set of A is denoted by P (A).

Hence ( ) { }|= ⊆P A x x A

The power set of A is also denoted sometimes by 2A

If A has n elements in it, then P (A) has 2n elements:

Example 1: If A = {a, b} then

P(A) = { } { } { }{ }, , , ,a b a bφ

Example 2: The empty set ,φ  has only subset, therefore ( ) { }φ φ=P .

Note: A set is never equal to its power set. In the programming language Pascal, the notion power set is used to
define data type in the language.

���1 
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Definition 2.10: Two sets are said to be disjoint if they have no element in common.
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Example: The sets, A = {0, 4, 7, 9} and B = {3, 6, 10} are disjoint.

���� ��	�������	*�����	�����3���
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If A is any set then A A⊆

Proof: If x A∈ , then x A∈  (by the repetition of the statement)

Hence A A⊆

������

If ,A B⊆  and B C⊆  then A C⊆  where A, B and C are sets

Proof: Let .x A∈ Then

( )x A x B A B∈ ⇒ ∈ ⊆

( )x C A C⇒ ∈ ⊆

if x A∈  then ,∈x C  therefore A C⊆ .
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Definition 2.11: The union of two sets A and B is the set whose elements are all of the elements in A
or in B or in both.

The union of sets A and B denoted by A B∪  is read as “A union B”.

Symbolically: { }| orA B x x A x B∪ = ∈ ∈

Example:

(i) If A = {5, 7, 8}, B = {2, 7, 9, 10, 11} then, A B∪  = {2, 5, 7, 8, 9, 10, 11}

(ii) If A = { }| , and 3x x Z x∈ ≥  and B = { }| , and 8x x Z x∈ ≥

then { }| , 3A B x x Z x∪ = ∈ ≥

Where Z denoted the set of integers.
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Definition 2.12: If A1, A2, A3, ..., An denote, sets then the union of these sets denoted by 
1=

�
n

i

i

A   is

defined as 
1=

�
n

i
i

A { |= ∈ ix x A  for at least one set Ai}.
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If A and B are two sets then:

(i) ( )A A B⊆ ∪
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(ii) ( )B A B⊆ ∪
(iii) A U U∪ =  where U is the universal set.

Proof:

(i) Let .∈x A  Then

orx A x A x B∈ ⇒ ∈ ∈

( )x A B⇒ ∈ ∪

Thus ⊆ ∪A A B

(ii) Let x B∈

Then orx B x A x B∈ ⇒ ∈ ∈
( )x A B⇒ ∈ ∪

Hence ⊆ ∪B A B

������

If A is any set then  (i) A Aφ∪ =  (ii) A A A∪ =

Proof:

(i) Clearly ( )A A φ⊆ ∪ … (1)

Conversely, let x A φ∈ ∪
orx A x A xφ φ∈ ∪ ⇒ ∈ ∈

x A⇒ ∈

Thus φ∪ ⊂A A … (2)

from (1) and (2), we have

A Aφ∪ =
(ii) Clearly A A A⊆ ∪ … (1)

Now let x A A∈ ∪

orx A A x A x A∈ ∪ ⇒ ∈ ∈

x A⇒ ∈

Thus A A A∪ ⊆ … (2)

Combining (1) and (2), we get

A A A∪ =

(iii) In order to prove that A U U∪ =  we have to prove that ( )A U U∪ ⊆  and ( )U A U⊆ ∪
Every set is a subset of the universal set.

i.e., ( )A U U∪ ⊆ … (1)

also ( )U A U⊆ ∪ … (2)
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Combining (1) and (2), we get

A U∪  = U.

������

Union of sets is commutative, i.e., If A and B are any sets, then A B B A∪ = ∪

Proof: Let x A B∈ ∪ , then

orx A B x A x B∈ ∪ ⇒ ∈ ∈  … (1)

orx B x A⇒ ∈ ∈

( )x B A⇒ ∈ ∪
Hence ( ) ( )A B B A∪ ⊆ ∪  ... (1)

Conversely, let ( )x B A∈ ∪ , then

( ) orx B A x B x A∈ ∪ ⇒ ∈ ∈
orx A x B⇒ ∈ ∈

( )x A B⇒ ∈ ∪
Thus   ( ) ( )B A A B∪ ⊆ ∪  … (2)

From (1) and (2) we have

A B B A∪ = ∪ .

�����% ���������5��&�6��� ��77�����

Union of sets is Associative, i.e., If A, B and C are any three sets, then ( )A B C∪ ∪ ( )A B C= ∪ ∪

Proof: Let ( )x A B C∈ ∪ ∪  then

( ) ( ) orx A B C x A B x C∈ ∪ ∪ ⇒ ∈ ∪ ∈  … (1)

( )or orx A x B x C⇒ ∈ ∈ ∈

( )or orx A x B x C⇒ ∈ ∈ ∈

( )orx A x B C⇒ ∈ ∈ ∪

( )x A B C⇒ ∈ ∪ ∪
Hence ( ) ( )A B C A B C∪ ∪ ⊆ ∪ ∪

conversely, let ( )x A B C∈ ∪ ∪

( ) ( )orx A B C x A x B C∈ ∪ ∪ ⇒ ∈ ∈ ∪  … (1)

( )or orx A x B x C⇒ ∈ ∈ ∈

( )or orx A x B x C⇒ ∈ ∈ ∈
orx A B x C⇒ ∈ ∪ ∈

( )x A B C⇒ ∈ ∪ ∪
Thus ( ) ( )A B C A B C∪ ∪ ⊆ ∪ ∪  … (2)
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Hence from (1) and (2), we have

( ) ( )A B C A B C∪ ∪ = ∪ ∪

���% ���������	��	*���

Definition 2.13: The intersection of two sets A and B is the set whose elements are all of the elements
common to both A and B.

The intersection of the sets of “A” and “B” is denoted by A B∩  and is read as “A intersection B”

symbolically: { }| andA B x x A x B∩ = ∈ ∈

���
	�
�����������	
����������
��

Definition 2.14: If A1, A2, A3, ... An denote sets, then the intersection of these sets denoted by

1

n

i=
∩ Ai is defined as follows

1

n

i =
∩ Ai = {x | x ∈  Ai for every i (i = 1, 2, ..., n)}

= {x | x belongs to all sets Ai}

Example: (i) A = {1, 2, 3, 8}, B = {5, 8, 9} than A B∩  = {8}.

(ii) If A = {a, b, c, d}, B = {b, d, e, f, g} then A B∩  = {b, d}.

���' ��	�������	*����������	��	������	�

���'��

If A and B are any two sets then

(i) A B A∩ ⊆ (ii) A B B∩ ⊆

Proof:

(i) Let x be an element of the set A B∩ , then

andx A B x A x B∈ ∩ ⇒ ∈ ∈
x A⇒ ∈

Hence A B A∩ ⊆

(ii) Let x be a number of the set A B∩ , then

andx A B x A x B∈ ∩ ⇒ ∈ ∈

Hence A B B⇒ ∩ ⊆

���'��

If A is any set then

(i) ,A φ φ∩ =  (ii) ,A A A∩ =  (iii) ,A U A∩ =  where U is the universal set.
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Proof:

(i) φ  is a subset of every set, therefore

Aφ φ⊆ ∩  ... (1)

and A φ φ∩ ⊆

from (1) and (2) we have A φ φ∩ =  … (2)

(ii) Clearly A A A∩ ⊆  … (1)

Let x be a member of A, then

andx A x A x A∈ ⇒ ∈ ∈ (by the repetition of the statement)

x A A⇒ ∈ ∩

Thus      A A A⊆ ∩  … (2)

Combining (1) and (2), we get

A A A∩ =

(iii) Clearly A U A∩ ⊆
Let x be any member of A, then

x A x U∈ ⇒ ∈ ( )A U∴ ⊆
andx A x U⇒ ∈ ∈

x A U⇒ ∈ ∩

Hence       A A U⊆ ∩ … (2)

Combining (1) and (2), we get

A U A∩ =

���'�� ��88!����5��&�6

Intersection of sets is commutative, i.e., if A and B are any two sets, then A B B A∩ = ∩

Proof: Let ,x A B∈ ∩  then

andx A B x A x B∈ ∩ ⇒ ∈ ∈
andx B x A⇒ ∈ ∈

x B A⇒ ∈ ∩
Thus A B B A∩ ⊆ ∩ … (1)

Conversely, Let ,x B A∈ ∩  then

andx B A x B x A∈ ∩ ⇒ ∈ ∈
andx A x B⇒ ∈ ∈

x A B⇒ ∈ ∩
Hence B A A B∩ ⊆ ⊆  … (2)

Combining (1) and (2) A B B A∩ = ∩
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���'�%����������5��&�6��� ����� �������

Intersection of sets is associative, i.e., if A, B and C are any three sets, then ( ) ( )A B C A B C∩ ∩ = ∩ ∩

Proof: Let ( ) ,x A B C∈ ∩ ∩  then

( )x A B C∈ ∩ ∩ ( ) andx A B x C⇒ ∈ ∩ ∈

( )and andx A x B x C⇒ ∈ ∈ ∈

( )and andx A x B x C⇒ ∈ ∈ ∈
andx A x B C⇒ ∈ ∈ ∩

( )x A B C⇒ ∈ ∩ ∩
Hence ( ) ( )A B A B C∩ ∩ ⊆ ∩ ∩
Conversely, Let ( ),∈ ∩ ∩x A B C  then

( )x A B C∈ ∩ ∩ ( )andx A x B C⇒ ∈ ∈ ∩
( )and andx A x B x C⇒ ∈ ∈ ∈

( )and andx A x B x C⇒ ∈ ∈ ∈
( ) andx A B x C⇒ ∈ ∩ ∈
( )x A B C⇒ ∈ ∩ ∈

Thus          ( ) ( )A B C A B C∩ ∩ ⊆ ∩ ∩  … (2)

Combining (1) and (2), we get

( ) ( )A B C A B C∩ ∩ = ∩ ∩

���) 
��������-��&�0

���)��

Intersection of sets is distributive over the union of sets, i.e., if A, B and C are any three sets, then

( ) ( ) ( )A B C A B A C∩ ∪ = ∩ ∪ ∩
Proof: Let ( ),x A B C∈ ∩ ∪  Then

( )x A B C∈ ∩ ∪ ( )and ,x A x B C⇒ ∈ ∈ ∪

( )and orx A x B x C⇒ ∈ ∈ ∈

( ) ( )and or andx A x B x A x C⇒ ∈ ∈ ∈ ∈

( ) ( )orx A B x A C⇒ ∈ ∩ ∈ ∩

( ) ( )x A B A C⇒ ∈ ∩ ∪ ∩

Thus          ( ) ( ) ( )A B C A B A C∩ ∪ ⊆ ∩ ∪ ∩  … (1)

conversely let ( ) ( ),x A B A C∈ ∩ ∪ ∩  then

( ) ( )x A B A C∈ ∩ ∪ ∩ ( ) ( )orx A B x A C⇒ ∈ ∩ ∈ ∩

( ) ( )and or andx A x B x A x C⇒ ∈ ∈ ∈ ∈
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( )and orx A x B x C⇒ ∈ ∈ ∈

( )and⇒ ∈ ∈ ∪x A x B C

( )x A B C⇒ ∈ ∩ ∪

Hence  ( ) ( ) ( )A B A C A B C∩ ∪ ∩ ⊆ ∩ ∪  … (2)

From (1) and (2), we have

( ) ( ) ( )A B C A B A C∩ ∪ = ∩ ∪ ∩

���)��

Union of sets is distributive over the intersection, i.e., if A, B and C are any three sets, then

( ) ( ) ( )A B C A B A C∪ ∩ = ∪ ∩ ∪

���+ �	3�&�3����	*�����

���+�� ��$���5����8�$�8����9� �
���� �����������:

Definition 2.15: If A and B are subsets of the universal set U, then the relative complement of B in A
is the set of all elements in A which are not in A. It is denoted by A – B thus:

A – B = {x | x ∈  A and x ∉ B}

Example: Let A = {a, b, c} and B = {b, c, d, e, f, g}, then A – B = {a}.

���+�� ��8�$�8���������

Definition 2.16: If U is a universal set containing the set A, then U – A is called the complement of A.

It is denoted by A´ or by A .

Thus { : }A A x x A′= = ∉

���, ��	�������	*��	3�&�3������	�

If A and B are two subsets of universal set U, then

(1) U φ= (5) ( ) =A A

(2) ( ) Uφ = (6) A B B A⊆ ⇒ ⊆

(3) A A∪ = ∪ (7) ( )A B A B∩ = ∪ (De Morgan’s laws)

(4) A A φ∩ = (8) ( )A B A B∪ = ∩ (De Morgan’s laws)

Proof: (1) Clearly Uφ ⊆

Conversely x U x U∈ ⇒ ∉

x φ⇒ ∈

Hence      U φ⊆
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Now      andU Uφ φ⊆ ⊆

U φ⇒ =

Proof: (2) Let x φ∈ , then

x xφ φ∈ ⇒ ∉

x U⇒ ∈

Thus Uφ ⊆

Conversely let ,x U∈  then

x U x φ∈ ⇒ ∉

x φ⇒ ∈
Hence      U φ⊆
Therefore      andU U Uφ φ φ⊆ ⊆ ⇒ =
The properties (3) and (4) are very simple and follow immediately from the definition of complement,

we prove the remainig.

Proof: (5) If ( )x A∈  then x A∉

Hence ( )x A x A∈ ⇒ ∉

x A⇒ ∈

Thus ( )A A⊆  … (1)

Conversely, let ,x A∈  then

x A x A∈ ⇒ ∉

( )x A⇒ ∈ … (2)

Hence ( )A A⊆
Therefore from (1) and (2)

( )A A=

Proof: (6) We have A B⊆

Let ,x B∈  then

x B x B∈ ⇒ ∉
( )x A A B⇒ ∉ ∴ ⊆

x A⇒ ∈
Hence B A⊆

Proof: (7) Let ( );x A B∈ ∩  then

( )x A B∈ ∩ ( )x A B⇒ ∉ ∩
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orx A x B⇒ ∉ ∉

orx A x B⇒ ∈ ∈

x A B⇒ ∈ ∪

Hence ( )A B A B∩ ⊆ ∪  … (1)

Conversely, let ,x A B∈ ∪  then

( )x A B∈ ∪ orx A x B⇒ ∈ ∈

orx A x B⇒ ∉ ∉

( )x A B⇒ ∉ ∩

( )x A B⇒ ∈ ∩

Thus ( )A B A B∪ ⊆ ∩  … (2)

From (1) and (2), we have

( )A B A B∩ = ∪

Proof: (8) Let ( ),x A B∈ ∪  then

( )x A B∈ ∪ x A B⇒ ∉ ∪

andx A x B⇒ ∉ ∉

andx A x B⇒ ∈ ∈

x A B⇒ ∈ ∩

Hence ( )A B A B∩ ⊆ ∪  … (1)

Conversely, let ,x A B∈ ∩  then

x A B∈ ∩ andx A x B⇒ ∈ ∈

andx A x B⇒ ∉ ∉

( )⇒ ∉ ∪x A B

( )x A B⇒ ∈ ∪

Thus ( )A B A B∩ ⊆ ∪  … (2)

Combining (1) and (2), we have ( )A B A B∪ = ∩
The above properties of union and intersection of sets are called set Identities.

���. ��	�������	*�
�**������

If A and B are two subsets of a universal set, then

1. A B A B− = ∩ 2. A U A= −

3. A A φ− = 4. A Aφ− =
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5. ,A B B A− = −  if and only if A = B 6. A B A− = if and only if A B φ∩ =

7. A B φ− = if and only if A B⊆

Proof: (1) Let ,x A B∈ −  then

x A B∈ − andx A x B⇒ ∈ ∉

andx A x B⇒ ∈ ∈
x A B⇒ ∈ ∩

Hence  A B A B− ⊆ ∩  … (1)

Conversely let ,x A B∈ ∩  then

x A B∈ ∩ andx A x B⇒ ∈ ∈

andx A x B⇒ ∈ ∉

x A B⇒ ∈ −

Therefore A B A B∩ ⊆ −  … (2)

From (1) and (2), we have A B A B− = ∩

���1 ;33������
�**������

Definition 2.17: The symmetric difference of two sets A and B is the relative complement of A B∩
with respect to A B∪ . It is denoted by A BΔ  (or by A B⊕ )

Symbolically: A BΔ  = { }| and∈ ∪ ∉ ∩x x A B x A B

Example: Let A = {1, 2, 3, 4, 5, 6, 7} B = {3, 4, p, q, r, s}

Then, we have A B∪  = {1, 2, 3, 4, 5, 6, 7, p, q, r, s} and A B∩  = {3, 4}

We get A BΔ  = {1, 2, 5, 6, 7, p, q, r, s}

Note: We can also find the symmetric difference by using the identity.

( ) ( )A B A B B AΔ = − ∪ −

In the above example, we have A – B = {1, 2, 5, 6, 7};
and    B – A = {p, q, r, s}

Hence A BΔ  = ( ) ( )A B B A− ∪ −  = {1, 2, 5, 6, 7, p, q, r, s}

���� ��	�������	*�;33������
�**������

If A and B are any two sets, then

1. A A φΔ = 2. A B B AΔ = Δ

3. A AφΔ = 4. ( ) ( )A B C A B CΔ Δ = Δ Δ

5. ( ) ( ) ( ) ( )A B A B A B A B B AΔ = ∪ − ∩ = − ∪ −
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���� -����
��(��3

Set operation can be illustrated by Venn diagrams. A venn diagram is a useful device to our consideration
of relationships that may exist between the subsets of a given universe. The universal set U is represented
by the set of points inside and on the boundary of a single closed curve (usually a rectangle). If A is a
subset of U is then represented by the points inside and on the boundary of another simple closed curve
(usually a circle) inside the rectangle. Several venn diagrams, together with their interpretations are
shown below (usually the label U is ommitted).

Using venn diagram, we can produce a geometrical interpretation for any expression involving sets
and set operations. However, it should be noted that, venn diagrams do not prove the truth of a relationship
between sets, they only illustrate plausibility.

⊂A B (A is a subset of B) A B∩  (Shaded part) A – B (Shaded part)

A B φ∩ = ( )A B C∩ ∪ ( )A B∪  (Shaded)

( )A B C φ∩ ∩ = ( ) ( )A B A C∩ ∪ ∩ (Shaded part)

( )A B C∪ ∩  (Shaded) ifA B A A B∩ = ⊆

Fig. 2.1 Venn Diagrams
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���� �������&��	*�
��&��;

The principle of duality states that any established result involving sets and complements and operations
of union and intersection gives a corresponding dual result by replacing U by φ  and ∪  by ,∩  and vice
versa.

Example: Consider A A U∪ =
Applying the principle of dualilty, we get A A φ∩ =

���% 	&-�
��<�3�&�

Example 1: Prove that ( ) ( )A B C A B C∩ − ⊂ − ∩

Solution: Let ( ),x A B C∈ ∩ −  then

( )x A B C∈ ∩ − ( )andx A x B C⇒ ∈ ∈ −

( )and , andx A x B x C⇒ ∈ ∈ ∉

( )andx A x B C⇒ ∈ ∉ ∩

( )x A B C⇒ ∈ − ∩

Hence ( ) ( )A B C A B C∩ − ⊂ − ∩

Example 2: Show that ( )A B A B B⎡ ⎤∩ ∪ ∪ =⎣ ⎦

Solution: ( ) ( ) ( )( )A B A B A B A A B⎡ ⎤∩ ∪ ∪ = ∩ ∪ ∩ ∪⎣ ⎦
( )( )A B Bφ= ∩ ∪ ∪

( )A B B B= ∩ ∪ =

Example 3: Give that φ  is an empty set, find ( ) ( )( ) ( )( )( ), ,P P P P P Pφ φ φ

Solution: ( ) { }P φ φ=

( )( ) ( ){ },P P φ φ φ=

( )( )( ) { } { }{ } { }{ }{ }, , , ,P P P φ φ φ φ φ φ=

�<��� �  � ����

I(a) Illustrate the following identities by means of venn diagrams:

1. ( ) ( ) ( )A B C A B A C∪ ∩ = ∪ ∩ ∪

2. A U A∩ =

3. A U U∪ =

4. ( ) ( )A B A B A B∪ = ∪ ∪ ∩
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5. ( )A B A B∪ = ∩

6. ( )A B B A B∪ ∩ = ∩

7. ( )A A B A B∪ ∩ = ∪

8. ( )A A B A∩ ∪ =

(b) 1. A B A B B⊆ ⇔ ∪ = (MCA, OSM, 1999)

2. If A and B and subsets of universal set, then ;⊂A B  if and only if B A⊆
(MCA, OSM, 1996)

3. Use Venn diagram to show that

( ) ( ) ( )A B C A B A C∩ ∪ = ∩ ∪ ∩ (MCA, OSM, 1998)

4. Prove that ( ) )(− ∩ = −A A B A B (MCA, OSM, 1998)

5. If A0 and Ak are sets of real numbers defined as

{ }0 / 1A a a= ≤

{ }/ 1 1/ ; 1, 2 , ...kA a a k k= ≤ + =

0
1k

A
∞

=
Π = (MCA, OSM, 1999)

k = 1

6. Show that ( ) ( ) ( )P A P B P A B∪ ⊆ ∪  where P(X) is the power set of set X
(MCA, OSM, 1998)

7. Let A be a set with k elements and P(A) its power set show that the cardinclity of P (A) is 2k.
II

1. A = {1, 2}, B = {1, 2, 4, 5} and C = {5, 7, 9, 10} find

(a) A B∪ (b) A B∩ (c) ( )∪ ∪A B C

(d) ( )A B C∩ ∩ (e) ( )A B C∪ ∩ (f) ( )A B C∩ ∪
2. If A = {a, b, c, d}, B = {c, d, e} and C = {e, f, g, h} state the elements of the sets.

(a) A C∪ (b) B A∩

(c) ( )B A C∩ ∪ (d) ( ) ( )B A B C∩ ∪ ∩

3. If { }| 5 5U x Z x= ∈ − < <  and ( )| 2 3A x Z x= ∈ − < <  state the elements of the sets.

, , ,A A A A U A U∩ ∩ ∪  {Z is the set of integers}

4. If U = {1, 2, 3, 4, … 10}, A = { }| is a primex U x∈ , B = { |x U x∈  is odd} Show that

( )A B A B∩ = ∪

5. U = {a, b, c, d, e, f, g}, A = {a, b, c, d}, B = {a, b, c, d, e, f} and C = {a, b, g} find , , ,A B C

A – B, B – C, ( )∩ ∪A B A B  and .B C∩

6. If A = {a, b, c, e, f,}, B = {b, e, f, r, s} and C = {a, t, u, v} find ,A B∩ A C∩  and .B C∩
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7. If A = {x | x is an integer and 4x ≤ } and U = Z, then write A.

8. If U = {a, b, c, d, e, f, g, h}, A = {a, c, f, g}, B = {a, e}, C = {b, h} compute

(a) A – B (b) A (c) B (d) A B∪
9. List all the subsets of (a) A = {a, b, c}, (b) {a, b, c, d}.

10. If A1 = {1, 5}, A2 = {1, 2, 4, 6}, A3 = {3, 4, 7}, B = {2, 4} and I = {1, 2, 3}
Verify the Identies.

(a)
3 3

1 1
( )i i

i i
B A B A

= =

⎛ ⎞∪ ∩ = ∩ ∪⎜ ⎟⎝ ⎠
(b)

3 3

1 1
( )i i

i i
B A B A

= =

⎛ ⎞∪ ∪ = ∪ ∩⎜ ⎟⎝ ⎠
11. If A1 = {{1, 2}, {3}}, A2 = {{1}, {2, 3}}, and A3 = {1, 2, 3} these show that A1, A2, A3 are

mutually disjoint.

12. If A and B are two given sets then, prove that ( )A B A φ∩ − =
13. If A = {1, 3, 5, 7, 8, 9} and B = {3, 5, 8} then verify:

( ) ( ) ( ) ( )A B B A A B A B− ∪ − = ∪ − ∩
14. If A = {1, 2, 3, 4}, B = {2, 3, 4, 5}and C = {1, 3, 4, 5, 6, 7} verify

( ) ( ) ( )A B C A B A C∩ ∪ = ∩ ∪ ∩

15. If A ⊕  denotes the symmetric difference of two sets A and B, then find A B⊕  for the

following:
(a) A = {a, b}, B = {a, c} (b) A = {a, b}, B = {b, c}

16. If A = (1, 3, 5, 7, 9} and B = {3, 5, 8} then find A BΔ  (symmetric difference of the sets A

and B).

17. Prove (or disprove) by Venn diagram or otherwise that

( ) ( ) ( )∪ ∩ ∪ ⊂ ∩A B B C A B (MCA, OSM, 1997)

18. A and B are two independent events. The Probability that both A and B occur is 1/12. The
Probability that neither A nor B occures is 1/2. Find the values of P(A) and P(B).

19. A and B are two events such that P(A) = 0.3, P(B) = 0.4 and P ( )AB  = 0.5 find ( )( )| .P B A B∪

20. A die of 6 faces is thrown 4 times. What is the probability that the minimul value is not less
than 2 and the maximum value is not grater than 5

21. Define a partition of a set.
22. Define a power set. Illustrate with an example.

Answers:

II 1. (a) {1, 2, 4, 5}; (b) {1, 2}; (c) {1, 2, 4, 5, 7, 9, 10}; (d) ;φ  (e) {5}; ( f ) {1, 2, 5, 7, 9, 10}

2. (a) {a, b, c, d, e, f, g, h}, (b) {c, d}, (c) {c, d, e}, (d) {c, d, e}

3. { }| 5 2 3 5A x Z x x= ∈ − < < − ∪ < <

∩ =A A U

,∩ = ∪ =A U A A U U
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5. { } { } { }, , , , , , , , ,= = =A e f g B b g C c d e f

{ } { }, , , ,− = − =A B b B C c d e f

{ }, ,∩ =A B a c d

{ }, , , , ,∪ =A B a b c d e f

{ },∩ =B C a b

6. { } { }, , , , φ∩ = ∩ = ∩ =A B b e f A C a B C

7. { }| , 4= ∈ >A x x Z x

8. (a) { }, ,− =A B c f g

(b) { }, ,=A b d e

(c) { }, , , ,=B b c d f g

(d) { , , , , }a c e f g

9. (a) P(A) = {{f}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, A}

(b) {f, {a}, {a}, {b}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}
{b, c, d}{a, b, c, d}}

15. (a) {b, c}, (b) {a, c}

16. A BΔ  = {1, 7, 8, 9}

18.
1 1

,
4 3

19.
1

4

20.
16

81

���' ���	*���3���

We now introduce here several sets and their notations that will be used throughout this book.
(a) Z+ = {x | x is a positive integer} = {1, 2, 3,4…}
(b) N = {x | x is a positive integer and zero} = {0, 1, 2, 3, 4…}

Note: 1, 2, 3, 4 … are natural numbers.

(c) The rational integers are the members of the set Z, where
Z = {… – 3, – 2, – 1, 0 , 1, 2, 3, 4 …}

(d ) The rational numbers are the members of the set.

Q = { }/ | , , and 0p q p Z q Z q∈ ∈ ≠

(e) The irrational numbers are the members of the set of all real numbers that cannot be expressed
as the quotient p/q of two integers.
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Example: 2 , 3 , ,π  …, etc., are all irrational.

( f ) The real numbers are the members of the set formed by the union of the sets of rational and
irrational numbers it is denoted by R.

∴ R = {x | x is a real number}

���) ���
���&��;
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Definition 2.18: A set A is called a finite set if it has n distinct members (elements) where n N∈
(refer 1.5).

���)�� �� 7���$�����������

Definition 2.19: If A is finite set with n distinct elements, then n is called the cardinality of A. The
cardinality of A is denoted by |A| [or by n (A)].

Example: Let A = {a, b, c, d}, then A is a finite set and |A| = 4

���)�� �� 7���$�����������������6�����

Number of elements in A B∪ : (Cardinality of union) If A and B are any two finite sets then, the

numbers of elements in A B∪ , denoted by | |A B∪  is given by | | | | | | | |A B A B A B∪ = + − ∩

Note: The number of elements in A B∩ , is also denoted by ( )n A B∪ .

���)�% �� 7���$�����������������= ������

Number of elements in A B C∪ ∪ : If A, B and C are any three finite sets, then

| | | | | | | | | | | | | | | |A B C A B C B C C A A B A B C∪ ∪ = + + − ∩ − ∩ − ∩ + ∩ ∩

Example 1: If n(A) = 2, n(B) = 3, n ( )A B∩  = 1, find n ( )A B∪

Solution: Given | A | = 2, | B | = 3, | |A B∩  = 1

Using the formula | | | | | | | |A B A B A B∪ = + − ∩

We get | |A B∪  = 2 + 3 – 1 = 4

Example 2: Verify:

| | | | | | | | | | | | | | | |A B C A B C A B B C C A A B C∪ ∪ = + + − ∩ − ∩ − ∩ + ∩ ∩
Where A = {1, 2, 3, 4, 5}, B = {2, 3, 4, 6}, C = {3, 4, 6, 8}

Solution: We have A B C∪ ∪  = {1, 2, 3, 4, 5, 6, 8}

A B C∩ ∩  = {3, 4}

A B∩  = {2, 3, 4}, B C∩  = {3, 4, 6}

C A∩  = {3, 4}
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| | | | | | | | | | | | | |A B C A B B C C A A B C+ + − ∩ − ∩ − ∩ + ∩ ∩
= 5 + 4 + 4 – 3 – 3 – 2 + 2

= 7 = | |A B C∩ ∩
Example 3: Out of 30 students in a dormitory, 15 take an art course, 8 take a biology course and 6 take
a chemistry course. It is known that 3 students take all the three courses. Show that 7 or more students
take none of the courses.
Solution: Let A be the set of students taking an art course

B be the set of students taking a biology course
C be the set of students taking a chemistry course

Then we have

| | 15, | | 8, | | 6, | | 3A B C A B C= = = ∩ ∩ =

| | | | | | | | | | | | | | | |∪ ∪ = + + − ∩ − ∩ − ∩ + ∩ ∩A B C A B C A B B C C A A B C

15 8 6 | | | | | | 3A B B C C A= + + − ∩ − ∩ − ∩ +

3 2 | | | | | |A B B C C A= − ∩ − ∩ − ∩ ... (1)

But | | | |, | | | |, | | | |A B A B C B C A B C C A A B C∩ ≥ ∩ ∩ ∩ ≥ ∩ ∩ ∩ ≥ ∩ ∩

Therefore, | | | | | | 3 | |A B B C C A A B C∩ + ∩ + ∩ ≥ ∩ ∩
From (1), we have

| | 32 3 | | 32 3 3∪ ∪ ≥ − ∩ ∩ = − ×A B C A B C

Hence  | | 23A B C∪ ∪ ≥

The number of students taking atleast one course 23≥ . The students taking none of the courses

30 23 7.≥ − =
Hence, seven or more students take none of the courses.

���)�' ��8�� �"$�����

Definition 2.20: Two sets A and B are said to be comparable if orA B B A⊂ ⊂

���)�) ����������8�� �"$�

Definition 2.21: Two sets A and B are said to be not comparable if A B⊄  and .B A⊄

Example 1: Let A = {1, 2, 3} and B = {1, 2, 3, 4, 6} then A is comparable to B, since A is a subset
of B.

Example 2: If A = {a, c}, B = {b, c, d, e, f} then A B⊄  and .B A⊄  Therefore the sets A and B are not
comparable.

���)�+ 3!$�����

Definition 2.22: A collection of objects that are not necessarily distinct is called a multiset.

Example: {a, a, b, b c, c}
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Definition 2.23: Let S be a multiset and x S∈ . The multiplicity of x is defined to be the numbers of

times the element x appears in the multiset S.

Example 1: Let S = {a, a, b, b, b, d, d, d, e}
Then Multiplicity of a is 2
Multiplicity of b is 3
Multiplicity of d is 3
Multiplicity of e is 1

If A and B are multisets then A B∪  and A B∩   are also multisets. The multiplicity of an element

x A B∈ ∪  is equal to the maximum of the multiplicity of x in A and B.

The multiplicity of x A B∈ ∩  is equal to the minimum of the multiplicities of x in A and in B.

Example 2: Let A = {a, a, a, b, b, c, c, d, d}
and B = {a, a, b, b, c, d}

Then { }, , , , , , , ,∪ =A B a a a b b c c d d

A B∩  = {a, a, b, c, d}

���+ �����������	
����	*���
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Definition 2.24: If a B∈ , and b B∈  then the ordered pair is the set {{a}, {a, b,}} consisting of the

pair {a, b} and the singleton {a}. It is represented by (a, b).
In the ordered pair (a, b), the element is a called the first element and the element b is called the

second element.

Example: If P (x, y) is a point in the plane, then the coordinates of P from an pair. The first member x,
is called the x-coordinate of P and y is called y-coordinate of P.

Note: If (a, b) and (a', b') are two ordered pairs such that (a, b) = (a', b') then a = a' and b = b'.

���+�� �� �������� �7!��

Definition 2.25: If A and B are two non-empty sets, then the cartesian product of A and B is the set of

all ordered pairs (a, b) where a A∈  and b B∈ .

The cartesian product of the sets A and B is denoted by A × B.
Using set notation we can write A × B as

A × B = {(a, b) | , anda A b B∈ ∈ }

Example: If A = (0, 1, 2), B = {3, 5}, then

A × B = {(0, 3), (0, 5), (1, 3), (1, 5), (2, 3), (2, 5)}
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Note: If A and B are both the set of real numbers then A × B is the cartesian plane. The cartesian product of sets
can also be represented by tree diagrams.

���+��

If A, B, C are sets then

(i) ( ) ( ) ( )A B C A B A C× ∪ = × ∪ ×

(ii) ( ) ( ) ( )A B C A B A C× ∩ = × ∩ × (V.T.U., B.E., 2000)

Proof: (i) ( )A B C× ∪

( ){ }, : ,= ∈ ∈ ∪x y x A y B C

( ){ }, : and or= ∈ ∈ ∈x y x A y B y C

( ){ }, : , or ,= ∈ ∈ ∈ ∈x y x A y B x A y C

( ) ( ) ( ){ }, : , or ,= ∈ × ∈ ×x y x y A B x y A C

( ) ( )A B A C= × ∪ ×

(ii) ( )A B C× ∩

( ){ }, : ,= ∈ ∈ ∩x y x A y B C

( ){ }, : and and= ∈ ∈ ∈x y x A y B y C

( ){ }, : , and ,= ∈ ∈ ∈ ∈x y x A y B x A y C

( ) ( ) ( ){ }, : , and ,= ∈ × ∈ ×x y x y A B x y A C

( ) ( )A B A C= × ∩ ×

���+�%

If A, B, and C are non-empty sets then

A B A C B C⊆ ⇒ × ⊆ ×
Proof: Let (a, b) be any element A × C, then

and⇒ ∈ ∈a B b C ( )⊆� A B

( ),a b B C⇒ ∈ ×
Hence × ⊆ ×A C B C

���+�' �� �������� �7!�����������

Let A1, A2, A3, ..., An denote n sets where 2n ≥ , then the Cartesian product 1 2 ... nA A A× ×  is the set of

all n-tuples of the form (a1, a2, a3, ..., an) where   1 1 2 2 3 3, , , n na A a A a A a A∈ ∈ ∈ ∈ .

From the definition we have

( ){ }1 2 3 1 2 3... , , ,..., : , 1n n i iA A A A a a a a a A i n× × × = ∈ ≤ ≤
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1. Let A = {1, 2, 4}, B = {0, 2} find A × B.

2. Prove that A × B = φ  if A = φ , B = φ .

3. Prove that A × B = B × A if and only of A = B.

4. If A = {a, b}, B = {2, 3} and C = {3, 4}
Find

(1) ( ) ( ) ( ),A B C A B A C× ∪ × ∪ ×  and show that

( ) ( ) ( )A B C A B A C× ∪ = × ∪ ×

(2) Find ( )A B C× ∩  and show that

( ) ( ) ( )A B C A B A C× ∩ = × ∩ ×
5. If A, B and C are sets then
6. Prove that

(i) ( ) ( ) ( ) ( )A B B A A B A B− ∪ − = ∪ − ∩

(ii) Show that A B B A− = −
7. If A, B and C are any sets

Show that ( ) ( ) ( )A B C A B A C∩ ⊕ = ∩ ⊕ ∩
8. If A is a proper subset of B, then show that ( )A B A B∪ − =
9. Prove (or disprove) by Venn diagram or otherwise that

( ) ( ) ( )A B B C A B∪ ∩ ∪ ⊂ ∩ (OU, MCA, 1997)

10. Define the following:
(i) Power set

(ii) Partition of a set give examples
11. Prove the following and represent by Venn diagram:

(i) ( ) ( ) ( )A B C A B A C∪ ∩ = ∪ ∩ ∪

(ii) ( ) ( ) ( )A B C A B A C− ∪ = − ∩ − (OU, MCA, 1991)

12. Show by an example that

(i) A B B A× ≠ ×

(ii) ( ) ( )A B C A B C× × = × × (OU, MCA, 1994)

13. Write the sets

(i) { }φ φ∪

(ii) { } { }φ φ∪  and

(iii) { }{ }, –φ φ φ (OU, MCA, 1995)

14. Show that A B⊆  implies that ( ) 0A B A∪ − = (OU, MCA, 1995)

15. Show that A B C− ⊆  if and only if A C B− ⊆ (OU, MCA, 1995)
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16. If A and B subsets of the Universal set U , then show that

A B A B⊕ = ⊕ (OU, MCA, 1995)

17. For the sets S, T and V prove that

( ) ( ) ( )S T V S V T V∩ × = × ∩ × (OU, MCA, 1995, 96)

18. Use Venn diagrams to show that

( ) ( ) ( )A B C A B A C∩ ∪ = ∩ ∪ ∩ (OU, MCA, 1998)

19. Show that ( ) ( ) ( )P A P B P A B∪ ⊆ ∪  where ( )P X  is the powerset of X. (OU, MCA, 1998)

20. Let A, B, C be subsets of U  prove or disprove

( ) ( )∪ ∩ ∪ ⊂ ∩A B B C A B (OU, MCA, 1998)

21. (a) Show that A B A B B⊆ ⇔ ∪ =

(b) ;A A A Aφ φ∩ = + = (OU, MCA, 1999)

22. 35 children of a class draw a map. 26 children use red colour and some children use yellow
colour. If 19 use both the colours. Find the number of children who used the yellow colour.

(Ans: 28)

23. In a class of 42 students each play atleast one of three games—hockey, cricket, and football. It is
found that the play cricket, 20 play hockey and 24 play football, 3 play both cricket and football,
2 play both hockey and football and none play all the three games. Find the number of students
who play cricket but not hockey. (Ans: 31)

24. Use Venn diagram to show that the following argument is valid:
P1: All dictionaries are useful
P2: Many owns only romance novels
P3: No violance novel is useful
P4: Many does not own a dictionary.

25. In a survey of 500 people 285 are interested in football game, 195 are interested in hockey game,
115 are interested in basketball game, 45 in football and basketball, 70 in football and hockey
and 50 in hockey and basketball games; and 50 are not interested in any of these three games.

(i) How many people are interested in all the three of the games?
(ii) How many people are interested in exactly one of the games? (VTU, BE, Aug. 2000)

26. If there are 200 faculty members that speak French, 50 that speak Russian, 100 that speak Spanish,
20 that speak French and Russian, 60 that speak French and Spanish, 35 that speak Russian and
Spanish, while only 10 that speak French, Russian and Spanish. Determine how many speak
either French or Russian or Spanish? (VTU, MCD, Sep. 1999)

27. If Ak are sets such that 1
0 { / 1} and { / 1 },= ≤ = ≤ +k kA a a A a a  prove that 0

1
.π

∞

=
=k

k
A A
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3

Relations
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This chapter deals primarily with the concept of a Relation.
A relation may involve equality or inequality. The mathematical concept of a relation deals with the

way the variables are related or paired. A relation may signify a family tie between such as “is the son of”
“is the brother of”, “ is the sister of”. In mathematics the expressions like, “is less than”, “is greater
than”, “is perpendicular to”, “is parallel to” are relations. In this chapter, we shall only consider relations
called binary relations. The ‘equivalence relation’ in sets is also discussed.

Definition 3.1: Let A and B be non-empty sets, then any subset of R of the cartesian product A × B is
called a relation from A to B.

Example 1: Let A = {3, 6, 9}, B = {4, 8, 12}
Then R = {(3, 4), (3, 8), (4, 12)} is a relation from A to B.

Example 2: Let A = {1, 2, 3}, B = {a, b}
Then A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

If R = {(1, a), (3, b)}, then ⊆ ×R A B  and R is a relation from A to B.

Example 3: Let A denote the set of real numbers define
R = {(a, b): 4a2 + 25b2 < 100} clearly R is a relation on A.

If (a, b) ∈ R , we often write aRb  and state “a is related to b”.

If ⊆ ×R A A , then R is a relation from A to A, and R is called a relation in A.

If R is a relation from A to B, then the set of all first elements of the ordered pairs (a, b), which
belong to R is called the domain of R. The range of R is the set of all second coordinates of the ordered
pairs (a, b) which belong to R. From the definition it is clear that relation R is also a set and many
operations can be applied to relation R to obtain a new relation.

If R1 and R2 are two relations with the same domain D and same range then we can define the
relation 1 2∪R R  and 1 2∩R R  with the same domain D and same range R.

Null set ∅  is a subset of every set. Therefore for any specified non-empty domain, and range, ∅  is
a relation, called null relation or empty relation.
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Definition 3.2: Let R be a relation defined in a set A; then R is reflexive if aRa holds for all ∈a A , i.e.,

if (a, a) ∈ R  for all ∈a A .

Example 1: Let A = {a, b, c} and R = {(a, a), (b, b), (c, c)} then R is a reflexive relation in A.

Example 2: ‘Equality’ is a reflexive relation, since an element equals itself.

����� �������� ��������

Definition 3.3: A relation R defined in set A is said to be ‘symmetric’ if bRa holds whenever aRb

holds for ∈b A , i.e., R is symmetric in A if

(a, b) ∈ ⇒R  (b, a) ∈ R .

Example: Let R be relation ‘is perpendicular to’ in the set of all straight lines, then R is a symmetric
relation.

����� 
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Definition 3.4: A relation R in set A is said to be transitive if

(a, b) ∈ R  (b, c) ∈ ⇒R  (a, c) ∈ R

i.e.,  if aRb and bRc , , , .⇒ ∈aR c a b c A

Example 1: Let A denote the set of straight lines in a plane and R be a relation in A defined by ‘is
parallel to’ then R is a transitive relation in A.

Example 2: Let A = {1, 2, 3} and R = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)} then R is transitive.

����" �#$������ ���������

Definition 3.5: A relation R in a set A is said to be an equivalence relation in A, if R is reflexive,
symmetric and transitive.

Example: (i) Let A be the set of all triangle in a plane and let R be a relation in A  defined by ‘is
congruent to’, then R is reflexive, symmetric and transitive.

∴  R is an Equivalence relation in A.
(ii) Let A = {a, b, c}, and R = {(a, a), (a, b), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)} then R is an

equivalence relation in A.

����% ����&!������� ��������

Definition 3.6: Let R be a relation in a set A, then R is called anti-symmetric.

(a, b) ,∈ R  (b, a) ∈ ⇒R a = b ∀ a, b ∈ R

i.e.,  aRb and bRb ⇒ a = b

Example: Let N denote the set of Natural Numbers R be a relation in N, defined by ‘a is a divisor’ of
b, i.e., aRb if a divides b then R is anti-symmetric since a divides b and b divides a ⇒ a = b.
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Let R be a relation from A to B. Then the relation R–1 = {(b, a): (a, b) ∈ R } from B to A is called the

inverse of R.

Example: Let A = {1, 2, 3}, B = {4, 5} and R = {(1, 4), (2, 5), (3, 5)} be a relation from A to B.
then R–1 = {(4, 1), (5, 2), (5, 3)}

��� )����������*���+�)	���

Example 1: If a relation R is transitive then prove that its inverse relation R–1 is also transitive.

Solution: Let (a, b) and (b, c) 1R−∈  then (b, a) R∈  and (c, b) R∈  is transitive, therefore R

(c, b) R∈  and (b, a) R∈ ⇒  (c, a) R∈
⇒  (a, c) 1R−∈

i.e.,  (a, b) 1R−∈  and (b, c) 1R−∈ ⇒  (a, c) 1R−∈
Hence R –1 is transitive.

Example 2: A = {2, 3}, B = {3, 4, 5, 6} and R is a relation from A to B defined as follows:

(a, b) R∈  if “a divides b” write the solution set of R.

Solution: 2 divides 4 and 2 divides 6

⇒  (2, 4) R∈  and (2, 6) R∈
3 divides 3, 3 divides 6

⇒  (3, 3) R∈  and (3, 6) R∈

4 divides 4 ⇒  (4, 4) R∈

Thus R = {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}

Example 3: Let A be the set of triangles in the Euclidean plane, and R is the relation in A defined by “a
is similar to b” then show that R is an equivalence relation in A.
Solution: Every triangle is similar to itself: the relation R is reflexive. If “a is similar to b” then “b is

similar to a”, i.e. (a, b) ⇒  (b, a) R∈
Hence R is symmetirc.
Clearly, if “a is similar to b”, “b is similar to c” then “a is similar to c”.
Therefore, the relation R is transitive. R is reflexive, symmetric and transitive. Thus R is an equivalence

relation.

Example 4: X is a family of sets and R is relation in X defined by “x is subset of y” show that R is anti-
symmetric and transitive.

Solution: Let (A, B) R∈  and (B, A) R∈  then A B⊂  and B A⊂ ⇒ A = B.

Thus R is anti-symmetric also A B⊂ , B C⊂ ⇒ A C⊂ . Therefore R is transitive.

Example 5: Show that the relation “Equality” defined in any set A, is an Equivalence relation.

Solution: (i) a = a for every a A∈
Thus R is reflexive
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a = b implies b = a for all a, b A∈

∴ R is symmetric

and (ii) a = b, b = c implies a = c

for all a, b, ∈c A

∴ R is transitive.

Thus R is an equivalence relation in A.

Example 6: Let Z denote the set of integers and the relation R in Z be defined by “aRb” iff a – b is an
even integer”. Then show that R is an equivalence relation.

1. R is reflexive; since

a a∅ = −  is even, hence aRa for every a Z∈ .

2. R is symmetric:

If a – b is even then b – a = – (a – b) is also even hence aRb bR a⇒
3. R is transitive: for if aRb and bRc then both a – b and b – c are even.

Consequently, a – c = (a – b) + (b – c) is also even.

∴ aRb and bR c aR c⇒
Thus, R is an equivalence relation.
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Definition 3.7: A relation R on a set A is irreflexive if aRa  for every a A∈

Example: Let A = {1, 2, 3} and

R = {(1, 2), (2, 3), (3, 1), (2, 1)}

Then the relation R is irreflexive on A.
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Definition 3.8: A relation R defined on a set A is asymmetric if whenever aRb, then .bRa

Example: Let A = {a, b, c} and R = {(a, b), (b, c)} be a relation on A. Clearly R is a symmetric.
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Definition 3.9: A relation R in A is said to be a compatible relation if it is reflexive and symmetric.
If R is an equivalence relation on A, then R is compatible relation on A.

��/ *��,��������
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Definition 3.10: A relation R in a set A is said to be universal relation if
R = A × A.

Example 1: Let A = {a, b}, then

R = {(a, a), (a, b), (b, a), (b, b)} is a universal relation on set A.
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Example 2: Let A = {1, 2, 3}, then
R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

is a universal relation on A.
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Definition 3.11: Let R be a relation from A to B, then the complement of R denoted by R′  and is
expressed in terms of R as follows;

aRb if aRb

Example: Let A = {1, 2, 3} and
R = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)}

Then R′  = {(2, 1), (2, 3), (3, 1), (3, 2)}

��1 ���
���&���
�2���
�

Definition 3.12: Let A and B denote two non-empty sets and R be a relation from A to B. We can
define various sets related to the relation R:

��1�� �&��������������������������

Let ∈x A, then the R-relative set of x is defined to be the set of all elements y in B with the property that
x is related to y, where R is relation from A to B. It is denoted by R (x) or by [x]R. Thus in symbols we can
write:

R(x) = [x]R = {y ∈B/xRy}

Example: Let A = {1, 2, 3, 4}, B = {a, b, c, d} and R = {(1, a), (2, b), (3, c), (3, d)}
Then R (3) = {c, d}.

��1�� �&�������������������$3!��

Definition 3.13: Let 1 ,A A⊆  then the R-relative set of A1 is said to be the set of all elements y in such
that x is R-related to y for some 1∈x A . It is denoted by

R (A1). Thus in symbols:

R (A1) = { y B∈ | xRy for some x in A1}

Example: Let A = {1, 2, 3, 4, 5}, B = {a, b, c, d} and R = {(1, a), (2, b), (2, d), (3, c), (4, d), (5, c),
(5, d)}

If A1 = {2, 5} then R (A1) = {b, c, d}

���4 �5*�,��������������

Let A = {1, 2, 3, 4} and
R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1)} be a relation defined on A.
Clearly R is reflexive, symmetric and transitive. Therefore R is an Equivalence relation on A.
Consider [1]R’ [2]R’ and [4]R
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We have [1]R = {1, 2}, [2]R = {1, 2},
[3]R = {3} and [4]R = {4}

Observe that
[1]R = [2]R

[1]R ∩  [3]R = [1]R ∩  [4]R = [2]R ∩  [3]R = [2]R ∩  [4]R = ∅
and [1]R ∪  [2]R ∪ [3]R ∪  [4]R = A

Thus, the relation R is such that it gives rise to subset [x]R of A for which either [x]R = [y]R or [x]R ∩
[y]R = ,x y A∅ ∀ ∈

Thus, the relation R on A, induces a partition in A.

Theorem 3.1: Every equivalence relation on a set generates a unique partition of the set. The blocks of
this partition correspond to the R-equivalence classes.

Proof: Let R be an equivalence defined on a set A. For any x A∈  the [ ]R
x A⊆  be given by

[ ] { }| and= ∈
R

x y y A x R y

The relation R is an equivalence relation

⇒ R is reflexive

⇒ x R x is true

⇒ [ ]R
x y∈

Let y A∈  such that xRy, then [ ]R
y y∈

R is symmetric, therefore xRy ⇒ yR x

[ ]R
x y∈

Let [ ]R
z y∈  then

xR y, xR z ⇒ yR z

[ ] [ ]R R
y x⇒ ⊆

by symmetry, [ ] [ ]R R
x y⊆

∴ [ ] [ ]R R
x y⊆  and [ ] [ ]R R

y x⊆ [ ] [ ]R R
x y⇒ ⊆

If xRy, then it is shown that [x]R = [y]R. If xRy, then we must show that [x]R and [y]R are disjoint. To
prove that, let us assume that, there is atleast one element

say [ ] [ ]R R
z x y∈ ∩

now, xR z and yR y

⇒ xR z and yR y

⇒ xR y [by Transitivity]

which is a contradiction

Hence [ ] [ ]R R
xR y x y⇒ ∩ = ∅
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From the above it is clear that each element of A generates an R-equivalence class which is
non-empty. The R-equivalence classes generated by any two elements are either equal or disjoint, and
the union of R-equivalence classes generated by the element of A is the set A. Hence the R-equivalence
classes generated by the elements of A defines a partition of A.

Note: The family of equivalence classes generated by the elements of A is denoted by A/R and is called quotient
set of A and R. Each element of A/R is a set.

Example: Let Z be the set of integers and let R be the relation called “congruent modulo 5” defined by

{( , ) | ,= ∈ ∈R x y x Z y Z  and (x – y) is divisible by 5}

Determine the equivalence classes generated by the element of Z.
Solution: The equivalence classes are

[0]R = { … … –10, –5, 0, 5, 10, 15, …}

[1]R = { … … –9, –4, 1, 6, 11, 16, …}

[2]R = { … … –8, –3, 2, 7, 12, 17, …}

[3]R = { … … –7, –2, 3, 8, 13, 18, …}

[4]R = { … … –6, –1, 4, 9, 14, 19, …}

∴ Z/R = {[0]R’ [1]R’ [2]R’ [3]R’ [4]R}
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If A and B are two subsets of the set of real numbers and R is relation from A to B; then the relation R can
be displayed on a coordinate diagram of A × B in which the ordered pairs of R are represented by points
in a cartesian plane.

Example: A = {1, 2, 3, 4}, B = {1, 3, 5} and
R = {(1, 3), (1, 5), (2, 3) (3, 3), (3, 5), (4, 5)}

Sketch R on the coordinate diagram of A × B

Solution: The sketch of R on the coordinate diagram of A × B is a follows.

Fig. 3.1

���� 
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A relation (Binary relation) on a set A can be represented in the tabular form. The tabular form of a
relation is useful in determining whether the binary relation is a reflexive relation.
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For example: Let A = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (2, 2), (1, 4), (2, 4), (3, 2), (4, 3)} be a
relation on A

The tabular form of the relation R is given below:

Fig. 3.2

The check marks in the cells represent the elements (the ordered pairs) of R. If the cells in the main
diagonal of table contain check marks then R is reflexive. For example: Let A = {1, 2, 3, 4} and
R = {(1, 1), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}

The tabular form of R is:

Fig. 3.3

The cells in the main diagonal of the table contain check marks. Thus R is a reflexive relation in A.
If the relation R is a symmetrical relation in a set A, then the check marks will be symmetrical with

respect to the main diagonal in the table. For example, consider the relation
R = {(1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 4), (4, 1), (4, 3), (4, 4)}
Defined on the set A = {1, 2, 3, 4}
The table given below represents R:

Fig. 3.4

The check marks are in cells that are symmetric with respect to the main diagonal. Therefore R is
symmetric.
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Definition 3.14: Let R be a relation on the set A. Another relation R1 defined on A is called the transitive
extension of R if R1 contains R and

(a, b) ,R∈  (b, c) R∈ ⇒  (a, c) 1R∈

Example: Let A = {1, 2, 3, 4}
R = {(1, 2), (2, 3), (3, 2), (2, 4)} and
R1 = {(1, 2), (1, 3), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}

Clearly R1 contains R and (a, b) ,R∈ (b, c) R∈ ⇒  (a, c) 1R∈

(a) Relation R (b) Relation R1

Fig. 3.5

R is shown in Fig. 3.5 (a) and R1 is shown in Fig. 3.5 (b). Note that the ordered pairs in R1 which are
not in R are marked with heavy check marks.

���" 
����
�,������*�

Definition 3.15: Let R be a relation on the set A. R1 denote the transitive extension of R, R2 denote the
transitive extension of R1 and in general Ri+1 denote the transitive extension of Ri’ then the transitive
closure of R is defined as the set union of R, R1’ R2’ … Ri’ Ri+1…. It is denoted by R+. Thus

1 2 1... ....i iR R R R R R+
+= ∪ ∪ ∪ ∪ ∪ ∪

R+ is the smallest transitive relation containing R.

Example: Let A = {1, 2, 3, 4} and R = {(1, 2), (2, 3), (3, 4), (2, 1)}
Then R+ = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4)} is the transitive closure of R.

Theorem 3.2: Let R be a relation from A to B and let A1 and A2 be two subsets of A, then

(i) ( ) ( )1 2 1 2A A R A R A⊆ ⇒ ⊆
(ii) ( ) ( ) ( )1 2 1 2R A A R A R A∪ = ∪

(iii) ( ) ( ) ( )1 2 1 2R A A R A R A∩ ⊆ ∩

Proof: (i) Let ( )1y R A∈

( )1y R A xR y∈ ⇒  for some 1x A∈

2⇒ ∈x A [ ]1 2Since ⊆A A

∴ ( ) ( )1 2R A R A⊆
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(ii) Let ( )1 2y R A A∈ ∪  then xRy for some x in 1 2A A∪  now 1 2 1 2or∈ ∪ ⇒ ∈ ∈x A A x A x A

If 1x A∈ , then ( )1xR y y R A⇒ ∈  by the same argument; if 2x A∈  then ( )2y R A∈  in

either case ( ) ( )1 2y R A R A∈ ∪

( ) ( ) ( )1 2 1 2R A A R A R A∴ ∪ ⊆ ∪
Conversely,

( ) ( )1 1 2 1 1 2A A A R A R A A⊆ ∪ ⇒ ⊆ ∪  [by (i)]

similarly ( ) ( )2 1 2 2 1 2A A A R A R A A⊆ ∪ ⇒ ⊆ ∪

therefore ( ) ( ) ( )1 2 1 2R A R A R A A∪ ⊆ ∪

Thus (ii) is true.

(iii) Let ( )1 2y R A A∈ ∩  then xRy for some x in 1 2A A∩  now 1 2 2x A A x A∈ ∩ ⇒ ∈  and 2x A∈

( )1y R A⇒ ∈  and ( )2y R A∈

( ) ( )1 2y R A A⇒ ∈ ∩

Thus  ( ) ( ) ( )1 2 1 2R A A R A R A∩ ⊆ ∩

Example 1: Let A = {1, 2, 3} and B = {a, b, c, d, e, f} consider the relation
R = {(1, a), (1, c), (2, d), (2, e), (2, f ), (3, b)}

Let A1 = {1, 3} and A2 = {2, 3} then we have

( )1 { , , }R A a b c=

and ( )2 { , , , }R A b d e f=

Hence  ( ) ( ) { }1 2 , , , , ,R A R A a b c d e f∪ =

and ( ) ( ) { }1 2∩ =R A R A b

now ( ) ( ) { }1 2 , , , , ,R A A R A a b c d e f∪ = =

( ) ( )1 2R A R A∪

also ( ) { } { }1 2 3R A A R b∩ = =

( ) ( ) ( )1 2 1 2R A A R A R A⇒ ∩ ⊆ ∩   holds.

Example 2: Let A = {1, 2, 3, 4} and B = {a, b, c, d, e, f} consider the relation
R = {(1, a), (1, c), (1, e), (2, b), (2, d), (2, f), (3, c), (3, d), (4, a), (4, f)}

Let A1 = {1, 4} A2 = {1, 3, 4} then 1 2A A⊂

and R (A1) = {a, c, e, f }

R (A2) = {a, c, d, e, f }
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Clearly ( ) ( )1 2R A R A⊆
Thus ( ) ( )1 2 1 2⊆ ⇒ ⊆A A R A R A
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Suppose A and B are both finite sets and R is a relation from A to B, then R may be represented as a
matrix called the relation matrix of R. It is denoted by MR.

If A = {a1, a2, … am} and B = {b1, b2, … bn} are two finite sets containing m and n elements
respectively and R is relation from A to B, then the Relation Matrix of R is the m × n, matrix,

MR = [mij]m×n is defined by

( )
( )

0 if ,

1 if ,

⎧ ∉⎪= ⎨
∈⎪⎩

i j

ij

i j

a b R
m

a b R

Where mij is the element in the ith row and jth column. MR can be first obtained by first constituting
a table, whose columns are preceded by a column consisting of successive elements of A and where rows
are headed by a row consisting of successive elements of B. If (ai’ bi) ∈ R, then we enter 1 in the ith row
and jth column and if (ak’ al) ∉ R, then we enter zero in the kth row and ith column.

Example 1: Let A = {1, 2, 3} and R = {(x, y) | x < y}, find MR.
Solution: We have, R = {(1, 2), (1, 3), (2, 3)}

The table and corresponding relation Matrix for the R are given below

1 2 3

1 0 1 1

2 0 0 1

3 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

0 1 1

= 0 0 1

0 0 0
RM

Fig. 3.6

Example 2: Let A = {1, 4, 5} and {(1, 4), (1, 5), (4, 1), (4, 4), (5, 5)}, find MR.

Solution: Given that R = {(1, 4), (1, 5), (4, 1), (4, 4), (5, 5)}

The relation Matrix of R is

0 1 1

1 1 0

0 0 1
RM

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Note: If A and B are two finite sets with |A| = m; and |B|  = n, then a  m × n matrix, whose entries are zeros and
ones determine a relation from A to B.

If R is symmetric relation on a set A, and MR denotes the Matrix of relation R, then

1 1ij jim m= ⇒ =

and 0 0 inji ji R ijm m M m⎡ ⎤= ⇒ = = ⎣ ⎦
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i.e., T
R RM M= , where T

RM  denotes the transpose of MR .

If R is an anti-symmetric relation on A, then mij = 0 or mji = 0 for all i j≠  in MR and if R is a
transitive relation on A then

mij = 1 and 1 1jk ikm m= ⇒ =  is satisfied by MR. Moreover, if R is a relation from A to B and S is
a relation from B to C, where A, B and C are finite sets m, n and p elements respectively, then MR . Ms

can be computed. Provided MR is m × n matrix and Ms is a n × p matrix. The Matrices MR . MS and MsoR

are equal.

Example 3: Let A = {1, 2, 3}
R and S be two relations defined A as follows:

R = {(1,1), (1, 3), (2, 1), (2, 2), (2, 3), (3, 2)}
and S = {(1, 1), (2, 2), (2, 3), (3, 1), (3, 3)}
then SoR = {(1, 1), (1, 3), (2, 1), (2, 2), (2, 3), (3, 2),  (3, 3)}
we get

1 0 1 1 0 0

1 1 1 ; 0 1 1

0 1 0 1 0 1
R SM M

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

and MSOR = 

1 0 1

1 1 1

0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = MR MS can easily be verified

If
1 1 1 0 0 0 1 1

0 0 0 0 0 0 1 0
and

0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0

R SM M

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

and the relational Matrices of the relation R and S defined on a set A = {1, 2, 3,4} for which
We know that

MSoR = MR . Ms

Therefore

1 1 1 0 0 0 1 1 1 0 1 1

0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0

SoRM

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Hence MSoR = {(1, 1), (1, 3), (1, 4), (3, 3)}
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A relation can be represented pictorially by drawing its graph. Let R be a relation on the set A = {a1’ a2’

… an}. The element ai of A are represented by points (or circles) called nodes (or vertices). If ( , ) ∈i j ja a R
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then we connect the vertices ai and aj by means of an arc and put an arrow in the direction from ai to aj.
If ( , )i ja a R∈   and ( , )j ia a R∈  then we draw two arcs between ai and aj (sometimes by one arc which
starts from node ai and relatives to node xi (such an arc is called a loop). When all the nodes corresponding
to the ordered pairs in R are connected by arcs with proper arrows, we get a graph of the relation R. If R
is reflexive, then there must be a loop at each node in the graph of R. If R is symmetric, then ( , )i ja a R∈
implies ( , )j ia a R∈  and the nodes ai and aj will be connected by two arcs (edges) one from ai to aj and
the other from aj to ai.

Example 1: Let A = {a, b, d} and R be a relation on A given by

R = {(a, b), (a, d), (b, d), (d, a), (d, d)}

Construct the digraph of R.

Solution: The digraph of R is as shown in Fig. 3.7.

Fig. 3.7

Example 2: Let A = {1, 2, 3, 4}

R = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4), (4, 1), (4, 4)}

Construct the digraph of R.

Solution: The digraph of R is shown in Fig. 3.8.

Fig. 3.8
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Example 3: Find the relation determined by Fig. 3.9.

Fig. 3.9

Solution: The relation R of the digraph is
R = {(a, a), (a, c), (b, c), (c, b), (c, c), (d, c)}

������	
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If R is a relation on a set A, a path of length n in R from ai to aj is a finite sequence P: ai’ a1’ a2’ … an-1’

aj’ beginning with ai and ending with aj such that:
ai Ra1’ a1 Ra2’ …, an-1Raj

A path in a digraph of the relation R is succession of edges, where the indicated directions of the
edges are followed. The length of a path in a digraph is the number of edges in the path. If n is a positive
integer then the relation Rn on the set A can be defined as follows:

( , ) n
i ja a R∈  means there is a path of length n from ai to aj in R. The relation R∞  can be defined on

A, by letting ( , )i ja a R∞∈  means, that there is some path in R from ai to aj.

Definition 3.16: A cycle in a digraph is a path of length n > 1 from a vertex to itself.
Example 1: Let A = {1, 2, 3, 4, 5} and

R = {(1, 1), (1, 2), (2, 3), (3, 5), (3, 4), (4, 5)}

Compute (a) R2 (b) .∞R

Solution: The digraph of R is shown in Fig. 3.10.

Fig. 3.10

2

3

1

4

5
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(1, 1) R∈  and (1, 1) R∈ ⇒  (1, 1) 2R∈
(1, 1) R∈  and (1, 2) R∈ ⇒  (1, 2) 2R∈
(1, 2) R∈  and (2, 3) R∈ ⇒  (1, 3) 2R∈
(2, 3) R∈  and (3, 5) R∈ ⇒  (2, 5) 2R∈
(2, 3) R∈  and (3, 4) R∈ ⇒  (2, 4) 2R∈
(3, 4) R∈  and (4, 5) R∈ ⇒  (3, 5) 2R∈

Hence R2 = {(1, 1), (1, 2), (1, 3), (2, 5), (2, 4), (3, 5)}

(b) There is a path from 1 to ( )4 1, 4 R∞⇒ ∈  , whose length is 3.

There is a path from 1 to 5 R∞⇒ ∈ , whose length is 3 and

There is a path from 1 to 5 whose length is 5

Hence R∞  = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}

Example 2: Give an example of a non-empty set and a relation on the set that satisfies each of the
following combinations of properties: draw a digraph of the relation:

(1) Symmetric and reflexive but not transitive
(2) Transitive and reflexive; but not anti-symmetric
(3) Anti-symmetric and reflexive, but not transitive.

Solution: (1) Let A = {a, b, c} and R = {(a, a), (b, b), (c, c), (a, b), (a, c), (b, a), (c, b)} clearly R is
symmetric and reflexive but not transitive. The digraph of R is given below:

Fig. 3.11

(2) Let A = {a, b, c}, and
R = {(a, a), (b, b), (c, c), (a, b), (a, c), (b, c), (b, a), (c, b), (c, a)}

The relation R is reflexive and transitive but not anti-symmetric.

Fig. 3.12
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Example 3: Let A = {a, b, c} and R = {(a, b), (b, b), (c, c), (a, b), (b, c)}
The relation on A is symmetric and reflexive but not transitive. Figure 3.13 illustrates the relation.

Fig. 3.13

Example 4: For the following digraph which of the special properties are satisfied by digraph’s relation?

Fig. 3.14

Solution: R = {(a, b), (b, c), (b, c), (a, c)}

R is transitive and anti-symmetric on A = {a, b, c}.
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Definition 3.17: Let R be a relation from A to B and S be a relation from B to C. Then we can define
a relation, the composition of R and S written as SoR. The relations SoR is a relation from the set A to the
set C and is defined as follows:

If a A∈ , and ,c A∈  then ( ),a c S o R∈  if and only if for some ,b B∈  we have ( ),a b R∈  and
( ),b c S∈ .

Example: Let A = {1, 2, 3, 4} and R, S be two relations on A defined by

R = {(1, 2), (1, 3), (2, 4), (3, 2)};

S = {(1, 4), (4, 3), (2, 3), (3, 1)} find SoR.

Solution:

(1, 2) R∈  and (2, 3) S∈ ⇒  (1, 3) S o R∈
(1, 3) R∈  and (3, 1) S∈ ⇒  (1, 3) S o R∈

(3, 2) R∈  and (2, 3) S∈ ⇒  (3, 3) S o R∈

(2, 4) R∈  and (4, 3) S∈ ⇒  (2, 3) S o R∈

Thus S oR = {(1, 3), (1, 1), (3, 3), (2, 3)}

Theorem 3.3: If R is relation from A to B, S is a relation from B to C and T is a relation from C to D.

Then

To (SoR) = (ToS) oR

Proof: Let MR’ MS’ MT denote the Matrices related to relations R, S and T respectively, then
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MTo (SoR) = MSoR . MT

= (MR . MS) . MT = (MR . MS) . MT

(Q Multiplication of matrices is associative)

= MR . (MToS) = M(ToS) oR

⇒ To (SoR) = (ToS) oR

Theorem 3.4: Let R be a relation from the set A to the set B and S be a relation from the set B to set C,
then

(SoR)–1 = R–1 oS –1

Proof: Let ( ) 1
( , )c a SoR

−∈  for some c C∈  and .a A∈  Then

( ) 1( , )c a SoR −∈  if ( , )a c SoR∈

∴  There is an element b B∈  with ( , )a b R∈  and ( , )b c S∈  now ( , )a b R∈  and ( , )b c S∈
( ) ( )1 1, and ,b a R c b S− −⇒ ∈ ∈
( ) ( )1 1, and ,c b S b a R− −⇒ ∈ ∈

( ) 1 1,c a R S− −⇒ ∈
thus (SoR)–1 = R–1 S –1

Example: Let A = {a, b}
R = {(a, a), (b, a), (b, b)} and S = {(a, b), (b, a), (b, b)}

Then, verify (SoR)–1 = R–1 oS –1

Solution:
S oR = {(a, b), (b, a), (b, b)}

⇒ (S oR)–1 = {(b, a), (a, b), (b, b)}

and R–1 = {(a, a), (a, b), (b, b)}, S –1 = {(a, a), (a, b), (b, b)}

⇒ R–1 oS –1 = {(b, a), (a, b), (b, b)} = (SoR)–1

� + � � � � � ����

1. Let A = {1, 2, 3, 4}, determine whether the relations are reflexive, symmetric, anti-symmetric or
transitive.

1. R = ∅
2. R = {(1, 1), (2, 2), (3, 3)}
3. R = {(1, 3), (1, 1), (3, 1), (1, 2), (3, 3), (4, 4)}
4. R = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
5. R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)}
6. R = {(1, 3), (4, 2), (2, 4), (3, 1), (2, 2)}
7. R = A × A
8. R = {(1, 2), (1, 3), (3, 1), (1, 1), (3, 3), (3, 2), (1, 4), (4, 2), (3, 4)}

2. Write down the relations in the square of the set {1,2, 4, 8, 16, 32, 64}.

Aditya
Typewritten Text
o is in between



86 DISCRETE MATHEMATICAL STRUCTURES

3. The following relations in N, the set of natural numbers. Give their domains and ranges.
(i) {(1, 1), (16, 2), (81, 3), (256,}

(ii) {(2, 1), (4, 2), (10, 5), (18, 9), (20, 10)}
4. Determine the domain and range of relation R, on set of Integers

R = {(x, y) | x is a multiple of 3 and y is a multiple of 5}.
5. Tabulate the element of the following relations from A to B:

(a) A = {1, 2, 3, 4}, B = {1, 2, 3, 4, 5, 6, 7} and
R = {(x, y) | y = x2 + 3x + 3}

(b) A = {1, 2, 3}, B = {1, 2, 3, 4, 5} and

R = {(x, y) | 5x + 2 y is a prime number}

6. Let f on a mapping of a set X onto a set R. Then if we define ( ), ,a b R∈ for ,a b X∈  provided
f (a) = f  (b). Prove that R is an equivalence relation.

7. Determine whether the relation
R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (3, 1), (1, 4), (4, 1)} is an equivalence relation in
{1, 2, 3, 4}

8. Let R be the relation in the natural numbers N = {1, 2, 3, …}

Define by “x + 2y = 10” i.e., let R = ( ){ }, | , , 2 10x y x N y N x y∈ ∈ + = .

Find (a) The domain and range of R (b) R–1

9. Let A = {1, 2, 3, 4, 5, 6}, construct pictorial descriptions of the relation R on A for the following as:

(a) R = {(j, k) | j is a multiple of k}

(b) R = {(j, k) | ( )2
j k A− ∈ }

(c) R = {(j, k) |  (j divides k}

(d ) R = {(j, k) |  j k is a prime

10. Let R be the relation from A = {1, 2, 3, 4, 5} to B = {1, 3, 5} which is defined by “x is less than
y”, write R as a set of ordered pairs:

11. Let L be the set of lines in the Euclidean plane and let R be the relation in L defined by “x is
parallel to y”. Is R a symmetric relation? Why? Is R a transitive relation?

12. Prove that if R is a symmetric relation, then 1R R R−∩ = .
13. Let A = {1, 2, 3}. Give an example of a relation R in A. Such that R is neither symmetric nor

anti-symmetric.
14. If A is a set with the element and B is a set with a elements. Then find the number of relations

possible firm A to B.
15. In N × N show that the relation defined by (a, b) R (c, d) if and only if ad = bc is an equivalence

relation.
16. On the set of Natural numbers N, the relation R is defined “aRb” iff “a divides b”. Show that R is

anti-symmetric.
17. On the set of Integers, the relation R is defined by “aRb” iff “(a – b) is even integer”. Show that

R is an equivalence relation.
18. Give an example of a non-empty set and a relation on the set that satisfies each of the following

properties; draw a digraph of the relation.
(a) Reflexive (b) irreflexive (c) an anti-symmetric relation



RELATIONS 87

19. Let A = {1, 2, 3} determine whether the relation R whose matrix MR is given is an equivalence
relation:

(a)

1 0 0

0 1 1

0 1 1
RM

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

(b)

1 0 1

0 1 0

1 0 0
RM

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

20. Determine whether the relation whose digraph is given below (Fig. 3.15) is an equivalence relation.

Fig. 3.15

21. Let A = {1, 2, 3} and

R = {(1, 1), (1, 4), (4, 1), (4, 4), (2, 2), (2, 3), (3, 2), (3, 3)}

Write the Matrix of R and sketch its graph.

22. Let R = {(1, 2), (3, 4), (2, 2)} and S = {(4, 2), (2, 5), (3, 1), (1, 3)}

Find R oS, S oR, (S oR), (R oS) oR, R oR, S oS, and (R oR) oR.

23. Let R and S be two relations on a set of positive integers.

( ){ } ( ){ }, 2 | , , 7 | 1x x x I S x x x= ∈ = ∈
Find R oS, R oR, R oR oR and R oS oR.

24. Let A = {1, 2, 3, 4, 5, 6, 7} and

R = {(x, y) | x –y is divisible by 3}

Show that R is an equivalence relation. Draw the graph of R.

25. If A = {1, 2, 3, 4} and R = {(1, 2), (2, 3), (3, 4), (2, 1)}

Show that the transitive closure R ∞  is

{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4)}

26. A = {a, b, c}, and R, S are relations on A whose matrices are

1 0 1 1 0 0

1 1 1 0 1 1

0 1 0 0 1 1
R SM M

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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Show that 

1 0 1

1 1 1

0 1 0
SoRM

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

27. Find all the partitions of A= {1, 2, 3}
28. Find the numbers of partitions on A = {a, b, c, d}
29. Let N = {1, 2, 3, …} and a relation R is defined in N × N as follows (a, b) is related to (c, d) if and

only if
a + b = b + c

then show that R is an equivalence relation.
30. If a finite set A has n elements. Prove the following:

(a) There are 
2

2n n−  reflexive relations on A

(b) There are 
2

2n n−  irreflexive relations on A

(c) There are 
2( ) /22 n n+  symmetric relations on A

(d) There are 
2( )/22 n n−  compatibility relations on A

(e) There are 
2( )/22 3 −⋅n n n  anti-symmetric relations on A

Answers:
1. (1) Symmetric (2) Symmetric and transitive (3) Transitive (4) Transitive (5) Equivalence relation

(6) Symmetric (7) Equivalence relation (8) Transitive.

2. R = {(1, 1), (4, 2), (16, 4), (64, 8)}

3. (i) Domain = {1, 16, 81, 256}

Range = {1, 2, 3, 4}

(ii) Domain = {2, 4, 10, 18, 20}
Range = {1, 2, 5, 9, 10}

4. Domain = { /x Z x∈  is multiple of 3}

= {… –12, –9, –6, –3, 0, 3, 6, 9, …}

Range = /y Z y∈  is a multiple of 5}

= {…, –15, –10, –5, –0, –5, 10, 15, …}

5. (a) {(1, 1), (2, 1), (3, 3), (4, 7)}
(b) {(1, 1), (1, 3), (1, 4), (3, 1), (3, 2), (3, 4)}

6. Yes, equivalence relation.

7. R = {(8, 1), (6, 2), (4, 3), (2, 9)}

R–1 = {(1, 8), (2, 6), (3, 4), (4, 2)}

9. R = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}

10. Symmetric and transitive; since:
(i) x is parallel to y P y is parallel to y

(ii) if x is parallel to y and y is parallel to z then x is parallel to z.

17. (a) R = {(x, x), (y, y), (z, z) (z, y)}

19. (a) Yes (b) No
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20. No.

21.

1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

22. R oS = {(4, 2), (3, 2), (1, 4)}

S oR = {(1, 5), (3, 2), (2, 5)}

(R oS) oR = {(3, 2)}

R oR = {(1, 2)};

S oS = {(4, 5), (3, 3)}

(R oR) o R = ∅

23. R oS = ( ){ }, 14 |x x x I S oR∈ =

R oR = ( ){ }, 4 |x x x I∈

R oR oR = ( ){ }, 8 |x x x I∈

R oS oR = ( ){ }, 2 |x x x I∈

27. The different partitions of A are

{{1, 2, 3}}, {{1}, {2, 33}}, {{2}, {1, 33}}, {{3}, {1, 3}}, {{13, 52}, {3}}

28. Number of different partitions on A is 15.
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4

Functions and Recurrence Relations

��� ����	
����	�

The concept of relation was defined very generally in the preceding chapter. We shall now discuss a
particular class of relations called Functions. They are widely used in Mathematics and the concept is
basic to the idea of computation.

�� ������	�

Definition 4.1: Let A and B be any two sets. A relation f from A to B is called function if for every

a A∈  there is a unique element b B∈ , such that ( ), .a b f∈

If f is a function from A to B, then f is a function from A to B such that

(i) Domain f = A

(ii) Whenever ( ),a b f∈  and ( ),a c f∈ , then b = c

The notation f: A → B, means f is a function from A to B.

Functions are also called Mappings or Transformations. The terms such as “correspondence” and
“operation” are used as synonyms for “function”.

Given any function f: A → B, the notation f(a) = b means ( ),a b f∈ . It is customary to write b = f
(a). The element a A∈  is called an argument of the function f, and f (a) is called the value of the
function for the argument a or the image of a under f.

Fig. 4.1 Representation of a function

Example 1: Let A = {1, 2, 3}, B = {p, q, r} and
f = {(1, p), (2, q), (3, r)}. Then f (1) = p, f (2) = q, f (3) = r, clearly f is a function from A to B.
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Example 2: Consider the sets A = {a1, a2, a3} and B = {b1, b2, b3}.
Let f = {(a1, b1), (a2, b2), (a3, b3)} every element of A is related to exactly one element of B.
Hence f is function (see Fig. 4.2).

Fig. 4.2

If f: A → B is a function, then A is called the Domain of f and the set B is called the codomain of f.
The range of f is defined as the set of all images under f.

It is denoted by f (A) = {b | for some a in A, f (a) = b} and is called the image of A in B. The Range
f is also denoted by Rf.

If Df denotes the domain of f : A → B, and Rf denotes the Range of f, then Df  = A and fR B⊆ .

A function need not be defined by a formula. While defining the property, it is customary to identify

the function by a formula for example f (x) = x3 for ∈x R  represents the function f = {(x, x3): ∈x R }.

Where R is the set of real numbers.

���� �������������������������

Definition 4.2: If f: A → B and P A⊆ , then ( )f P B∩ ×  is a function from P → B, called the

Restriction of f to P. Restriction of f to P is written as f  |  P: P → B is such that (f | P) = ( )f a a P∀ ∈ .

If g is a restriction of f, then f is called the extension of g.

The domain of f  | P is P.

If g is a restriction of f, then Dg I
∧

Df and g (a) = f (a) ga I D
∧

 and g I f
∧

.

Example: Let : ,→f R R  be defined by f(x) = x3.

If N is the set of Natural numbers = {0, 1, 2,…} then N R⊆  and f | N = {(0, 0), (1, 1), (2, 2)…}

��� 	����	�	�����  ��!�"��#����	��	����	�	���������	�$

Definition 4.3: A mapping f: A → B is called one-to-one mapping if distinct elements of A are
mapped into distinct elements of B,
i.e., f is one-to-one if

( ) ( )1 2 1 2a a f a f a≠ ⇒ ≠
or equivalently f (a1) = f (a2) ⇒ a1 = a2

Example: f: R → R defined by f(x) = 3x x R∀ ∈  is one–one since

( ) ( )1 2 1 2 1 2 1 23 3 ,f x f x x x x x x x R= ⇒ = ⇒ = ∀ ∈ .
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��� 	��	���  ��!�"%��#����	�$

Definition 4.4: A mapping f: A → B is called onto-mapping if the range set Rf = B.

If f: A → B is onto, then each element of B is f-image of atleast one element of A.

i.e., { ( ) : }∈ =f a a A B

If f is not onto, then it is said to be into mapping.

Example: f: R → R, given by f(x) = 2x x R∀ ∈  is onto.

��& '�#����	��"	����	�	��(�	��	$

Definition 4.5: A mapping f: A → B is called one-to-one, onto if it is both one-to-one and onto.

Example: f: R → R, defined by f (x) = 3x + 2 is a bijection.

��) �
�����*���  ��!

Definition 4.6: If f: A → A is a function such that every element of A is mapped onto itself then f is
called an Identity mapping it is denoted by IA.

i.e., ( )f a a a A= ∀ ∈  then f: A → A is an Identity mapping.

We have ( ){ }, :AI a a a A= ∈

��+ �	� 	%���	��	��������	�%

Definition 4.7: Let f: A → B, and g: B → C be two mappings. Then the composition of two mappings

f and g denoted by gof is the mapping from A into C defined by gof = {(a, c) | for some b, ( ),a b f∈

some ( ) },b c g∈ .

i.e., gof: A → C is a mapping defined by

(gof ) (a) = g (f (a)) where a A∈

Note: In the above definition it is assumed that the range of the function f is a subset of B (the Domain of g), i.e.,

f gR D⊆  If ,f gR D⊆  then gof is empty.

(i) The composition of functions is not commutative, i.e., fog gof≠  where f and g are two functions.

(ii) gof is called the left composition g with f.

Example: Let f: R → R; g : R → R be defined by f (x) = x + 1, g (x) = 2x2 + 3, then
(gof ) (x) = g [f (x)] = g [(x + 1)] = 2(x + 1)2 + 3
(fog) (x) = f [g (x)] = f (2x2 + 3) = 2x2 + 3 + 1 = 2x2 + 4

gof and fog are both defined but gof fog≠

Theorem 4.1: Let f: A → B, then g: B → C be both one-one and onto functions, then

gof: A → C is also one-one and onto.



FUNCTIONS AND RECURRENCE RELATIONS 93

Proof:

Let a1, 2a A∈ , then

(gof ) (a1) = (gof ) (a2) ⇒ g [f (a1)] = g [f (a2)]

⇒ f (a1) = f (a2) (� g is one-one)

⇒ a1 = a2 (� f is one-one)

Hence gof is one-to-one

Now, from the definition, gof: A → C is a function g: B → C is onto, then c C∈ ⇒  There is some

element b B∈  such that ⇒ c = g (b) and f: A → B is onto, then by definition there exists an element

a A∈ , such that f (a) = b

We have c = g (b) = g [f (a)] = (gof ) (a)

⇒  (gof ): A → C is onto

 Hence gof is both one-one and onto.

��, �%%	�����-��*�	����  ��!%

Definition 4.8: If f: A → B, g: B → C and h: C → D are three functions, then gof: A → C, hog:

C → D and (hog) of: A → D, can also be formed assuming that a A∈ , we have

(hog) of (a) = (hog) [f (a)]

= h [gf (a)]

= h[gof (a)] = ho(gof ) (a)

Thus the composition of functions is associative.

��. �	�%�����������	�

Definition 4.9: Let f: A → B, f said to be a constant function if every element of A is mapped on to the

same element of B.

i.e., If the Range of f has only one element then f is called a constant mapping.

Example: f: R → R, defined by

( ) 5f x x R= ∀ ∈  is a constant mapping we have Rf = {5}

���/ ��-��%����  ��!

Definition 4.10: Let f: A → B, be one-one, onto mapping (bijection), then f –1: B → A is called the
inverse mapping of f.

f –1 is the set defined as

( ) ( ){ }1 , | ,f b a a b f− = ∈
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Note:
(i) In general the inverse f –1 of a function f: A → B, need not be a function. It may be a relation.

(ii) If f: A → B is a bijection and f (a) = b, then a = f –1 (b) where a A∈ , and b B∈

Example:
(i) Let A = {a, b, c}, B = {1, 2, 3} and f = {(a, 1), (b, 3), (c, 2)} clearly f is both one-to-one and

onto

∴ f –1 = {(1, a), (2, c), (3, b)} is a function from B to A.

(ii) Let R be a set of real numbers and f: R → R be given by

( ) 5f x x x R= + ∀ ∈  , i.e., ( ){ }, 5 |f x x x R= + ∈

then ( ){ }1 5, |f x x x R− = + ∈  is a function from R to R.

Theorem 4.2: If f: A → B be both one-one and onto, then f –1: B →  A is both one-one and onto.

Proof: Let f: A → B be both one-one and onto. Then there exist elements 1 2, ,a a A∈  and elements

1 2,b b B∈  such that

f (a1) = b, and f (a2) = b2

or  a1 = f –1(b1) = and a2 = f –1(b2)
Now, let f –1(b2) = f –1(b2) then

f –1(b1) = f –1 (b2)

⇒ a1 = a2

⇒ f (a1) = f (a2)

⇒ b1 = b2

Thus f –1 is one-one

Again since f is onto, for b B∈ , there is some element a A∈ , such that f (a) = b.

Now   f (a) = b

⇒ a = f –1 (b)

⇒ f –1 is onto

Hence f –1 is both one-one and onto

Theorem 4.3: The inverse of an invertible mapping is unique.

Proof: Let f: A → B

By any invertible mapping. If possible let

g: B → A

and h: B → A

be two different inverse mappings of f.

Let b B∈  and

g (b) = 1 1,a a A∈

h (b) = 2 2,a a A∈
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Now g (b) = a1, ⇒ b = f (a1)

and h (b) = a2 ⇒ b = f (a2)

Furthermore b = f (a1) and b = f (a2)

⇒ f (a1) = f (a2)

⇒ a1 = a2 (� f is one-one)

This proves that g (b) = ( )h b b B∀ ∈

Thus, the inverse of f is unique
This completes the proof of the theorem.

Theoem 4.4: If f: A → B is an invertible mapping, then f of –1 = IB and f –1 of = IA.

Proof: f is invertible, then f –1 is defined by f (a) = b ⇔ f –1 (b) = a where a A∈  and b B∈
To prove that f of –1 = IB

Let b B∈  and f –1 (b) = ,a a A∈  then

   f of –1 (b) = f [f –1 (b)]
  = f (a) = b

Therefore ( )1fof b b b B− = ∀ ∈

⇒ f of –1 = IB

and f –1 of (a) = f –1[f (a)] = f –1 (b) = a

Therefore    f –1 of (a) = a a A∀ ∈

⇒ f –1 of = IA

Theorem 4.5: If f: A → B is invertible then  f –1 of = IA’ and f of –1 = IB

Proof: Left as an exercise.

Theorem 4.6: Let f: A → B, and g: B → C. The function g = f –1 , only if gof = IA’ and fog = IB.

Proof: Left as an exercise.

Theorem 4.7: If f: A → B, and g: B → C, are both one-one and onto, then (gof )–1 = f –1 og–1.

Proof:
f: A → B is one-one and onto

g: B → C is one-one and onto,

Hence gof: A → C is one-one and onto

⇒  (gof)–1 : C → A is one-one and onto

Let a A∈ , then there exists and element b B∈  such that f (a) = b ⇒ a = f –1 (b).

Now, b B∈ ⇒  there exists an element c C∈  such that g (b) = c ⇒ b =g–1(c)

Then (gof ) (a) = g [f (a)] = g (b) = c ⇒ a = (gof )–1 (c)  … (1)

(f –1 og–1) (c) = f –1 [g–1 (c)] = f –1 (b) = a ⇒ a = (f –1 og–1) (c)  … (2)

Combining (1) and (2), we have
(gof )–1 = f –1 og–1
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Definition 4.11: Let U be a universal set and A be a subset of U. Then the function

:A Uψ →  [0, 1] defined by

( ) 1 if

0 ifA

x A
x

x A
ψ

∈⎧
= ⎨ ∉⎩

is called a characteristic function of the set A.

������  ��1��������2��3��������������4�������

Let A and B be any two subsets of a universal set U. Then the following properties hold for all :∈x U

(1) ( ) 0A x Aψ = ⇔ = ∅

(2) ( ) 1A x A Uψ = ⇔ =

(3) ( ) ( )A Bx x A Bψ ψ⊆ = ⇔ ⊆

(4) ( ) ( )A Bx x A Bψ ψ= ⇔ =

(5) ( ) ( ) ( ).A B A Bx x xψ ψ ψ∩ =

(6) ( ) ( ) ( ) ( )A B A B A Bx x x xψ ψ ψ ψ∪ ∩= + −

(7) ( ) ( )1A Ax xψ ψ= −

(8) ( ) ( ) ( )A A A BB x x xψ ψ ψ ∩− = −
The operations I, =, +, . and –, used above are the usual arithmetical operations.
The values of characteristic functions are always either 1 or 0. The properties (1) to (8) can easily be

proved using the definition of characteristic functions.
Set identities can also be proved by using the properties characteristic functions.

Example: Show that ( ) =A A

Solution: ( )( )ψ A x  = ( )( )1 ψ− A x

( )( )1 1 A xψ= − −

( )A xψ= ⇒ ( ) =A A

��� %	5-�
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Example 1: On which sets A will identity function IA : A → A be (i) one-one (ii) an onto function.

Solution: A can be any set
(i) The identity function is always one-one and

(ii) The identity function is always onto.

Example 2: Can a constant function be (i) one-one (ii) onto.
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Solution: If f is a constant function, the co-domain of f consists of single element. Therefore
(i) a constant function is one-one if the domain of f contains a single element.
(ii) a constant function is always onto.

Example 3: f: R → R is defined by f (x) = a x + b, where a, b, x R∈  and 0a ≠ .

Show that f is invertible and find the inverse of f.
Solution: Firstly, we shall show that f is one-to-one.

Let 1 2,x x R∈  such that f (x1) = f (x2)

⇒ a x1 + b = a x2 + b

⇒ ax1 = ax2

⇒ x1 = x2

Thus f is one-one
To show that f is onto

Let y R∈  such that y = f (x)

⇒ y = a x + b

⇒ a x = y – b

i.e., given y R∈ , there exists an element

( )1
x y b R

a
= − ∈ , such that ( )f x y=

this proves that f is onto
Hence f is one-one and onto
Hence f is invertible and

( ) ( )1 1
yf y b

a
− = −

Example 4: Let U = {a, b, c, d, e, f } and A = {a, d, e} then find XA, where XA denotes the characteristic
function of A.
Solution:

XA = {(a, 1), (b, 0), (c, 0), (d, 1), (e, 1), (f, 0)}

Since ( ) 1,Aa A X a∈ ⇒ = ( ) 1,Ad A X d∈ ⇒ =  and ( ) 1,Ae A X e∈ ⇒ = b, c, f are not the

members of A,

Thus  XA (b) = XA (c) = XA (f ) = 0

Example 5: Let A and B be subsets of a universal set U  then prove A B A BX X X∩ = .

Solution:

⇒ XA (a) = XB (a) = 1

⇒ XA (a) XB (a) = 1



98 DISCRETE MATHEMATICAL STRUCTURES

Let ( )b A B ′∈ ∩ , then ( ) 0A Bb A B X X b∉ ∩ ⇒ ∩ =
Now ( ) ( ) 0A Bb A B X X b′∈ ∩ ⇒ ∩ =

also ( ) ( )' ' 'b A B b A B∈ ∈ ⇒ ∈ ∪

orb A b B′ ′⇒ ∈ ∈
⇒ XA (b) = 0 or XB (b) = 0

⇒  (XA XB) (b) = XA (b) XB (b) = 0

Hence by definition

A B A BX X X∩ = .

�6��� � % � ����

1. Define the terms:
(i) Function

(ii) One-one function
(iii) Onto function
(iv) Identify function

2. Let f: N → N, f (x) = 2 x + 3, N being the set of natural numbers. Prove that f is injection but not
surjection.

3. Show that the function f from the reals into the reals defined by f (x) = x2 + 1 is one-to-one, onto
function and find f –1.

4. A binary operation b on a set A is said to be associative if b (x, b (y, z)) = b (b (x, y), z) for all

; , ,x y z A∈  which of the operations are associative?

(a) b (x, y) = x – y
(b) b (x, y) = x2 + y2

(c) b (x, y) = max {x, y}, where max {x, y} denotes the larger of the two numbers x and y.
(For example max {5, 7} = 7, max {–6, 2} = 2)

5. If A = {1, 2, 3, 4} and B = {a, b, c, d}, determine if the following functions are one-to-one or onto.
(a) f = {(1, a), (2, a), (3, b), (4, d )}
(b) g = {(1, e), (2, b), (3, a), (4, a)}
(c) h = {(1, d ), (2, b), (3, a), (4, c)}

6. A = {–1, 0, 2, 5, 6, 11 f : A → B is a function given by f (x) = x2 – x – 2 for all x A∈ . Find the

range of f. If f an onto function.

7. Let R0 be the set of all non-zero real numbers, show that f: R0 → R0 defined by ( ) 1
f x

x
=  for all

0x R∈  is one-to-one and onto for all 0x R∈  is one-to-one and onto.

8. Let f: S → T be a function; Let A and B be subsets of S, and D and E be subsets of T. Prove the
following theorems:
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(i) A B⊂ , then ( ) ( )f A f B⊂

(ii) D E⊂ , then ( ) ( )1 1f D f E− −⊂

(iii) ( ) ( ) ( )f A B f A f B∩ ⊂ ∩
9. A = {1, 2, 3}, B = {p, q}, C = {a, b, f: A → B and g: B → C are given by f = {(1, p), (2, q),

(3, q)}, g = {(p, b), (q, b)} show that: gof = {(1, b), (2, b), (3, b)}.

10. X = {1, 2, 3} and f, g and h are function from X to X given by f = {(1, 2), (2, 3), (3, 1)}, g = {(1, 2),
(2, 1), (3, 3)}, h = {(1, 1), (2, 2), (3, 1)} find f og, g of, f og of, h of, h oh, and g oh.

11. R is the set of real numbers, given that f (x) = x + 2, g (x) = x – 2, and h (x) = 3x x R∀ ∈ .

Find g of, f og, f of, g og, f oh, h og, h of, and f ogoh

12. Let A = {1, 2, 3 …, n}, {n ≥ 2), and B = {a, b} find the number of subjections from A onto B.

13. Let f: R → R be defined by f (x) = 3x + 4, show that f is one-one and onto. Give a formula that
defines f –1.

14. Let A = R – {3}, and let f: A → B be defined by ( ) 2

3

x
f x

x

−=
−

, show that f is one-to-one and

onto. Find f 1.

15. Let the functions f: R → R and g: R → R be defined by f (x) = 2 x + 1, g (x) = x2 – 2. Find
formulas which define the functions g of and f og.

16. Let U = {a, b, c, d, e}, A = {c, d} and B = {a, d, e}, find (1) XA (2) XB.

17. Show that the functions :f N N N× →  and :g N N N× →  given by ( , )f x y x y= +  and

g(x, y) = xy  are onto but not one-to-one. (OU Mar. 2002)

18. If x and y are finite sets, find a necessary condition for the existence of one-to-one mapping from
x to y. (OU Mar. 2001)

19. Let A = B = R, the set of real number. Let :f A B→  be given by the formula 2( ) 2 1f x x= −  and

let :g B A→  be given by 
1 1

( ) 3 .
2 2

g y y= +  Show that f is a bijection between A and B and g

is a bijection between B and A. (OU Dec. 2000)

Answers:
3. f –1 (Y) = (Y –1)1/2.
4. (c)

5. (c)

6. f (A) = B = {–2, 0, 18, 28, 108}

10. f og = {(1, 3), (2, 2), (3, 1)}

g of = {(1, 1), (2, 3), (3, 2)}

f og of = {(1, 2), (2, 1), (3, 3)}
h of = {(1, 2), (2, 1), (3, 1)}

h oh = {(1, 1), (2, 2), (3, 1)}

g oh = {(1, 2), (2, 3), (3, 2)}
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11. g of (x) = x

f og (x) = kx

f of (x) = x + 4

go g (x) = x – 4

f oh (x) = 3x + 2

h og (x) = 3x – 6
h of (x) = 3x + 6

f ogoh (x) = 3x

12. 2n – 2.

13. ( )1 4

3

y
f y

−=

14. ( )1 2 3

1 4

y
f y

−=
−

15. g of (x) = 4x2 + 4x – 1, f og = 2x2 – 2
16. XA = {(a, 0), (b, 0), (c, 1), (d, 1), (e, 0)}

XB = {(a, 1), (b, 0), (c, 0), (d, 1), (e, 1)}
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Recursion is a technique of defining a function, a set or an algorithm in terms of itself. For example:
consider the set of natural numbers, we introduce the method of generating the set of natural numbers by
recursion.

The natural numbers (including zero) are those objects which can be generated by starting with an
initial object 0 (zero) and from any object “n” already generated passing to another uniquely determined
object n+, the successor of n. The objects differently generated are always distinct. Thus the natural
numbers appear as a set of objects 0, 0+, 0++, 0+++, …

The transition to the usual notation is made upon introducing 1, 2, 3, 4, … to stand for 0+, 0++, 0+++,

0++++, … and then employing the notation. The set of Natural numbers is denoted by N.

The set of natural numbers can also be generated by starting with usual null set ∅  and notion of a

successor set.

If A is a given set, then the successor of A is the set { }A A∪ . It is denoted by A+

Thus { }+ = ∪A A A .

Let ∅  be the null set, then find the successor sets of ∅  these sets are:

{ } { } { }{ }, , ,+ ++∅ ∅ = ∅ ∪ ∅ ∅ = ∅ ∪ ∅ ∪ ∅ ∅

They can also be written as { }, ,+∅ ∅ = ∅

{ }{ },++∅ = ∅ ∪ ∅
renaming the ∅  as 0 (zero),

{ }0 1+ +∅ = = ∅ =

{ }{ }1 ,++ +∅ = = ∅ ∅ =  {0, 1} = 2, ...
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We get the set {0, 1, 2, 3, …}. Each element in the above set is a successor set of the previous
element, except for the element 0. (0 is not the successor of any element).

Now we consider recursion in terms of successor:
Let S denote the successor. We define
(i) x + 0 = x (ii) x + S (y) = S (x + y)

In this definition (i) is the basis, and it defines addition of 0. The recursive part defines addition of
the successor of y.

Example 1:
3 + 2 = 3 + S (1)

= S (3 + 1)
= S (S (3 + 0)) = S (S (3)) = S (4) = 5

Now we start with a set of three functions called basis functions or initial functions of:

1. Zero function: Z: Z (x) = 0

2. Successor function S: S (x) = x + 1

3. Projection function ( )1 1 1 2 3 1: : , , , ...n n
nx x x x x∪ ∪ =  (or generalized identify function).

Example 2:

S (3) = 3 + 1 = 4, S (4) = 4 + 1 = 5,

( )2
1 ,x y x∪ = , ( )3

2 , , rα β β∪ = , ( )5
3 1, 7 , 6 , 2 , 4 6∪ = , ( )6

3 9 , 3, 2 , 5, 6 , 8 2∪ = , etc.

The initial functions are used in defining other functions by induction.
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The idea of a sequences is important to computer science. A sequence is defined as the list of objects in
order. There are several ways of representing a sequence. One way is to list first terms of the sequence
till the rule for writing down other terms is obtained.

For example: The sequence {2, 4, 6, 8, …} is a sequence whose nth terms in 2n. Another way is to
give a rule of writing the nth terms of the sequence.

The sequence {1, 4, 7, 10, …} can be written as
{Sn} where Sn = 3n + 1, n = 0, 1, 2, ...

We can represent a sequence by using a recursive relation:
The recurrence relation
an = an – 1 + 5, with a1 = 6, recursively defines the sequence 6, 11, 16, …
a1 = 6 is called the initial condition.

����� %����8�

Definition 4.12: Let A be a non-empty set, which we refer to as the alphabet. A string on the set A is a
finite sequence of elements of A.

The set of all strings on A is denoted by A* (or by A+).

Example 1:
(i) a3 a2 a1 a4 is a string on A = {a1, a2, a3, a4}

(ii) 246107 is a string on the alphabet consisting of the ten digits {0, 1, 2, 3, … 9}
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Usually we write a string on A without using commas between the elements of the string.
If a1, a2, a3, …, an is a string then the length of the string is n.

Example 2: The length of the string 621708 is 6
If a1, a2, …, an is a segment string, then ar+1 ar+2 ... as where 1 < r < s < n is called a (proper) segment

of the string. If r = 0, then ar+1 ar+2 ...as is called an initial segment of the string.

Example 3: 537 is an initial segment of the string 537108 and 710 is a segment of the string 537108.
Let a1 a2 …, am and b1 b2 … bn be strings. There concatenation is a1 a2 and b1 b2 … bn. It is also

called the product or Join and is a length m + n. For example: 537 and 108 are two strings and their
catenation is the string 537108.

������ �9�����������9��8��4�������

Definition 4.13: Let x be any real number, then the greatest integer that does not exceed x is called the
Floor of x.

The FLOOR of x is denoted by x⎢ ⎥⎣ ⎦
Examples:

5.14 5=⎢ ⎥⎣ ⎦

5 2⎢ ⎥ =⎣ ⎦

7.6 8− = −⎢ ⎥⎣ ⎦

6 6=⎢ ⎥⎣ ⎦

3 3− = −⎢ ⎥⎣ ⎦

Definition 4.14: Let x be a real number, then the least integer that is not less than x is called the
CEILING of x.

The CEILING of x is denoted by x⎡ ⎤⎢ ⎥
Examples:

2.15 3=⎡ ⎤⎢ ⎥

5 3⎡ ⎤ =⎢ ⎥

7.4 7− = −⎡ ⎤⎢ ⎥

2 2− = −⎡ ⎤⎢ ⎥

Note: If x is an integer, then x x=⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎣ ⎦
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Definition 4.15: Let x be any real number. The Integer value of x is the value of x converted into an
integer by deleting the fractional part of x. It is denoted by INT (x).
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Example:
INT (2.33) = 2, INT (–6.4) = –6

INT (9) = 9

Note: If x is a positive Integer then INT (x) = x⎢ ⎥⎣ ⎦  and if x is a negative integer then INT (x) = x⎡ ⎤⎢ ⎥ .

�����& �:��94���-�94���4������

Definition 4.16: Let x be a real number, then the absolute value of x denoted by ABS (x) or | x | is
defined as follows:

| x | = –x if x < 0

| x | = x if x ≥  0

Example:
| 4.14 | = 4.12, | 7 | = 7
| –3.5 | = 3.5, | –0.12 | = 0.12

Note: | x | = | –x |
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Definition 4.17: Let M be positive number, then the Logarithm of M to the base a, written loga M
represents the exponent to which a must be raised to obtain M. ax = M and loga M = x are equivalent
statements.

Example:
If 34 = 81 then log3 81 = 4

log10 0.01 = –2 since 10–2 = 0.01

Note: Logarithms to base 10 are called common logarithms and logarithms to the base e are called natural logarithms
where e = 2.718281.

Usually log x mean log10 x.
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Definition 4.18: Let X and Y be sets and A be a subset of X. A function f from A to Y is called a partial
function from X to Y. The set A is a called the domain of f. If the domain of f is the set X, then f is called
a total function from X to Y.

Let f be a function from N (the set of Natural Numbers) to N given by f (a) = b if a = b2. Then the
domain of the function f is the set of squares and f is a partial function. We define Nn to be the set of all
n-tuples of elements of N. Any function f : Nn → N is a total function. If A is a subset of Nn, then the
function f : A → N is a partial function. The function f (x, y) = x + y, for all elements ,x y N∈  is a total

function. But the function defined by S (x, y) = x – y, for all ,x y N∈  is a partial functions.
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Definition 4.19: Let g: Nn → N and h: Nn + 2 → N be functions. We say that f: Nn + 1 → N is defined
from g and h by Primitive recursion if f satisfies the conditions:
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f (x1, x2, …, xn, 0) = g (x1, x2, …, xn)

and f (x1, x2, …, xn, y + 1) = h (x1, x2, …, xn, y, f (x1, x2, …, xn, y)) (where y is the inductive variable).

From the above definition it is clear that Primitive recursion (or recursion) is the operation in the
operation in which a function f of (n +1) variables is defined by using two other functions g and h of n
and (n + 2) variables.

Definition 4.20: A function f is said to be Primitive recursive if it can be obtained from the initial
functions by a finite number of operations of composition and recursion (i.e., Primitive recursion).

Example 1: Show that addition is primitive recursive.
Solution: Addition is defined by x + 0 = x, x + (y + 1) = (x + y) + 1 for all natural numbers x, y

We define f (x, y) = x + y such that
f (x, y + 1) = x + y + 1 = (x + y) + 1

= f (x, y) + 1
= S (f (x, y))

also f (x, 0) = x
More formally we define f (x, y) as

( ) ( )1
1, 0f x x x= = ∪

( ) ( )( )( )3
3, 1 , , ,f x y S x y f x y+ = ∪

If follows that f comes from Primitive recursion from 1
1∪  and 3

3∪  and so is f Primitive recursive

Example 2: Show that multiplication * defined by x * 0 = 0, x* (y + 1) = x* y + x is Primitive recursive.
Solution: We define μ (x, y) to be x*  y. so that μ (x, 0) = 0 = Z (x),

( ) ( ), 1 ,x y x y xμ μ+ = +

( )( ), ,f x x yμ=

( ) ( ) ( )( )( )( )( )3 3
3 1, 1 , , , , , , ,x y f x y x y x y x yμ μ μ+ = ∪ ∪

Where f is the addition function.

Example 3: Let x, y be positive integers and suppose Q is defined recursively as follows:

( ) ( )
0 if

,
, 1 if

x y
Q x y

Q x y y y x

<⎧
= ⎨ − + ≤⎩

find (i) Q (4, 7) (ii) Q (14, 6).
Solution:

(i) Q (4, 7) = 0 since 4 < 7

(ii) Q (14, 6) = Q (14 – 6, 6)

= Q (8, 6) + 1

= Q (8 – 6, 6) + 1 + 1

= Q (2, 6) + 2
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= 0 + 2
= 2

Example 4: Compute (i) A (1, 1), (ii) A (1, 2), (iii) A (2, 1) where A: N2 → N, (called Ackerman’s
function) is defined by

A (0, y) = y + 1
A (x + 1, 0) = A (x, 1)

A (x + 1, y + 1) = A (x + 1, y)
Solution:

(i) A (1, 1) = A (0 + 1, 0 + 1)
= A (0, A (1, 0))
= A (0, a (0, 1))
= A (0, 1 + 1)
= A (0, 2)
= 2 + 1 = 3

(ii) A (1, 2) = A (0 + 1, 1 + 1)
= A (0, A (1, 1))
= A (0, 3) = 3 + 1 = 4

(iii) A (2, 1) = A (1 + 1, 0 + 1)
= A (1, A (2, 0))
= A (1, A (1, 1))
= A (1, 3)
= A (0 + 1, 2 + 1)
= A (0, 4)
= 4 + 1 = 5

The functions given below are Primitive recursive:
1. Sign function

The sign of x, denoted by Sg(x) is defined by

Sg(0) = 0

Sg(x) = 1 for x ≠ 0

or Sg (0) = Z(0)

( ) ( )( )( )( )2
21 ,g gS y S Z y S y+ = ∪

Sign function is also called non-zero test function.
2. Zero test function:

It is denoted by gS  and is defined as ( )0 1,=gS ( )1 0gS y + =
3. Predecessor function:

It is denoted by P, and is defined as

( ) ( ) ( )( )2
10 0, 1 ,P P y y y P y= + = = ∪
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4. Proper subtraction function:

It is denoted by −�  and is given by

x −�  0 = x, x – (y + 1) = P (x – y)
that is x – y = x – y for x > y

and x −� y = 0 for x < y

(x −� y does not map into N, so we do not consider it here)
5. Absolute function: |     |

It is defined as

| x – y | = (x −� y) + (y −� x)
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Hashing Function
In this section, we discuss Hashing. A Hashing function is used to store and retrieve data. We know that
‘files; are used to store information on a computer. Each file contains many records and each record
contains a field which is designated as a key to that record. The key has a value that identifies a record.
Any transformation which maps the internal bit representation of the set of keys to a set of addresses is
called a Hashing function. Ideally, each key would map to a unique hash address. A good hash function
maps a random selection of keys uniformly across the hash table. A poor hash function results in frequent
collisions. Various hash functions are available. Extraction and compression are two well-known methods
of hashing which are practical for relatively small hash tables. Probabilistic hashing and virtual hashing
are advanced methods for hashing. We now explain a method known as the division method, with the
help of an example; in which the hashing function h defined by the division is

h(k) = k (mod n)

The set {0, 1, 2, …, n – 1} is the address set, and h(k) is the remainder of dividing k by the integer
n. The remainder is a member of the address set.

Example 1: Assume that there are 10,000 customer account records to be stored and processed. The
company’s computer is capable of searching a list of 100 items in an acceptable amount of time and 101
lists are available for storage. If hashing function h is defined from the set of 7-digit account number to
the set {0, 1, 2, …, 100} as

h(k) = k (mod 101)

The customer with account number 3563821 will be assigned to the list 36.

Example 2: Suppose that 7,500 customer account records must be stored and processed the company’s
computer is capable of searching a list of 58 items in an acceptable amount of time. There are 59 linked
lists of storage. A hashing function h is defined from the set of 7-digit account numbers to the set {0, 1,
3, …, 58} is defined as follows:

h takes the first three digits of the account number as one number and the last four digits as another
number, adds them and then applies the mod 59 function. Determine which list the customer with
customer account number (key) 2614902 should be attached.

Solution: Consider 2614902

We split up the number as 261 and 4902 adding we get 261 + 4902 = 5163.
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Dividing by 59, we get 30 as the remainder the record with account number 2614902 will be assigned
to the list 30

i.e., h(2614902) = 30

Folding: In this method of hashing, the key (customer record number) is divided in several parts. The
parts are then added to for another number in the required range.

For example: Consider the customer record number 37124865 (having 8-digit key). If 3-digit address
is to be obtained then h(37124865) = 371 + 248 + 65 = 684.

�6��� � % � ���

1. Show that exponentiation defined by f (x, y) = xy is Primitive recursive.
2. Show that the function [x / 2] which is equal to the greatest integer which is < x / 2 is Primitive

recursive.
3. Show that the cosine of x, C ox defined by C 00 = 1, C ox = 0 for x > 0 is Primitive recursive.
4. Prove that the square function given by f (y) = y2 is primitive recursive.

5. Show that the Ackerman’s function A: N2 → N which is defined by:

A (0, y) = y + 1
A (x + 1, 0) = A (x, 1)

and A (x + 1, y + 1) = A (x + 1, y)
is not primitive recursive.

6. Show that the function

( ) ( )
/ 2 when is even

1 / 2 when is odd

x x
f x

x x

⎧
= ⎨ −⎩

is primitive recursive.
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In the previous section, we defined the set of recursive function. In this section we shall first explain
what is meant by a numeric function and then study recurrence relations.

Functions whose domain is the set of natural numbers and whose range is the set of real numbers are
called numeric function.

For example

0, 0 2

2 5, 3−

≤ ≤⎡
= ⎢

+ ≥⎣
r r

r
a

r

is a numeric function. Bold face lowercase letters are used to denote Numeric functions for example
a = {a0, a1, a2, a3, …ar,…}

is a numeric function where a0, a1, a2, a3, …ar,…denotes the values a at 0, 1, 2, 3, … r, …. If a and b
denote two numeric functions then their sum and product are also numeric functions. If k is a scalar and
a is a numeric function. The k is also numeric function.
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If a = { a0, a1, a2, a3} is a

If a = { a0, a1, a2, …ar,…} is a numeric function, then ar+1 – ar is called its forward difference at r.
It is denoted by raΔ . The backward difference at r 1 is ar – ar–1. The backward difference of a at r is
denoted by ra∇ .

The convolution of two numeric function a and b is a numeric function c such that

Cr = a0 br + a1 br–1 + a2 br–2 + .. + ar–1 b1 + ar b0

0

r

i r i
i

a b −
=

= ∑
The convolution of a and b is denoted by a * b

For example, let a and b denote two numeric functions such that

ar = 5r r3, r > 0

and br = 3r r3 0, r > 0

Then the convolution a * b is given by

1

0

5 3
r

i i
r

i

C −

=

= ∑

���& !��������!�������	�%

We introduce now an alternative way to represent numeric functions. For the numeric function

a = { a0, a1, a2, …ar,…}

we define an infinite series

a0 + a1 z +a2 z2 + … + arz
r + … which is called the generating function of a. It is denoted by A (Z).

The coefficient of zr is A (z) is the value of the numeric function a. For example, the generating function
of a = (20, 21, 22, … 2r, …) is z0 + 2z + 2z2 + 23z3 + … + 2rzr  +…

The above infinite series can be written in the closed form as

( ) 1

1 2
A z

z
=

−
In A (z) = a0 z0 + a1 z1 + a2 z2 + … + ar z

r + …

The term a0 z0 = a0 is called the constant term, the term ar z
r is the term of degree r. Note that A(z)

generates its coefficients. If all the coefficients are zero from some point on, A(z) is just a polynomial. If
0≠ra  and as = 0 for s > r + 1 then A (z) is  a polynomial degree r.

Let A (z) = a0 z0 + a1 z1 + a2 z2 + … + ar z
r + …

and B (z) = b0 z0 + b1 z1 + … + br z
r + …

denote the generating functions. A (z) and B (z) are equal if ar = br for each

r ≥ 0  and ( ) ( ) ( )
0

r
r r

r

A z B z a b z
α

=

+ = +∑



FUNCTIONS AND RECURRENCE RELATIONS 109

If k is a scalar then
k A (z) = k (a0 z0 + a1 z1 + … + ar zr + …)

0

α

=

= ∑ r
r

r

k a z

The product A (z) B (z) is defined as

A (z) B (z) = a0 b0 z0 + (a0 b1 + a1 b0) z + (a0 b2 + a1 b1 + a2 b0) z2 +

 … + (a0 br + a1 br–1 + … + ar b0) zr + …

for example, the generating function of the Numeric function
ar = 5.2r, r > 0

is ( ) 5

1 2
A z

z
=

−

the generating function of the Numeric function
ar = 5.2r,  r > 0

is ( ) 25

1 5
A z

z
=

−

also the generating function of the numeric function
ar = 5r+2, r > 0

is ( ) 1

1 2
A z

z
=

−
1

1 5 z
+

−

���&�� ��=;1������'�3�<��4���2��4;������4������

Let a be a numeric function. By the asymptotic behaviour of a, we mean how the volume of the function
a varies for large r.

For example: for

ar = 3r2, r > 0

The value of the Numeric function increases for increasing r, and for

2
, 0rb r

r
= >

The value of the function decreases for increasing r. Finally for

Cr = 7, r > 0

The value of the numeric function remains constant for increasing r.
Let a and b be two numeric functions.
If there exist two positive constants r and k such that

|br| ≥  |ar| for r ≥ k

then we say that the numeric function a asymptotically dominates b, or the Number function b is dominated
by a.
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For example, let a and b be two numeric functions such that

ar = r + 5, r ≥  0

1
9, 0rb r

r
= + >

Then the numeric functions a dominates b.

If a is a numeric function then | a | asymptotically dominates a and if the numeric function b is

asymptotically dominated by a, then for any constant , bλ λ  is also dominated by a.

If a is a given numeric function, then the set of all numeric functions that are dominated by a is
called the order “a” or “big – Oh a” and is denoted by O (a).

���&� ���4���������9������

In Section 4.1, we have discussed recursive definition of a sequence. The recursive formula for defining
a sequence (or numeric function) is called a recurrence relation. If a = (a0, a1, …, ar, …) a numeric
function, then the recurrence relation for a is an equation relating ar for any r, to one or more ai ‘s (i < r).
Every recursive formula includes a starting point. The information accompanying a recursive formula
about the beginning of the sequence (or numeric function) is called initial condition. A recurrence relation
is also called a difference equation.

Example 1: The recurrence relation an = an–1 + 5, with a1 = 2 recursively defines the sequence 7, 12,
17, … where a1 = 2 is the initial condition.

Example 2: The recurrence relation an = an–1 + an–2, with a1 = a2 = 1 defines the Fibonacci sequence 1,
1, 1, 2, 3, 5, 8, 13, … a0 = 1, a1 = 1, are called the initial conditions.

���&�� 5���������4���������9������

Suppose r and k are non-negative integers. A recurrence relation of the form

c0 (r) ar + c1 (r) ar–1 + … + ck (r) ar–k = f (r) for r > k

where c0 (r), c1 (r), … ck (r) and f (r) are functions of r is said to be a recurrence relation. If c0 (r) > 0 and
ck (r) > 0, then it said to be a linear recurrence relation of degree k. If c0 (r), c1 (r), … ck (r) are constants
then the recurrence relation is called a linear recurrence relation with constant coefficients. if f (r) = 0,
then the recurrence relation is called a linear homogenous relation. A recurrence relation which is not
homogeneous is said to be inhomogeneous relation.

Examples: the recurrence relations

an – 6an – 1 + 11an – 1 + 6an – 3 = 2n

an – 9an – 1 + 26an – 1 – 24an – 3 = 5n

are linear recurrence relations with constant coefficients
The relation

an – 6an – 1 + 11an – 2 + 6an – 3 = 0

is homogeneous and ar + 9ar–2 = 0 is a second order recurrence relation with constant coefficients.
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We shall now describe some methods of solving recurrence relations in this section. We know that
every recurrence relation is accompanied by boundary condition. Any numeric function that can be
described by a recurrence relation together with an appropriate set of boundary conditions is called a
solution of the recurrence relation. If a = (a0, a1, …, ar, …) is a solution to a recurrence relation then it
is said to satisfy the relation. A given recurrence relation may or may not have a solution. We shall now
consider the methods of solving of Homogeneous recurrence relations (i) the intervention method
(substitution method) of solving a recurrence relation. In this method the recurrence relation for ar is
used repeatedly to solve the recurrence for a general expression for ar in terms of r. We illustrate this
method in the examples given below:

Example 1: Solve the recurrence relation ar = 2ar–1 + 1 with a1 = 7 for r > 1 by substitution.
Solution:

a1 = 7 the initial conditions
a2 = 2a1 + 1 = 2 .7 + 1
a3 = 2a2 + 1 = 2 .(2.7 + 1) + 1

= 22 . 7 + 2 + 1
a4 = 2a3 + 1 = 2 (22 . 7 + 2 + 1) + 1

= 23 . 7 + 22 + 2 + 1
�

ar = 2r–1 . 7 + 2r–2 + 2r–3 + … + 2 + 1
We have

ar = 7.2r–1 + 2r–1 –1, r > 1 (�  1 + 2 + ... + 2r – 2 = 2r – 1 – 1)

Example 2: Solve the recurrence relation ar = ar–1 + f (r) for r > 1 by substitution.
Solution: We have

a1 = a0 + f (1)
a2 = a1 + f (2) = a0 + f (1) + f (2)
a3 = a2 + f (3) = a0 + f (1) + f (2) + f (3)
ar = a0 + f (1) + f (2) + … + f (r)

( )0
1

r

n

a f n
=

= + ∑
(ii) Method of generating functions

Recurrence relations can also be solved by using generating functions. Some equivalent expressions
used are given below:

( )
0

r
r

r

A z a z
∞

=

= ∑  then

( ) ( ) 1
0 1 1...

∞
−

−
=

= = − − − −∑ r k
r k

r k

A z a z A z a a z a z
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( ) ( ( ) 2
1 0 1 2... )r k

r k
r k

A z a z z A z a a z a z
∞

−
− −

=

= = − − − −∑

( ) ( ( )2 3
2 0 1 3... )r k

r k
r k

A z a z z A z a a z a z
∞

−
− −

=

= = − − − −∑

( ) ( )r k
r k

r k

A z a z z A z
∞

−
=

= =∑
Example 3: Solve the recurrence relation

ar – 7ar – 1 + 10ar – 2 = 0 for r > 2

Solution: Multiplying each term of the recurrence relation by zr, we get

ar zr – 7ar – 1 zr + 10ar – 2 zr = 0

Taking the sum 2 to ∞ , we get

1 2
2 2 2

7 10 0r r r
r r r

r r r

a z a z a z
∞ ∞ ∞

− −
= = =

− + =∑ ∑ ∑
replacing each infinite sum by the corresponding equivalent expression given above, we get

[A (z) –a0 – a1 z] – 7 z {A (z) – a0} – 10z2 A (z) = 0
Simplifying, we get

A (z) (1 –7z + 10 z2] = a0 +a1 z – 7a0 z

or ( ) ( ) ( )
( )( )

0 1 0 0 1 0
2

7 7

1 2 1 51 7 10

+ − + −
= =

− −− +
a a a z a a a z

A z
z zz z

Decomposing A (z) as a sum of partial fractions, we can write

A z
c

z

c

z
c z c zr

r

r r r

r

� � �
�

�
�

� �

�

�

�

�

� �1 2

0
2

0
1 2 1 5

2 5,

The solution is   ar = c1 2
r + c2 5

r

(iii) Method of characteristic roots
Now we explain the method of solving linear recurrence relation by the methods of characteristic

roots:
Consider

c0 ar + c1 ar – 1 + c2 ar – 2 + … + ck ar – k = 0 … (1)

Substituting A rα  for ar in (1), we get

1 2
0 1 2 ... 0r r r r k

kc A c A c A c Aα α α α− − −+ + + + =  … (2)

(the constant A is to be determined by the boundary conditions)
(2) Can be simplified as

1
0 1 ... 0k k

kc c cα α −+ + + =  … (3)

The equation (3) is called the characteristic equation of the difference equation.
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Equation (3) is an equation of kth degree. It has k roots. Let 1 2, , ... kα α α  denote the roots. Let the

k roots be distinct. If 1 2, , ... kα α α  are called characteristic roots and

1 1 2 2 ...r r r
r k ka A A Aα α α= + + +

is a solution of the difference equation given by (i). The constants A1, A2, …, An are determined by

boundary conditions. Some roots of the characteristic equation may be multiple roots: Let a1 be a root of

multiplicity p, then the corresponding solution is given by

[A1 r p–1 + A2 r p–2 + … + Ar] a1
r

where the constants Ai s are to be determined by boundary conditions.

Example 4: Solve ar – 7ar–1 + 12ar–2 = 0

Solution: The characteristic equation is
2 7 12 0α α− + =

( ) ( )3 4 0α α⇒ − − =
The characteristic roots are α  = 3 and α  = 4.

1 23 4= ⋅ + ⋅r r
ra A A  is the solution.

Example 5: Solve 1 2 39 27 27 0− − −+ + + =r r r ra a a a

The characteristic equation is

3 29 27 27 0α α α+ + + =

or ( )33 0α + =
The characteristic roots are –3, –3, –3

Thus ar = (A1 r2 + A1 r + Az) (–3)r is a solution.

���) %	5���	��	���	��0	�	!���	�%�5�������������������5���	�%

In this section, we learn how to solve the non-homogeneous recurrence relations. Any solution to the
recurrence relation is the sum of two parts: the Homogenous solution and the particular solution. A
solution that satisfies the recurrence relation when the right hand side of the recurrence relation is set to
zero is called a Homogeneous solution. The solution which satisfies the recurrence relation with f (r) on
right hand side is called the particular solution. The homogeneous solution is denoted by a(h) and the
particular solutions denoted by a(h). We follow the same procedure as in solving homogeneous recurrence
relations for determining the homogeneous solution. But there is no general procedure for determining
the particular solution. It depends on the nature of f (r). The methods are described in terms of examples.
(i) When f (r) is a constant. Then the particular solution is also a constant.

Example 1: Find the particular solution of the recurrence relation

1 27 12 1r r ra a a− −− + =

Solution: f (r) is a constant. Therefore, the particular solution is also a constant P. Substituting P in the
given equation, we get P – 7P + 12P = 1
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We get
1

6
=P

The particular solution is ( ) 1

6
p

ra =

(ii) f (r) may be polynomial in r and is of degree m. say. In this case the corresponding particular
solution is of the form

P1 rm + P2 rm – 1 + … + Pm+1

Example 2: Find the particular solution of

ar + 5ar – 1 + 6ar – 2 = 3r2

Solution: Let the form of the particular solution be P1 r2 + P2 r + P3 where P1, P2 and P3 are constants

to be determined. Substituting the expression into the left hand side of given difference equation, we get

P1 r2 + P2 r + P3 + 5P1 (r – 1)2 + 5 P2 (r – 1) + 5P3 + 6P1 (r – 2)2 + 6P2 (r – 1) + 6P3 = 3r2

Simplifying, we get

12P1 r2 – (34p1 – 12p2) r + (29P1 – 17P2 + 12P3) = 3r2

12P1 = 3 … (i)

34P1 – 12P2 = 0 … (ii)

29P1 – 17P2 + 12P3 = 0 … (iii)

solving we get

1 2 3
1 17 115

, ,
4 24 288

P P P= = =

The particular solutions is

( ) 21 17 115

4 24 288
p

ra r r= + +

(iii) When f (r) is of the form rλ , and λ  is not a characteristic root of the recurrence relation, the
particular solution is of the form 2Pλ  further more when f (r) is of the form

( )1
1 2 1... ,m m r

mb r b r b λ−
++ + +  the corresponding particular solution is of the form

( )1
1 2 1... ,m m r

mP r P r P λ−
++ + +

Where λ  is not a characteristic root of the recurrence relation. When λ  is a characteristic root with
multiplicity and f (r) is of the form

( )1
1 2 1... ,m m r

mb r b r b λ−
++ + +

the corresponding particular solution is of the form

( )1 1
1 2 1... .p m m r

mr P r P r P λ− −
++ + +

Example 3: Find a general expression for a solution to the recurrence relation

1 25 6 4 , 2.− −− + = ≥n
n n na a a n (OU Dec. 2000)
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Solution: The characteristic equation of the given relation is
2 – 5 6 0α α + =

or  ( 2) ( 3) 0α α− − =

2, 3α α= =  are the characteristic roots

The homogeneous solution is
( )

1 22 3= +h n n
na A A

The particular solution ( )p
na  will be of the form

( ) 4p n
na λ= ⋅

Substituting 4n
na λ= ⋅  in

1 25 6 4− −− + = n
n n na a a

we get
1 24 5 4 6 4 4λ λ λ− −− + =n n n n

or 2 2 2 24 [ 4 5 4 6 ] 4 4n nλ λ λ− −− ⋅ + = ⋅
or 16 20 6 16λ λ λ− + =
or 2 16λ =
or 8λ =

Therefore, the general solution of the given recurrence relation is

1 22 3 8 4n n n
na A A= ⋅ + ⋅ + ⋅

Example 4: Find the particular integral of ar + ar–1 = 3r 2r.

Solution: The general form of the particular solution is (p1 r + P2) 2
r substituting into ar + ar–1 = 3 r 2r,

we get (P1 r + P2) 2
r + (P1 (r–1) + P2)2

r–1 = 3r 2r simplifying, we get

1 1 2
3 1 3

2 3 2
2 2 2

r rPr P P r
⎛ ⎞+ − + =⎜ ⎟⎝ ⎠

Comparing, we get

1
3

3
2

P =

1 2
1 3

0
2 2

P P− + =

Solving the above equation

1 2
2

2,
3

P P= =

The particular solution is

( ) 2
2 2

3
p r

ra r
⎛ ⎞= +⎜ ⎟⎝ ⎠
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Example 5: Find the general solution of

ar – 7ar–1 + 10ar–2 = 7.3r, r > 2

Solution: The characteristic equation is ( )2 7 10 0α α− + =

or ( ) ( )2 5 0α α− − =
The characteristic roots are 2, 5 the homogeneous solution is

ar
(h) = A1 2

r + A2 5
r

Let 3⋅ rP  be the particular solution of the given recurrence relation substitution , 3rP  for ar in the

recurrence relation given

3⋅ rP – 7 P 3r–1  + 10 P 3r–2 = 7.3r

⇒  (–2) P = 7.32

⇒ P = –63/2

The particular solutions is ar
(p) = (–63/2)3r

The general solutions is
( ) ( ) ( )1 22 5 –63/ 2 3p h r r r

r r ra a a A A= + = +

Example 6: Solve ar – 6ar–1 + 8ar–2 = r.4r where a0 = 8 and a1 = 22
Solution: The characteristic equation of the given relation is

2 6 8 0α α− + =

( ) ( )2 4 0α α⇒ − − =
The characteristic roots are 2, 4 the homogeneous solution is

ar
(h) = A1 2

r + A2 4
r

Hence, 4 is a characteristic root with multiplicity 1. The particular solution takes the form
r (P1 + P2 r) 4r

Substituting this expression into recurrence relation, we get
16r (P1 + P2 r)  – 24 (r) (r–1) [P1 + P2 (r – 1)] + 8 (r – 2) [P1 + P2 (r – 2)] = 16r

The above expression holds for all values of and in particular for r = 0.
We obtained the simplified equation P1 + P2 = 0 for r = 1, we get P1 + 3P2 = 2
Which give P1 = –1, P2 = 1
The particular solution is ar

(p) = r (–1 + r) 4r = r (r – 1)4r

The general solution is ar = ar
(h) + ar

(p)

= A1 2
r + A2 4

r + r (r – 1) 4r

the initial conditions a0 = 8, a1 = 22 give A1 = 3.
The general solution is ar = r (–1 + r) 4r + 5.2r + 3.4r.

�6��� � % � ����

I. Solve the recurrence relations
(a) ar = 7ar–1 – 10ar–2, a0 = 4, a1 = 17
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(b) ar – 8ar–1 + 16ar–2 = 0, a2 = 16, a3 = 80
(c) ar – 4ar–1 – 11ar–2 + 30ar–3 = 0

given the initial condition
a0 = 0, a1 = –35, and a2 = –85

(d ) ar – ar–1 – 6ar–2 = –30 with a0 = 20, a1 = –5

II. Solve:
(a) Sk – 2Sk–1 + Sk–2 = 2, with S0 = 25, S1 = 16
(b) Gk – 7Gk–1 + 10Gk–2 = 6 + Sk with G0 = 1, G1 = 2
(c) ar – 3ar–1 – 4ar–2 = 4r

(d ) ar – 4ar–1 + 4ar–2 = 3r + 2r

Answers:
I. (a) ar = 1.2r + 3.5r

(b) ar = (2 + r) 4r–1

(c) ar = 4 (–3)r + 1.2r + (–5) . 5r

(d ) ar = 11 . (–2)r + 4 . 3r + 5

II. (a) Sk = 25 – 10k + k2

(b) Gk = –9.2k + 2.5k + (8 + 2k)

(c) ar = A1 . (–1)r + A2 . 4
r + 

4 4

5

rr ⋅

(d) ar = (r2 + 7r – 22) . 2r–1 + (12 + 3k).
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5

Boolean Algebra

��� ����	
����	�

In this chapter, we study partially ordered sets, Lattices and Boolean algebras. George Boole in 1854
has introduced a new kind of algebraic system known as Boolean algebra. It is relatively very simple
and can be used to analyse and design completes circuits. Before we study Boolean algebra in this
chapter we consider ordering relations and Lattices.

�� ��������	�
�����

Definition 5.1: A relation R on a set A is called a partial order relation in A if R is, Reflexive anti-
symmetric and transitive.

If R is a partial order on a set A, then A is said to be partially ordered by R. The partial order R on A
is simply called an order relation on A. The set A with partial order R on it is called a partially ordered set
or n ordered set or a Poset. We write (A, R) when we want to specify the partial order relation R usually
we denote a partial order relation by the symbol ≤ . This symbol does not necessarily mean “less than or
equal to”.

Example 1: If A is a non-empty set and P (A) denotes the power set of A, then the relation set inclusion
denoted by ≤  in P (A) is a partial ordering.

Example 2: Let A = {2, 3, 6, 12, 24, 36} and R be a relation in A which is defined by “a divides b”.
Then R is a partial order in A.

���� �������������

Definition 5.2: Let R be a partial order on A and a, b A∈  whenever aR b or bR a, we say that a and

b are comparable otherwise a and b are non-comparable.

��� �	������	�
���
� ��

Definition 5.3: Let (A, )≤  be a partially order set. If for every a, ,b A∈  we have a ≤ b or b ≤ a, then

≤  is called a simple ordering (or linear ordering) on A, and the set (A, )≤  is called a totally ordered set

or a chain.

Note: If A is a partially ordered set, then some of the elements of A are non-comparable. On the other land, if A is
totally ordered then every pair of elements of A are comparable.
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Example 1: Let N be the set of positive integers ordered by divisibility. The elements 5 and 15 are
comparable. Since 5/15 on similarly the elements 7 and 21 are comparable since 7/21. The positive
integers 3 and 5 are non-comparable since neither 3/5 nor 5/3. Similarly the integers 5 and 7 are
non- comparable.

Example 2: Let A be a non-empty set with two or more elements and P (A) denote the power set of A.
Then P (A) is not linearly ordered.

Example 3: The set N of positive integers with the usual order ≤  (less than equal) is a linear order on

N. The set (N, )≤  is a totally ordered set.

��! 
����	�
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Definition 5.4: If ≤  is a partial order on a set A, then the converse of R is also a partial order on A. i.e.,

if ≤  is a partial ordering on A, then ≥  is also a partial ordering on A. (A, )≥  is called the dual of (A, ).≤

Corresponding to every partial ordering on ≤  on A, we can define another relation on A which is
denoted by < and is defined as follows:

a < b ⇔ a ≤ b: for all a, ,b A∈  where a b≠

Similarly corresponding to the partial ordering ,≥  we can define the a relation >, such that a > b ⇔
a ≥ b for b A∈  where .a b≠  The relations < and > are irreflexive, but both the relations < and > are

transitive.

��� "�  ��
�����#

Definition 5.5: A Hasse diagram is a pictorial representation of a finite partial order on a set. In this
representation, the objects i.e., the elements are shown as vertices (or dots).

Two related vertices in the Hasse diagram of a partial order are connected by a line if and only if
they are related.

Example 1: Let A = {3, 4, 12, 24, 48, 72} and the relation ≤  be such that a ≤ b if a divides b. The

Hasse diagram of (A, )≤  is shown in Fig. 5.1.

Fig. 5.1

We avoid arrows in a Hasse diagram and draw lines to show that the elements are related. Hasse
diagrams can be drawn for any relation which is anti-symmetric and transitive but not necessarily reflexive.

Example 2: Let A = {1, 2, 3}, and ≤  be the relation “less than of equal to” on A. Then the Hasse
diagram of (A, )≤  is as shown in Fig. 5.2.

48

3

72

4

24

12
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Fig. 5.2

Example 3: Let A = {a}, and ≤  be the inclusion relation on the elements of P (A). The Hasse diagram

of (P (A), ),≤  can drawn as shown in Fig. 5.3.

Fig. 5.3

Example 4:   Draw the Hasse diagram representing the positive divisions of 36 (i.e., D36)
Solution: We have D36 = {1, 2, 3, 4, 6, 9, 12, 18, 36}

Let R denote the partial order relation on D36, i.e., aRb if and only a divides b. The Hasse diagram
for R is shown in Fig. 5.3 (a).

Fig. 5.3 (a)

Note:
(i) Two unequal relations R1 and R2 may have the same Hasse diagram.
(ii) The Hasse diagram of Poset A need not be connected.

If (A, )≤  is partially ordered set, the Hasse diagram of (A, )≤  is not unique. For example, consider the
set A = {a, b}. The relation of inclusion ( )≤  on P (A) is a partial ordering. The Hasse diagrams of (P (A),

)≤  are given in Fig. 5.4.

(a) (b)

Fig. 5.4 Hasse diagram
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The Hasse diagram which represent the partial ordered set (A, )≤  show that the Hasse diagram of a

poset is not unique.

If (A, )≤  is a poset, the Hasse diagram of (A, )≥  can be obtained by rotating the Hasse diagram of
(A, )≤  through 180o. So that the points at the top become the points at bottom. Some Hasse diagrams
may have a unique point which is above all the other points in the diagram and in some cases, the Hasse
diagrams have a unique point which is below all the other points.

Definition 5.6: A relation R on a set A is said to be connected if for every pair of distinct elements

, ,a b A∈  either aR b or bR a.

Definition 5.7: A partial ordering on a set A is said to be linear ordering if it is connected.

��$ ��%��	����"���	�
�����

Let (A, )≤  and (B, )≤  be two partially ordered sets. We define another partial order on A × B, denoted

by ,�  and is defined as follows:

( , ) ( , )′ ′�a b a b  if ′<a a  or if ′=a a  and .′≤b b  The order �  is called Lexicographic ordering (or

dictionary ordering). In the above ordering of elements in the first coordinate dominates except in case
of ties. In this case of equality. We consider the second coordinate. The Lexicographic ordering defined
above can be extended as follows:

Let (A1, ),≤  (A2, ),≤  ... (An, )≤  denote partially ordered sets. We define a partial order ∝  on A1 ×

A2 × ... An as follows:

1 2, 1 2( , ..., ) ( , , ..., )′ ′ ′�n na a a a a a  if and only if

1 1′<a a  or

1 1 2 2and or′ ′ ′= <a a a a

1 1 2 2 3 3, = , and or′ ′ ′ ′= <a a a a a a

1 1 2 2 – 1 – 1, = ... = and′ ′ ′ ′= ≤n n n na a a a a a a a

in the above ordering:
The first coordinate dominates, in the case of equality, we consider the second coordinate, if the

equality holds again, we pass to the next coordinate and so on.
The order in which the words in an English dictionary appear is an example of lexicographic ordering.

Example 1: Let A = (a, b, c, ... z) and let A be linearly ordered in the usual way (a ≤ b), b ≤ c, ... y ≤
z). The set An = A × A × ... × A (n factors) can be identified with the set of all words having length n. The
Lexicographic ordering on An has the Sn has the property that if w1 < w2 (where w1 and w2 are two words
in Sn), then w1 would precede w2 in the dictionary listing.

Thus
Card � Cart
Loss � Lost
Park � Part
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Salt � Seat
Mark � Mast

We can extend Lexicographic order to posets. If A is a partially ordered set and A* denotes the set
of all finite sequences of elements of A we can extend Lexicographic order to A* as follows:

Let α  = a1 a2 ... am and β  = b1 b2  ... bn belong to A* with m ≤ n., we say that α β∝  if

(a1, a2, ... am) ∝  (b1, b2,  ... bn) in An = A × A × ... × A (n factors) under the Lexicographic ordering
of An.

Example 2: Let A = {a, b, c, ... z) and let R be a simple ordering on A denoted by ,≤  where
(a ≤ b ≤ c ... ≤ z)

Let 2 3S A A A= ∪ ∪
Then S consists of all words (strings) of three or fewer than 3 letters from A. Let �  Denote the

lexicographic ordering on S. We have
Be � Bet
Leg � Let
Peg � Pet
Sea � See

  ...

Lexicographic ordering is used in sorting character data on a computer. The Lexicographic ordering
is also called dictionary ordering. We can use the names “Lexically less than” or “Lexically equal to” or
“Lexically greater then” to denote a lexicographic ordering.

Example 3: Let A = {a, b, c, ... z) with simple alphabetical order and let A2 = A × A, then

,b q a e> d f a b>  and .d y e z<

��& �	'���	(�������#���

Definition 5.8: Let (A, )≤  be a partially ordered set. An element b A∈  is said to cover an element
,a A∈  if a < b and if there does not exist any element ∈c A  such that a ≤ c and a ≤ b.

If b covers a, then a line is drawn between the elements a and b in the Hasse diagram of (A, ).≤

��) ��� ����
������� �����#��� 

Definition 5.9: Let (A, )≤  denote a partially ordered set. If there exists an element ∈a A  such that
,≤ ∀ ∈a x x A  then a is called the least member in A, relative to the partial ordering .≤  Similarly, if

there exists an element ,b A∈  such that ,x b x A≤ ∀ ∈  then b is called greatest member in A relative
to .≤

Note:
(i) The least member of is usually denoted by 0, and the greatest member in a poset is usually denoted by 1.
(ii) For a given poset, the greatest or least member may or may not exist.
(iii) The least member in poset, if it is unique, and the greatest member if it exists is unique.
(iv) In every chain, the least and greatest members always exist.
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Example 1: Let A = {1, 2, 3, 4, 5} and ≤  be the relation “less than or equal to” then the Hasse diagram

of (A, )≤  is as shown in Fig. 5.5.

Fig. 5.5 Hasse diagram

From Fig. 5.5, it is clear that 1 is the least member and 5 is the greatest element in (A, ).≤

Example 2: Let A = {a, b} and P (A) denote the power set of A. Then P (A) = { , { }, { }, { , }}.a b a b∅
Let ≤  be the inclusion relation on the elements of P (A). Clearly ∅  is the least member and A = {a, b}
is the greatest member in (P (A), ).≤

We now discuss certain elements which are of special importance.

��* #���#�����
�#�%�#������#��� �+#�#,�� -

Definition 5.10: Let (A, )≤  denote a partially ordered set. An element ∈a A  is called a minimal
member of a relative to ≤  if for no , is .∈ <x A x a

Similarly an element ∈b A  is called a maximal member of A relative to the partial ordering ≤  if
for no , is .∈ <x A b x

The minimal and maximal members of a partially ordered set need not unique.

Example 1: Consider the poset shown in Fig. 5.6

Fig. 5.6

There are two maximal elements and two minimal elements.
The elements 3, 5 are maximal and the elements 1 and 6 are minimal.

Example 2: Let A = {a, b, c, d, e} and let Fig. 5.7 represent the partial order on A in the natural way.
The element a is maximal. The elements d and e are minimal.

Fig. 5.7
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Distinct minimal members of a partially ordered set are incomparable and distinct maximal members
of a poset are also incomparable.

���. ��������
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Definition 5.11: Let (A, )≤  be a partially ordered set and let B ≤ A. Any element ∈m A  is called an

upper bound for B if for all ,∈x A x ≤ m. Similarly an element ∈l A  is called a lower bound for B if

for all ,∈x A l ≤ x.

Example 1: A = {1, 2, 3, ..., 6} be ordered as pictured in Fig. 5.8.

Fig. 5.8

If B = {4, 5} then
The upper bounds of B are 1, 2, 3
The lower bound of B is 6.

Example 2: Let A = {a, b, c} and (P (A) )≤  be the partially ordered set. The Hasse diagram of the

Poset be as pictured in Fig. 5.9.

Fig. 5.9

If B is the subset {a, c}, {c}. Then the upper bounds of B are {a, c} and A, while the lower bounds

of B are {c} and .∅
From the above, it is clear that the upper and lower bounds of a subset are not unique.

���.�� �0�1�����0��,�234�+ 2��0�2�-

Definition 5.12: Set A be a partially ordered set and B a subset of A. An element ∈m A  is called the

least upper bound of B if M is an upper bound of B and M M ′≤  whenever M ′  is an upper bound of B.

A least upper bound of a partially ordered set if it exist is unique.
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Example: Let A = {a, b, c, d, e, f, g, h} denote a partially ordered set. Whose Hasse diagram is shown
in Fig. 5.10:

Fig. 5.10

If B = {c, d, e} then f, g, h are upper bounds of B. The elements f is least upper bound.

���.� �50���0��01����60��,�234�+�37��2�-

Definition 5.13: Let A be a partially ordered set and B denote a subset of A. An element L is called a

greatest lower bound of B if l is a lower of B and L L′ ≤  whenever L′  in a lower bound of B.

The greatest lower bound of a poset if it exists is unique.

Example: Consider the poset A = {1, 2, 3, 4, 5, 6, 7, 8} whose Hasse diagram is shown in Fig. 5.11
and let B = {3, 4, 5}

Fig. 5.11

The elements 1, 2, 3 are lower bounds of B. 3 is greatest lower bound.
The least upper bound (LUB) and the greatest lower bound (GLB) of subset B are also called the

supremum and infimum of the subset B.

Note:

(i) The least upper bound of a set is abbreviated as l u b⋅ ⋅  or sup and the greatest lower bound is abbreviated

as “ ”g l b⋅ ⋅  or “inf”.
(ii) If A is a chain, then every subset S: has a supremum and an infimum.

(iii) Let N be the set of positive integers and let N by ordered by divisibility. If a and b are two elements of N,
then



126 DISCRETE MATHEMATICAL STRUCTURES

inf (a, b) = gcd (a, b)
and Sup (a, b) = Lcm (a, b)

(iv) If (A, )≤   is a poset, then its dual (A, )≥  is also a poset. The least member of (A, )≤  is the greatest member

in (A, )≥  relative to ≥  and vice versa. Similarly the g l b⋅ ⋅  of A with respect to the relation ≤  is the as

g l b⋅ ⋅  of A with respect to the relation ≥  and vice versa.

(v) g l b⋅ ⋅  of a and b is called the meet or product of a and b and the l.u.b of a and b is called the join or sum

of a and b where , .a b N∈  The symbols such as * and ⊕  are also used to denote meet and join respectively.

Theorem 5.1: Let (A, )≤  be a partially ordered set and S be a subset of A. Then

(i) The least upper bound of set, if it exists is unique.
(ii) The greatest lower bound of S, if it exists is unique.

i.e., S can have at most, one least upper bound and at most one greatest lower bound.
Proof: (i) If possible let there be two least upper bounds for S, say b1 and b2. Now b2 is supremum
and b1 is an upper bound of S ⇒ b2 ≤ b1. Similarly b1 is supremum and b2 is an upper bound of
S ⇒ b1 ≤ b2. S ⊆ A, therefore by symmetric property b2 ≤ b2, b1 ≤ b2 ⇒ b1 = b2. Hence, least upper
bound of S is unique.

(ii) Left as an exercise.

Theorem 5.2: Let A be finite non-empty poset with partial order .≤  Then A has atleast, one maximal
element.

Proof: Let .∈a A  If a is not the maximal element. Then we can find an element 1a A∈  such that

1.a a<  It a1  is not a maximal element of A, then  we can find an element 2a A∈  such that 1 2.a a<
Continuing this argument we get a chain

a < a1 < a2 < a3 < ... ar –1 < ar

Since A is finite this chain cannot be extended and for any ,∈b A  we cannot have ar < b. Hence ar

is a maximal element of (A, ).≤
By the same argument, the dual poset (A, )≥  has a maximal element such that (A, )≤  has a minimal

element.

Theorem 5.3: If (A, )≤  and (B, )≤  are partially ordered sets, then (A × B, )≤  is a partially ordered set

with the partial order ,≤  defined by ( , ) ( , )a b a b′ ′≤  if a a′≤ in A and b b′≤  in B.

Proof: a a′≤  in A and b b′≤  in B

∴ ( , ) ∈ ×a b A B  implies (a, b) ≤  (a, b)

Hence ≤  satisfies reflexive property in A × B.

Let (a, b) ≤  ( ′ ′a b, ) and ( , )a b′ ′ ≤  (a, b) where ,a a′  are the members of A and ,b b′  are the

members of B.

Then a a′≤  and a a′ ≤  in A and b b′≤  and b b′ ≤  in B

Now a a′≤  and a a a a′ ′≤ ⇒ =
(since A is a partially ordered set)
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and b b′≤  and b b b b′ ′≤ ⇒ =

(since B is a partially ordered set)

∴ ≤  is anti-symmetric in A × B

Also ( , ) ,a b a b′ ′≤  and ( , ) ( , )a b a b′ ′ ′′ ′′≤  in A × B where , ,a a a A′ ′′ ∈  and , ,b b b A′ ′′ ∈  implies

that

a a′≤  and a a′ ′′≤

and b b′≤  and b b′ ′′≤
by the transitive property of the partial orders in A and B, we have

,a a a a a a′ ′ ′′ ′′≤ ≤ ⇒ ≤

and ,b b b b b b′ ′ ′′ ′′≤ ≤ ⇒ ≤

Hence ( , ) ( , )a b a b′′ ′′≤
Therefore transitive property holds for partial order in A × B. Hence A × B is a partially ordered set.

���� /���8	�
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Definition 5.14: A set with an ordering relation is well-ordered if every non-empty subset of the set
has a least element.

Example: The set of natural numbers is well-ordered.

��� ,��������
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Definition 5.15: Let A be a non-empty set and f be a mapping f: A × A → A. Then f is called a binary
operation on the set A and the mapping

f: An → A

is called an n-ary operation on A. If, f is an n-ary operation; then n is called the order of the operation

f: A → A (i.e., n = 1), is called a unary operation.

Examples: (i) Addition is a binary operation on the set of natural numbers.
(ii) Addition, multiplication and subtraction are binary operations on the set of integers.

It is customary to denote a binary operation by symbols such as +, –, 0, *, , ,∪ ∩  etc. A binary
operation on the elements of a set produces images which are again the members of the same set. A
given set with the given binary operation is said to be closed with respect to the binary operation.

���� �"	����(�����	� 

Definition 5.16: Let { : }iA i I∈  be a collection of non-empty disjoint sets and let .iA X i≤ ∀  A function

: { }if A → ×  defined by

( )i i if A a A= ∈  is called a choice function.
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There exists a choice functions for any non-empty collection of non-empty sets.
We now state a theorem called the well-ordering theorem without proof.

���� /���8	�
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Theorem 5.4: Every set A can be well-ordered.

���$ ������� 

In this section, we introduce lattices which have important applications in the theory and design of
computers.

Definition 5.17: A lattice is a partially ordered set (L, )≤  in which every pair of elements ,a b L∈
has a greatest lower bound and a least upper bound.

Example 1: Let Z + denote the set of all positive integers and let R denote the relation ‘division’ in Z +.

Such that for any two elements , ,+∈a b Z aR b, if a divides b. Then (Z +, R) is a lattice in which the join

of a and b is the least common multiple of a and b, i.e. a b a b∨ = ⊕  = LCM of a and b, and the meet
of a and b, i.e. a * b is the greatest common divisor (GCD) a and b i.e.,

*a b a b∧ =  = GCD of a and b

We can also write a b a b a b+ = ∨ = ⊕ =  LCM of a and b and a . b *a b a b= ∧ = =  GCD of

a and b.

Example 2: Let S be a non-empty set and L = P (S); (P (S); )≤  i.e., (L, )≤  is a partially ordered set. If

A and B are two elements of L, then we have A B A B∪ = ∨  and A B A B∩ = ∧
Hence the (L, )≤  is a Lattice.

Example 3: Let ∩  be a positive integer and Sn be the set of all divisors of n ... Sn. If n = 30,
S30 = {1, 2, 3, 5, 6, 10, 15, 30}. Let R denote the relation division as defined in example 1. Then (S30, R)
is a Lattice see Fig. 5.12.

Fig. 5.12

Different lattices can be represented by the same, Hasse diagram. If (L, )≤  is a lattice, then (L, )≥
is also a lattice. The operations of meet and join on (L, )≤  become the operations of join and meet on
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(L, ).≥  The statement involving the operations * and ⊕  and ≤  hold if we replace * by ,⊕ ⊕  by * and

≤  by .≥  The lattices (L, )≤  and (L, )≥  are duals of each other.

Example 4: Let A be a non-empty set and L = P (A). Then (L, )≤  is a lattice. Its dual (L, )≥  is also a

lattice.

���&  	#����	������ �	(�������� 

Let (L, )≤  be a lattice and ‘’⋅  and ‘+’ denote the two binary operation meet and join on (L, ).≤  Then for

any , ,a b c L∈  we have

(L –1) , ( 1)a a a L a a a′⋅ = − + =  (Idempolint laws)

(L –2) , ( 2)a a b a L a b b a′⋅ = ⋅ − + = +  (Commutative laws)

(L –3) ( ) ( ), ( 3) ( ) ( )a b c a b c L a b c a b c′⋅ ⋅ = ⋅ ⋅ − + + = + +  (Associative laws)

(L – 4) ( ) , ( 4) ( )a a b a L a a b a′⋅ + = − + ⋅ =  (Absorption laws).

The above properties (L, – 1) to (L, – 4) can be proved easily by using definitions of meet and join.
We can apply the principle of duality and obtain ( 1)L ′−  to ( 4) .L ′−

Theorem 5.5: Let (L, )≤  be a lattice in which ‘’⋅  And ‘+’ denote the operations of meet and join

respectively. Then

, ,≤ ⇔ ⋅ = ⇔ + = ∀ ∈a b a b a a b b a b c L

Proof: Let a ≤ b

We know that a ≤ a, therefore a a b≤ ⋅  but from the definition we have a b a⋅ ≤

∴ a ≤ b a b⇒ ⋅  = a

let us assume that ⋅ =a b a

but this is possible only if a ≤ b

i.e., ⋅ = ⇒ ≤a b a a b

∴ ≤ ⇒ ⋅ = ⋅ = ⇒ ≤a b a b a and a b a a b

combining these two, we get

a ≤ b a b⇔ ⋅  = a

now let a b⋅  = a, then we have

b + ( )a b⋅  = b + a + a + b

but b + ( )a b⋅  = b

Hence a + b = b

Similarly by assuming a + b = b we can show that a b⋅  = a

Hence ≤ ⇔ ⋅ = ⇔ + =a b a b a a b b   = a
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Theorem 5.6: Let (L, )≤  be a lattice. Then

a b a c
b c

a b a c

⋅ ≤ ⋅⎧
≤ ⇒ ⎨ + ≤ +⎩

For all , , ∈a b c L

Proof: From Theorem 5.4

b ≤ c b c⇔ ⋅  = b

now ( ),a b⋅ ( )a c⋅  = ( )a a⋅ ( )b c⋅  = a ( )b c⋅ a b⋅

a b a c⇒ ⋅ ≤ ⋅

Similarly we can prove a + b ≤ a + c , ,a b c L∀ ∈

Note: The above properties of a Lattice are called properties of Isotonicity

We now state the following theorem without proof:

Theorem 5.7: Let (L, )≤  be a Lattice. Then

( ) ( ) ( )a b c a b a c+ ⋅ ≤ + ⋅ +
( ) ( ) ( )a b c a b a c⋅ + ≤ ⋅ + ⋅

for all , , ∈a b c L

Proof: The proof is left as an exercise.

���) ��������� ��������,����� � ��#

We now define lattice as an algebraic system, so that we can apply many concepts associated with
algebraic systems to lattices.

Definition 5.18: A lattice is an algebraic system (L, ,⋅  +) with two binary operation ‘’⋅  and ‘+’ on L
which are both commutative and associative and satisfy absorption laws.

���* ,	��
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If L is a lattice, then every pair of elements of L has a least upper bound and a greatest lower bound. If
A is a finite subset of A, then A has both least upper bound and greatest lower bound. This property may
not hold if A is not a finite subset of L, we find greatest lower bound and least upper bound of a subset
of a lattice as follows.

Let (L, ,⋅  +) be a lattice and A ≤ L be a finite subset of L. The greatest and least upper bound of A
are defined as

1 1
and

n n

i i
i i

g l b A a l b A a•

= =
= ∪ = +

Where A = {a1, a2, ... an}

Example: Show that for a bounded, distributive lattice, complement of an element is unique.
(VTU Aug. 2000)
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Solution: Let L be a bounded distributive lattice.

Let .∈e L  If possible let e′  and e′′  be the complements of e in L.

Then 1e e′+ =  and 1e e′′+ =

0e e′⋅ =  and 0e e′′⋅ =

now 0e e′ ′= +

( )e e e′ ′′= + ⋅

( ) ( )e e e e′ ′ ′′= + ⋅ +

( ) ( )e e e e′ ′ ′′= + ⋅ +

1 ( )′ ′′= ⋅ +e e

Thus e e e′ ′ ′′= + ... (1)

Also 0e e′′ ′′= +

( )e e e′′ ′= + ⋅

( ) ( )e e e e′′ ′′ ′= + ⋅ +

Definition 5.19: A lattice is called complete if each of its non-empty subsets has a least upper bound
and a greatest lower bound.

The least and greatest elements of a lattice L, if they exist are called the bounds of the lattice L, they
are denoted by 0 and 1 respectively. A lattice which has both 0 and 1 is called a bounded lattice. Every
finite lattice must be complete, and every complete lattice must have a least element and a greatest
elements. The bounds of L satisfy the following:

a + 0 = a, 1a a⋅ =
a + 1 = 1, 0 0a ⋅ =  for any a L∈

If L is a bounded lattice, then the elements 0 and 1 duals of each other. If L is a bounds lattice, then
we denote it by ( L, ,⋅  +, 0, 1)

Definition 5.20: Let ( L, ,⋅  +, 0, 1) be a bounded lattice and .a L∈  If there exists an element b L∈
such that

a b⋅  = 0 and a + b = 1

then b is called the complement of a

Example 1: Let A be a non-empty set and L = P (A). Then the every element of L has a complement.

Example 2: In the lattice shown in Fig. 5.13 the elements a and d are complements of each other

Fig. 5.13
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Definition 5.21: A lattice L is complemented if it is bounded and if every element in L has a complement.

Example: If S is non-empty set and L = P (S). Then each element of L has a unique complement in L.
Therefore L = P (S) is a complemented lattice.
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Definition 5.22: Let (L, )≤  be a lattice. A non-empty subset A of L is called a sub lattice of L if
a b A+ ∈  and a b A⋅ ∈  whenever ∈a A  and .∈b A

If A is a sub lattice of L, then A is closed under the operations of ‘’⋅  and ‘+’.

Example 1: Let Z + be the set of all positive integers and let D denote the relation “division” in Z + such

that for any , ,+∈a b Z a D b  if a divides 6. Then (Z +, D) is a lattice in which a + b = LCM of a and

b and a b⋅  = GCD of a and b.

Example 2: Let n be a positive integer and nS  be the set of all divisiors of n. If D denote the relation

as defined above (in example 1). Then (Sn, D) is a sub lattice of (Z +, D).

Example 3: Consider the lattice L shown in Fig. 5.14. The subset A = {a, c, d, y} is a sub lattice of L.

Fig. 5.14

Definition 5.23: Let (L1, *, +) and 2( , , )L ∧ ∨  be two lattices. The algebraic system (L1 × L2, ..., +) in

which the binary operation + and ‘’⋅  are on L1 × L2 defined as

1 1 2 2 1 2 1 2( , ) ( , ) ( , )a b a b a a b b⋅ = ∗ ∧

1 1 2 2 1 2 1 2( , ) ( , ) ( , )a b a b a a b b+ = ⊕ ∨

for all (a1, b1) and (a2, b2) 2 2 1 2( , )a b L L∈ ×

is called the direct product of the lattices L1 and L2.

Example 4: Let L1 = {1, 2, 4} and L2 = {1, 3, 9}, clearly L1 and L2 are chains and division is a partial

ordering on L1 and L2 and L1 consists of divisors of 4 and L2 consists of divisor of 9. L1 × L2 consists of

36 where each node in the diagram of L1 × L2 is shown as (a, b) (instead of a b).
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Fig. 5.15 Direct products of two lattices

Example 5: Let L1 and L2 be two lattices shown Fig. 5.16 (a) and (b) respectively. Then L1 × L2 is the
lattice shown Fig. 5.16. (c).

(a) (b) (c)

Fig. 5.16

We can use the direct product of lattices to construct larger lattices from the smaller ones. If L is a
lattice we can form lattices L × L, L × L × L, L × L × L × L, ... which are denoted L2, L3, L4, ...
respectively.

Example 6: If L = (0, 1) and (L, )≤  is a lattice, then (Ln, )n≤  is a lattice of n-tuples of 0 and 1. Any
element in the lattice (Ln, )n≤  can be written as (a1, a2, ... an) in which a1 is either 0 and 1 for
i = 1, 2, 3, ..., 4.

The partial ordering relation on Ln can be defined for any a, b in Ln as

a n≤ b ⇔ ai, n≤ bi for i = 1, 2, ..., n

where a = (a1, a2, ... an) and

b = (b1, b2, ..., bn)

In general the diagram of (Ln, )n≤  is an n-cube.

Definition 5.24: Let (L, ,⋅  +, 0, 1) be a lattice L is said to complemented lattice if every element has
atleast one complement.



134 DISCRETE MATHEMATICAL STRUCTURES

Example 7: Let (L3, 3 )≤  be a lattice of 3-tuples of 0 and 1. The complement of an element of L3 can

be obtained by changing 1 by 0 and 0 by 1 in the 3-tuples representing the element.
The complement of (0, 1, 1) is (1, 0, 0), the complement of (1, 0, 1) is (0, 1, 0) and so an. The bounds

of (0, 0, 0) and (1, 1, 1).

Definition 5.25: A lattice (L, ,⋅  +) is called a distributive lattice if for any , ,a b c L∈

( ) ( ) ( )a b c a b a c⋅ + = ⋅ + ⋅  and

( ) ( ) ( )a b c a b a c+ ⋅ = + ⋅ +

Example 8: (L3, 3 )≤  is distributive.

Example 9: The power set of a non-empty set A is a lattice under the operation ∩  and ∪  is a distributive
lattice.

Definition 5.26: Let (L, )≤  be a lattice, with a lower bound 0. An element ∈a L  is said to be join
irreducible if a = x + y ⇒ a = x or a = y.

Example 10: 0 ∈ L  is join irreducible.

Let 0a ≠  be an element of L. The element a is join irreducible if and only if a has unique immediate
predecessor.

Definition 5.27: Let (L, )≤  be a lattice, with an upper bound 1. An element ∈a L  is said to be meet

irreducible if a x y= ⋅  implies a = x or a = y.

If 0≠a  then a is meet irreducible if and only if a has unique immediate sucessor.

Example 11: Find the join irreducible and meet irreducible elements of the lattice shown in Fig. 5.17.

Fig. 5.17

Solution: The elements x, y, z and s are join irreducible. The elements x, y, p, r and s are meet irreducible.

Definition 5.28: The join irreducible elements of a lattice L, which immediately succeed 0 are called
atoms.
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Example 12: In the lattice shown in Fig. 5.18, 2 is the 0 element (lower bound) 3 succeeds 2, hence
atom of L is the element 3.

Fig. 5.18

�%��� �  � ����

1. Define the terms
(a) Partially ordered set
(b) Linearly ordered set.

Give examples.

2. Let ≤  be a Partial ordering of a set S. Define the dual order on S. How is the dual order related to
the iverse of the relation .≤

3. Define Lenilographical order on A × B where A and B are two linearly ordered sets.
4. Define the terms ‘immediate predecessor’ and ‘immediate successor’ and show that each element

of a linearly ordered set can have at most one immediate predecessor.
5. What is meant by a ‘Hasse diagram’? Draw the Hasse diagram of the relation R on A where

A = {1, 2, 3, 4} and
R = {(1, 1), (1, 2), (2, 2), (2, 4), (1, 3), (3, 3), (3, 4), (1, 4), (4, 4)}.

6. Let n be a positive integer and Sn be the set of all divisors of n. Let D denote the relation of
‘division’ ‘ns, such that a D b’ iff a divides b. Draw the Hasse diagram for (Sn, D).

7. Let A = {1, 2, 3, 4, 6, 8, 9, 12, 24} be ordered by divisibility.
8. Determine the greatest and least elements, if they exist of the poset

A = {2, 4, 6, 8, 12, 18, 24, 36, 72} with the partial order of divisibility.
9. Which of the Hasse diagram in the figure given below represents lattices:

(i) (ii) (iii)

10. If (L1, )≤  and (L2, )≤  are two lattices, then show that (L1, × L2, )≤  is also a lattice.
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11. Define that term ‘sub lattice’. Give an example.
12. What is meant by a bounded lattice? If L is a finite lattice show that L is bounded.
13. Show that a subset of a linearly ordered poset is a sub lattice.
14. Show that a linearly ordered poset is a distributive lattice.
15. Let L be a bounded lattice with atleast two elements. Show that no two elements of L is its own

complement.
16. Which of the partially ordered sets shown in the figure below are lattices.

(a) (b) (c)

17. Consider the lattices D = {v, w, x, y, z} shown in the figure given below. Find all the sub lattices
with three or more elements.

18. Suppose the following collection of sets is ordered by set inclusion:
A = {{a}, {a, b}, {a, b, c, d}, {a, b, c, d, e, f }}.

Is A well-ordered?
19. Define the dual of a statement in a lattice L. Why does principle of duality apply to L?
20. Suppose L is a linearly ordered set. Show that S has almost one maximal element.
21. S = {2, 4, 6, 12, 20} is ordered by divisibility. Find the maximal and minimal elements of S.
22. Find all the maximal and minimal elements of the poset B diagrammed in the figure below:

23. Show that every chain is a distributive lattice.
24. Show that the operations of meet and join in a lattice are, commutative, associative and idempotent.
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25. If (L, )≤  is a lattice in which * and ⊕  denote the operations of meet and join respectively then
show that

a ≤ b *a b a a b b⇔ = ⇔ ⊕ =
, ,∀ ∈a b c L

26. Define Isomorphic lattices. Show that the lattices L and L1 given below are not isomorphic:

27. Define the terms
(a) Distributive Lattice.
(b) Join irreducible elements of a Lattice.

28. Show that if a bounded lattice has two or more elements then 0 1.≠
29. L is a bounded lattice. If L is distributive and the complement of an element a L∈  exists, then

show that it is unique.

��� ,		���������,��

Definition 5.29: A Boolean algebra is a distributive complemented lattice having atleast two elements
as well as 0 and 1.

A Boolean algebra is generally denoted by a 6-tuple, (B, +, ,⋅ 1, 0, 1) where (B, +, )⋅  is a lattice with

two binary operations + and ,⋅  called the join and meet respectively is a unary operation in B. The

elements 0 and 1 are the least and greatest elements of the lattice (B, +, ).⋅  The following axioms are

satisfied:

1. There exist at least two elements a, b in B and that .a b≠

2. ,∀ ∈a b B

(i) + ∈a b B

(ii) ⋅ ∈a b B

3. for all , ∈a b B

(i) a + b = b + a

(ii) a b b a⋅ = ⋅
commutative laws

4. Associative laws: for all , , ∈a b c B

(i) a + (b + c) = (a + b) + c

(ii) ( ) ( )a b c a b c⋅ ⋅ = ⋅ ⋅

�
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5. Distributive laws: for all , , ∈a b c B

(i) ( ) ( ) ( )a b c a b a c+ ⋅ = + ⋅ +

(ii) ( ) ( ) ( )a b c a b a c⋅ + = ⋅ + ⋅
6. (i) Existence of zero: There exists of B such that

0a a a B+ = ∀ ∈
The element 0 is called the zero element

(ii) Existence of unit: There exists 1 ∈ B  sum that

1⋅ = ∀ ∈a a a B

The element 1 is called the unit element.

7. Existence of complement: ∀ ∈a B  there exists an element ′ ∈a B  such that

(i) 1a a′+ =  and (ii) 0a a′⋅ =

Example 1: Let A1, A2, ..., An be subsets of a universal set X. The set of all subsets of { A1, A2, ..., An}.

Which can be formed from Ai by union intersection and complement together with the binary operation

∪  and ,∩  and the unary operation is a Boolean algebra.

Example 2: Let B = {0, 1} and let +, ⋅  be two operations in B defined by the following operation
tables (a) and (b):

(a) (b)

Suppose that the complements are defined by 11 = 0 and 01 = 11, then B is a Boolean algebra.

Example 3: Let Bn denote the set of n-bit sequences. Let the operations of sum. Product and complement

in Bn defined as follows:

For all , ∈ na b B  ... a + b contains 1 if a, b contains 1, a ⋅ b contains 1 if a and b contain: a and b

contains 1 if a contains 0, then Bn is a Boolean algebra.

Example 4: Let 1π  be the set of all propositions T1 is a Boolean algebra under the operations ∨  and

A with ~ being the complement. The contradiction f is the zero element and the taulogy T is unit element

of in 1.π
When ⋅  operations are performed before + operation the parentheses are not used, we use the letter

B to represent a Boolean algebra (B, +, ,⋅ 1, 0, 1) and we often use the symbols ∨  and ∧  in the place of
+ and operation. The dual of any statement S in B is the statement obtained by interchanging the operations
+ and ⋅  and interchanging the identity elements 0 and 1, in the original statement S. Also the dual of any
theorem in B is also a theorem. We shall now prove some theorems.

Theorem 5.8: , 0a B a a∀ ∈ + =
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Proof: a + a = ( ) 1a a+ ⋅ (axiom 6 (ii))

= ( ) ( )a a a a′+ ⋅ + (axiom 7(i))

= 1a a a+ ⋅ (axiom 5(i))

= a + 0 (axiom 7(ii))
= a (axiom 6(i))

Theorem 5.9: ,a B a a a∀ ∈ ⋅ =
Proof: 0a a a a⋅ = ⋅ + (axiom 6 (i))

= a a a a′⋅ + ⋅ (axiom 7(ii))

= ( )a a a′⋅ + (axiom 5(ii))

= 1a ⋅ (axiom 7(i))

= a

Theorem 5.10: The elements 0 and 1 in B are unique.
Proof: Assume that 01 and 02 are two zero elements in B. Such that a1 + 01 = a1 and a2 + 02 = a2

1a B∀ ∈  and 2a B∈
Consider a1 + 01 = a1

taking a1 = 02, we get
02 + 01 = 02

Similarly by taking a2 = 01 in a2 + 02 = a2, we get 01 + 02 = 01

Hence 02 + 01 = 01 + 02 ⇒  01 = 02

by the principle of duality we can easily show that the unit element 1 in unique in B.

Theorem 5.11: In each Boolean algebra

(i) 0 1′ =
(ii) 1 0′ =

Proof: (i) we have 0 0 0 1′ ′= + =

and (ii) 1 1 1 0′ = ⋅ =

Theorem 5.12: For any ,∈a B  (i) a + 1 = 1 (ii) 0 0a ⋅ =

Proof: (i) a + 1 = ( 1) 1a + ⋅

= ( 1) ( )a a a′+ ⋅ +

= 1a a+ ⋅ ′
= a a+ ′
= 0

(ii) applying principle of duality, we get

0 0a ⋅ =
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Theorem 5.13: For any , ∈a b B

(i) a a b a+ ⋅ =  (ii) ( )a a b a⋅ + =  (absorption laws)

Proof: (i) We have

a a b+ ⋅
= 1a a b⋅ + ⋅
= (1 )a b⋅ +
= 1a ⋅
= a

(ii) We have ( )a a b⋅ +  = (a + 0) (a + b)

= 0a b+ ⋅
= a + 0
= a

Theorem 5.14: For each ,∈a B  there exists a unique complement.

Proof: Let 1a′  and 2a′  be two complements of a in B

then 1 21, 1a a a a′ ′+ = + =
and 1 20, 0a a a a′ ′⋅ = ⋅ =
now 1 11a a′ ′= ⋅

2 1( )a a a′ ′= + ⋅

1 2 1a a a a′ ′ ′= ⋅ + ⋅

2 10 a a′ ′= + ⋅

2 1 2a a a a′ ′ ′= + ⋅

1 2( )a a a′ ′= + ⋅

21 a′= ⋅

2a′=

Hence the complement a1 for each ∈a B  is unique.

Theorem 5.15: For each , ( )′ ′∈ =a B a a  (Involution law)

Proof: By definition of complement

1a a′+ =  and 0a a′ ⋅ =
now 1a a a a a a′ ′ ′+ = ⇒ + ⇒ +

and 0 0a a a a′ ′⋅ = ⇒ ⋅ =

by uniqueness a is the complement of a1

hence ( )′ ′ = ∀ ∈a a a B

Theorem 5.16: In a Boolean algebra B,
a + (b + c) = (a + b) + c

and ( ) ( )a b c a b c⋅ ⋅ = ⋅ ⋅ ,∀ ∈a B  (Associative laws)
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Proof: Left as an exercise

Theorem 5.17: For any ; ∈a b B

( )a b a b′ ′ ′+ = ⋅
and ( )a b a b′ ′⋅ = +  (De Morgan’s laws)

Proof: (i) The theorem is proved if we show that

( ) ( ) 1a b a b′ ′+ = ⋅ =  and ( ), ( ) 0a b a b′ ′+ ⋅ =

Consider ( ) ( ) ( )a b a b b a a b′ ′ ′ ′+ ⋅ = + + ⋅

( ) ( )b a a a b′ ′= + + ⋅ +

1 ( )b a b′= + ⋅ +

b a b′= + +

b b a′= + +

= 1 + a

= 1

also

( ) ( )a b a b′ ′+ ⋅ ⋅

= (( ) )a b a b′ ′+ ⋅ ⋅

= (( ) ( ))a a b a b′ ′ ′⋅ + ⋅ ⋅

= (0 ( ))b a b′ ′+ ⋅ ⋅

= ( )b a b′ ′⋅ ⋅

= ( )b b a′ ′⋅ ⋅

= 0 a′⋅

= 0

Hence ( )a b a b′ ′ ′+ = ⋅

(ii) Follows from 5.15 (i) by the principle of duality.

��  �,8,		���������,��

Definition 5.30: Let (B, +, ,⋅ ,'  0, 1) be a Boolean algebra and S ≤ B. If S contains the elements 0 and

1 and is closed under the operations +, and ,⋅  then (S, +, ,⋅ ,'  0, 1) is called a sub-Boolean algebra)

For any Boolean algebra, the set {0, 1} and B are both sub-Boolean algebra of B.

Example: Consider the Boolean algebra B shown in Fig. 5.19.

The subset 1 { , , 0, 1}S a a′=  is a sub-Boolean algebra of B. The subset 2 { , , 0, 1}S a b b′ ′= ⋅  is not a

sub-Boolean algebra.
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Fig. 5.19

��� 
��������	
��� 

Definition 5.31: Let (B1, +1, ,⋅ ,'  01, 11) and (B2, +2, ,⋅ ,"  02, 12) be Boolean algebra. The direct

product of the Boolean algebras denoted by (B1 × B2, +3, 3 ,⋅ ,"'  03, 13) is a Boolean algebra in which the

operation are defined as follows:
(a1, b1) +3 (a2, b2) = (a1 +1 a2, b1 +2 b2)

(a1, b1) 3⋅  (a2, b2) = (a1 1⋅ a2, b1 2⋅ b2)

1 1 1 1 1 1( , ) ( , ) ( , ),a b ''' a b a b′ ′′= ∀  and 2 2( , )a a B∈

also 03 = (01, 02) and 13 = (11, 12)

using the definition given above we can generate new Boolean algebras. If B is a Boolean algebra we
can generate the Boolean algebras B × B = B2, B × B × B = B3, B × B × B × B = B4, ...

��! "	#	#	��"� #

Definition 5.32: Let (B, +, ,⋅ ,'  0, 1) and (B1, +1, 1,⋅ –, 01, 11) be two Boolean algebras. A function

: ,f B B→  is called a Boolean algebra homomorphism, if f preserve the two binary operation and the

unary operation i.e., for all ,a b B∈

1( ) ( ) ( )f a b f a f b+ = +

( ) ( ) , ( )f a b f a f b⋅ = ⋅

( ) ( )′ =f a f a

1(0) 0f =

and 1(1) 1f =

��� ��	# �	(�,		���������,��

Let (L, +, )⋅  be a lattice. An element ∈a L  is called join-irreducible if it cannot expressed as the join of

two distinct elements of L.
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i.e., ∈a L  is join irreducible, if for any a1, a2, L∈
a = a1 + a2 ⇒  (a = a1) or (a = a2)

In the case of a Boolean algebra, the elements which cover the least element 0, are the only elements
which are join irreducible. They are called atoms of the Boolean algebra. An element ∈a B  is called an

atom if 0,a ≠  and either 0a b⋅ =  or 1a b⋅ = .b B∀ ∈  The atoms a Boolean algebra are also called
minterms. We can also represent the elements of a Boolean algebra in terms of the meet of their anti-
atoms. The anti-atoms in Boolean algebra are those elements of the Boolean algebra which are covered
by the greatest element 1. Anti-atoms are also called Maxterms. They are the complements of the atoms.

��$ ,		������%���  �	� ���
�#���#�:���	�
	(�,		�����(�����	� 

Boolean expressions are formed by application of the basic operations +, ,⋅   and 1, to one or more
constants of variables. The simplest expression consists of a single constant or a variable such as 0 or a.

Definition 5.33: A Boolean expression or form, in n variables x1, x2, ..., xn is any finite string of
symbols formed as given below:

1. 0 and 1 are Boolean expression.

2. x1, x2, ..., xn are Boolean expressions.

3. If α  and β  are Boolean expression, then ( ) ( )α β⋅  and ( ) ( )α β+  are also Boolean

expressions.

4. If α  is a Boolean expression then 1( )α  is also a Boolean expression.

5. No strings symbols except those formed in accordance with the above rules are Boolean
expressions.

If α  is a Boolean expression in n variables, say x1, x2, ..., xn then α  can be written as
α  (x1, x2, ..., xn). A Boolean expression in n variables may or may not contain all the n variables.

Some examples of Boolean expressions are

1 2 1 2 3 1 1 2 3 1, ( ) ,′ ′ ′ ′+ + +x x x x x x x x x x

Parentheses are added to specify the order in which the operations are performed and some of them
can be dropped whenever possible.

0, 1, x1, x2, ... x3 are Boolean expressions. If α  and β  are two Boolean expression, then
1( ), ,α α α β+  and ...α β  are also Boolean expression.

If α  = (x1, x2, ... xn) is a Boolean expression then we can assign values a1, a2, ... an respectively to
the variables where each ai is either 0 or 1.

For example
Consider the Boolean expression

α  = (x1, x2, ... xn) = [(x1 ⋅ x2) + x3]´
If x1 = 1, x2 = 0, and x3 = 0, then

α  (x1, x2, x3) = α  (1, 0, 0)

= [(1.0) + 0]
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= (0 0)′+

= 0′
= 1

Definition 5.34: Two Boolean expression α  (x1, x2, ..., xn) and β  (x1, x2, ..., xn) are said to be equal

(or equivalent) if one can be obtained from the other by a finite number of application of the identities of
Boolean algebra.

Definition 5.35: A literal is defined to be a Boolean variable or its complement.

Example 1: x, and x′  are literals.

Definition 5.36: A literal or a product of two or more literals in which no two literals involve the same
variable is called a fundamental product.

Example 2: 1 2 3 1 2 3, ,′ ′x x x x x x xy  are fundamental products.

Definition 5.37: A Boolean expression generated by x1, x2, ..., xn over B, which has the form of
conjunction (product) of n literals is called a minterm.

The number of minterm generated by n variables in B2 is 2n.

The two variables x1 and x2 generate, the minterms 1 2 1 2 1 2, , , ,x x x x x x′ ′  and 1 2x x′  in B2. A minterm
form of a Boolean expression is also called sum-of-products form or complete product of n variables.

We shall denote a particular min term by minj or mj where j is the decimal representation of a1 a2 ...
an and each ai is either 0 or 1 for i = 1, 2, ..., n. The minterms satisfies the following properties.

0 fori jm m i j⋅ = ≠

and
2 1

0
1

n

i
i

m
−

=
+ =

For i j≠  the minterm mi and mj are not equal every Boolean expression except 0, can be expressed

in an equivalent form consisting of the sums of minterms. When an expression is written as a sum of
minterms, the equivalent form obtained is called a sum of products canonical form or a minterm expansion.

In a minterm expansion any particular minterm may or may not be present. The number of different sum

of products canonical forms is 22 .
n

 These include minterms expansion of 0, in which no minterm is

present in the sum, and also the minterm expansion of 1, where all the minterms are present in the sum.

Therefore, the set of Boolean expression can be partitioned into 22
n

 equivalence classes. The set of

Boolean expression under the operation +, ⋅  and 1, form a Boolean algebra called a free Boolean algebra.

A Boolean expression can also be written as a product of sums of Maxterm, the equivalent expression
obtained is called a product sums canonical form or maxterm expansion. Each maxterm is the complement
of the corresponding minterm. In general, a maxterm of n variables is a sum of n literals in which each
variable appears exactly once in either true or complement form, but not both. The maxterm expansion
for an expression is unique.

The minterm expansion i.e., sum of products canonical form is called the disjunctive normal form
and the maxterm expansion or products of sums canonical form is called the conjunction normal form.
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Definition 5.38: Let (B, +, ,⋅ ,'  0, 1) be a Boolean algebra. A function : nf B B→  which is associated
with a Boolean expression in n variables is called a Boolean function.

Every function from Bn to B, may n of be Boolean, and there are functions from Bn to B which are
not Boolean. Different expressions may determine the same Boolean functions. Absorption laws,
De Morgan’s laws, distributive laws and the other identities for Boolean algebras bring out the redundancy
of Boolean expression. To transform Boolean expression E into a sums-of-products form; we first use
De Morgan’s laws and involution law, to convert E into a form which contains only sum and products of
literals. We next use distributive law to transform E into a sums-of-products form. The next step is to
transform each product in E into 0 or a fundamental product. This done by using the commutative,
idempotent and complement laws. Finally, we use absorption law to get the sums-of-product form of E.
To obtain complete sum-of-product form of E. We involve all the variables in each product of the sum-
of-product form of E.

Example 3: Transform 1 2 3 1 3 2 3(( ) ) (( ) ( ))x x x x x x x′ ′ ′ ′ ′ ′+ +  into a sums-of-products form.

Solution: 1 2 3 1 3 2 3(( ) ) (( ) ( ))′ ′ ′ ′ ′ ′+ +x x x x x x x

1 2 3 1 3 2 3[(( ) ) ] [( ) ( ) ]′′ ′ ′ ′ ′ ′ ′= + + + +x x x x x x x

1 2 3 1 3 2 3[ ] [(( ) ) (( ) ) ]′′ ′ ′ ′ ′= + +x x x x x x x

1 2 3 1 3 2 3[ ] [ ]′ ′= + +x x x x x x x

1 2 1 3 1 2 2 3 3 1 3 3 2 3′ ′ ′ ′= + + +x x x x x x x x x x x x x x

1 2 3 1 2 3 1 3 0′ ′= + + +x x x x x x x x

1 3 1 2 3 1 2 3′ ′= + +x x x x x x x x

Example 4: Express (i) 1 2x x⋅  (ii) 1 2 3( )′ ′x x x

In an equivalent sum-of-products canonical form in three variables x1, x2 and x3.

Solution: (i) 1 2 1 2 3 3( )x x x x x x′⋅ = ⋅ ⋅ +

1 2 3 1 2 3 7 6x x x x x x m m′= ⋅ ⋅ + ⋅ ⋅ = +

6 7m m= +

∴ 1 2 6 7x x m m⋅ = +

(ii) 1 2 3( )x x x′ ′

1 2 3[( ) ]x x x′ ′ ′= +

1 2 3[ ]x x x′= +

1 2 1 3x x x x′= +

1 2 3 3 1 2 2 3( ) ( )x x x x x x x x′ ′ ′= + + +
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1 2 3 1 2 3 1 2 3 1 2 3′ ′ ′ ′= + + +x x x x x x x x x x x x

1 2 3 1 2 3 1 2 3x x x x x x x x x′ ′ ′= + +

7 6 4m m m= + +

4 6 7m m m= + +

4, 6, 7 (4, 6, 7)m= + = ∑

Example 5: Write 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3( , , )f x x x x x x x x x x x x x x x x x x′ ′ ′ ′ ′= + + + +  in term of

m-notation.

Solution: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3f x x x x x x x x x x x x x x x′ ′ ′ ′ ′= + + + +

= min3 + min5 + min6 + min7 + min4

= min3 + min4 + min5 + min6 + min7

= m3 + m4 + m5 + m6 + m7

= (3, 4, 5, 6, 7)m∑

Example 6: 1 2 4 1 3 4( )f x x x x x x′ ′ ′= + +

Solution: 1 2 4 1 3 4( )f x x x x x x′ ′ ′= + +

1 2 1 1 4 1 3 4x x x x x x x x′ ′ ′ ′ ′= + +

1 2 3 3 4 4 1 2 2 3 3 4 1 2 2 3 4( ) ( ) ( ) ( ) ( )x x x x x x x x x x x x x x x x x′ ′ ′ ′ ′ ′ ′ ′= + + + + + + +

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4x x x x x x x x x x x x x x x x x x x x′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + +

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4′ ′ ′ ′ ′ ′ ′+ + + +x x x x x x x x x x x x x x x x x x x x

0 1 3 5 7 10 14m m m m m m m= + + + + + +

(0, 1, 3, 5, 7, 10, 14)m= ∑

Example 7: Write 1 2 3 1 2 3 1 2 3( ) ( ) ( )Z x x x x x x x x x′ ′= + + + + + +  in M-notation.

Solution: 1 2 3 1 2 3 1 2 3( ) ( ) ( )Z x x x x x x x x x′ ′= + + + + + +

0 1 3Max Max Max=

(0, 1, 2)M= ∏

Example 8: (0, 1, 2, 5)f m= ∑  is a three input function. Transform f into its canonical sum-of-products

form.
Solution: Let x1, x2 and x3 denote the three inputs then

0 1 2 3000m x x x′ ′ ′= =

1 1 2 3000m x x x′ ′= =
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2 1 2 3010m x x x′ ′= =

3 1 2 3101m x x x′= =

∴  Canonical sum-of-products form of the expression is

1 2 3 1 2 3 1 2 3 1 2 3f x x x x x x x x x x x x′ ′ ′ ′ ′ ′ ′ ′ ′= + + +

Example 9: Covert 1 2 3( ) (0, 2, 4, 5)f x x x = ∏  into its canonical products-of-sums form.

Solution: 1 2 3( ) (0, 2, 4, 5)f x x x = ∏

0 1 2 5M M M M=
we have 0 1 2 3000M x x x= =

1 1 2 3000M x x x′= =

2 1 2 3010M x x x′= =

3 1 2 3101M x x x′ ′= =
∴ The required canonical product-of-sums form is

1 2 3 1 2 3 1 2 3 1 2 3( ) ( ) ( ) ( )′ ′ ′ ′=f x x x x x x x x x x x x

Example 10: Obtain the three variable product-of-sums canonical form of the Boolean expression

1 2.x x⋅

Solution: Let x3 denote the variable then

1 2 1 2 2 2 1 1[ ( )] [ ( )]x x x x x x x x′ ′⋅ = + ⋅ + ⋅

1 2 1 2 1 2 1 2( ) ( ) ( ) ( )x x x x x x x x′ ′= + ⋅ + ⋅ + ⋅ +

1 2 1 2 1 2( ) ( ) ( )x x x x x x′ ′= + ⋅ + +

1 2 3 2 1 2 3 3 1 2 3 3[( ) ( )] [( ) ( )] [( ) ( )]x x x x x x x x x x x x′ ′ ′ ′ ′= + ⋅ + + ⋅ + ⋅

1 2 3 1 2 3 1 2 3( ) ( ) ( )x x x x x x x x x′ ′= + + ⋅ + + ⋅ + +

1 2 3 1 2 3 1 2 3( ) ( ) ( )x x x x x x x x x′ ′ ′ ′ ′+ + + + + +

0 1 2 3 4 5Max Max Max Max Max Max= ⋅ ⋅ ⋅ ⋅ ⋅

0 1 2 3 4 5M M M M M M= ⋅ ⋅ ⋅ ⋅ ⋅

(0, 1, 2, 3, 4, 5)M= ∏

Let (B, +, ,⋅ ,'  0, 1) be any Boolean algebra and (a1, a2, ..., an) nB∈  where .ia B∈
If α  (x1, x2, ... xn) is a Boolean expression, we can find the value of α  (x1, x2, ... xn) for (a1, a2, ... an) by
replacing x1 by a1, x2 by a2, ..., xn by an.

Example 11: Find the value of x1 + (x1 x2) over the ordered pairs of the two-element Boolean algebra.
Solution: Let B = {0, 1) then the (0, 0), (0, 1), (1, 0) and (1, 1) are the elements of B2 = B × B.

The values of x1 + (x1 ⋅ x2) are listed in Table 5.1 given below.
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Table 5.1

(x1 ⋅ x2) x1 + (x1 ⋅ x2)

(0, 0) 0
(0, 1) 0

(1, 0) 1
(1, 1) 1

Definition 5.39: Let P1 and P2 be fundamental products such that exactly one variable say xi appears
in complemented form in one of the products P1 and P2 and uncomplemented in the other. The consensus

of P1 and P2 is the product of the literals P and the literals of P2 after deleting xi and 1.ix

Example 12: (i) The consensus of A B and A C′  is BC.

(ii) The consensus of A B C′  and A B C′ ′ ′  is 0.

(iii) The consensus of 1 2 3 4x x x x′  and 1 2 5x x x′  is 1 3 4 5.x x x x′

Consensus method is very useful in simplifying Boolean expressions. It is used to eliminate redundant
terms in a Boolean expression. The redundant terms which are eliminated are called consensus terms.

Example 13: In the expression in 1 2 1 3 2 3E x x x x x x′= + +  the terms x2 x3 is redundant. It is referred

to as the consensus term. Eliminating x2 x3 be can write 1 2 1 3E x x x x′= +  as the simplified expression
for E.

Definition 5.40: Let E be a Boolean expression. A fundamental product P is called a prime implicant
of E if P + E = E but no other fundamental product included in P has this property.

Example 14: 1 3x x′  is a prime implicant of the Boolean expression

1 2 1 2 3 1 2 3.E x x x x x x x x′ ′ ′ ′= + +

��& #���#�:���	��	(�,		������%���  �	� 

Boolean expressions are practically implemented in the form of gates. The cost of a circuit depends
upon the number of gates in the circuit. Hence we reduce the member of gates in the circuit to a minimum
so that the cost of the circuit is decreased to a miximum extent.

In this section, we explain to methods for simplification of Boolean expressions, namely (i) Algebraic
method and (ii) Karnaugh map method.

��&�� ��;0����#0�5�4

In this method, we make use of Boolean positates rules and theorem to simplify given Boolean expressions.

Example 1: Simplify

F A B C A B C A B C A B C= + + +
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Solution: F A B C A B C A B C A B C= + + +

( )A B A B A B A B C= + + +
( ( ) ( ))A B B A B B C= + + +
( (1) (1))A A C= ⋅ + ⋅
( )A A C= +
1 C= ⋅
C=

Example 2: Simplify z (y + z) (x + y + z)
Solution: z (y + z) (x + y + z)

= (z y + z z) (x + y + z)
= (z y + z) (x + y + z)
= z (y + 1) (x + y + z)
= z (x + y + z)
= z x + z y + z z
= z x + z y + z
= z (x + y + 1)
= z (x + 1)
= z

Example 3: Simplify Y = (P + Q) (P + ) (Q P′ ′  + Q)

Solution: Y = (P + Q) (P + ) (Q P′ ′  + Q)

= (P P + P Q′  + P Q + Q ) (Q P′ ′  + Q)

= (P + P Q′  + P Q + 0) (P′  + Q)

= (P + P Q′  + P Q) (P′  + Q)

= P P1 + P Q + P Q′ P′  + P Q′ Q + P Q P′  + P Q Q

= 0 + P Q + 0 + 0 + 0 + P Q

= P Q + P Q

= P Q

Example 4: Show that Y = P Q R + P Q′ R + P Q R′  can be simplifies as Y = P ( Q + R)

Solution: Y = P Q R + P Q′ R + P Q R′

= P R ⋅  (Q + )Q′  + P Q R′

= P R ⋅  1 + P Q R′

= P (R + Q )R′
= P (R + Q)
= P (Q + R)
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Example 5: Minimize the expression A B A A B+ +

Solution: A B A A B+ +

A B A A B= + + +

A A B A B= + + +

A B A B= + +

A A B B= + +

( )A A B B= +
A B B= + +

1 1A= + =
Hence 1A B A A B+ + =

��&� <��3�2;5�#��1

A Boolean expression generally denoted the structure of a logical circuit, while the Boolean function
describes the behaviour of the circuit. Many different circuits or programs can be used to compute the
same Boolean function: It is often desirable to select the one that is simplest. The algebraic techniques
used to simplify Boolean functions are difficult to apply in a systematic way. The Karnaugh method
(named after Maurice Karnaugh) is a systematic method for simplifying switching (Boolean) functions.

The Karnaugh map is a graphical representation of the truth table with a square representing each
minterm. If f is a function of n variables, then the Karnaugh map will have 2n squares. 1-variable Karnaugh
map is shown in Fig. 5.20. Note that the map has 21 = 2 cells.

Fig. 5.20 Karnaugh map for 1-variable

Consider the Truth table shown in Table 5.2 for a function Z of two variables. To convert the table
into its Karnaugh map, we begin by drawing 5.21 (a) (i.e., a blank map):

Table 5.2

A B Z

0 0 0

0 1 0
1 0 1
1 1 1
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Fig. 5.21

The first out put 1 appears for A = 1 and B = 0.

The input condition for this fundamental product is .AB  Enter this input condition in the Karnaugh
map as shown in Fig. 5.21 (b). Table 5.2 has an output 1 appearing for A = 1 and B = 1. This fundamental
product is A B. Enter this fundamental product (i.e., A B) as shown in Fig. 5.21 (c). Finally enter 0s in the
remaining spaces (See Fig. 5.21 (d). A two variable Karnaugh map, can be represented as shown in
Fig. 5.22:

Fig. 5.22 Two variable Karnaugh map representing minterms

If the top horizontal line represents A  and A and the vertical line represents B  and B, then the
Karnaugh map, can be drawn as shown in Fig. 5.23:

Fig. 5.23 2-Variable Karnaugh map

In the above Karnaugh map we observe that in every square a number is written. Each number is a
minterm. If the number 0 is given to a square means it represents the minterm m0. Similarly, a square
(cell) with the number 1 represents the minterm m1 a square with the number 2 represents m2 and so on.

The binary number in the Karnaugh map differ by only one place, when  moving from left to right.
That is two adjust squares in Karnaugh map differ only by one variable.

(a) (b) (c) (d)
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The successive numbers are 00, 01, 11 and 10, where

00 represents AB

01 represents AB

11 represents A B

and 10 represents AB

In these products only one variable changes from complemented to uncomplemented form. The
above code is called gray code. The Karnaugh map for the truth Table 5.3 is shown in Fig. 5.24.

Table 5.3

A B Z

0 0 1

0 1 1
1 0 0
1 1 0

Fig. 5.24

Figure 5.25 shows a Karnaugh map for 3 variables.

Fig. 5.25 Karnaugh map for 3 variables

Note that the numbering scheme here is 0, 1, 3, 2 then 4, 5, 7, 6.

Figure 5.26 shows a four variables Karnaugh map.
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Fig. 5.26 Karnaugh map for four variables

Example 1: Draw a Karnaugh map for Table 5.4:

Table 5.4

A B C Z

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0
1 0 0 0
1 0 1 0

1 1 0 1
1 1 1 0

Solution: We first draw the blank map of Fig. 5.27 (a) output 1 appears A B C inputs of 000, 001, 010

and 110. The fundamental products for these conditions are , ,ABC ABC ABC  and .A BC  Enter Is

for these products on the Karnaugh map (Fig. 5.27 (b)).
Finally enter 0S in the remaining spaces as shown in Fig. 5.27 (c).

(a) (b)
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(c)

Fig. 5.27

Figure 5.27 (c) represents the Karnaugh map for Table 5.4.

������3���<��3�2;5�#��

Consider the Karnaugh map shown in Fig. 5.28. The map contains a pair is which are adjust to each

other. The map represents the sum-of-products equation Z = A B C D + .A B C D  Where the first

minterm represents the product A B C D and the second minterm stands for the product .A B C D  The
variable D in the uncomplemented form goes to the complemented form and the variables A, B and C
remain uncomplemented. The variable D can be eliminated.

Fig. 5.28 Example of pair

In a pair, the variable which changes its state from complemented to uncomplemented (or vise
versa) is removed. This rule is called pair reduction rule.

To draw a Karnaugh map for a truth table with don’t care conditions; we first treat the don’t conditions
as 1s and encircle actual 1s in the largest groups. The remaining don’t cares (which are not included in
the groups) are regarded by visualizing them as 0s.

Thus, A pair in a Karnaugh map eliminates are variable and its complement.

In the above expression Z = A B C D + A B C D  can be factored as Z = A B C ( ).D D+

=2�41

In a Karnaugh map, a quad is a group of four 1s that are horizontally or vertically adjacent. The 1s in a
quad may be end-to-end or in the form of a square as shown in Fig. 5.29. A quad eliminates two



BOOLEAN ALGEBRA 155

variables and their complements. The rule is known as quad reduction rule. The quads in a Karnaugh
map are always encircled as shown in Fig. 5.29.

Fig. 5.29 Examples of quads

	>�0�

The octet in a Karnaugh map is a group of eight Is. An octet eliminates three variables and their
complements.

Fig. 5.30 Example of octet


�3?�����0���34����31

In some problems certain input combinations may never occur in the circuit therefore the corresponding
output never appears. But they appear in the truth table. In such case an X is entered in the truth table as
functional value. X is called a don’t-care condition. The logic designer can later assign a functional
value 0 or 1 to the corresponding entries in the truth table (Table 5.5).
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Table 5.5 Don’t care conditions

A B C F

0 0 0 1

0 0 1 X

0 1 0 0
0 1 1 1

1 0 0 0
1 0 1 0
1 1 0 X

1 1 1 1

�����3;���<��3�2;5�#��

Pairs; quads and octets in a Karnaugh map are marked after rolling the map; in which we consider the
map as if its left edge are touching the right edges and the top edges are touching the bottom edges.

�04234�3�����2�

In a Karnaugh map, a group whose is are already used by others is called a redundant group (See
Fig. 5.31). The removal of a redundant group leads to much simpler expression.

Fig. 5.31 Karnaugh map with redundant group

In the Fig. 5.31 all the 1s of the quad are used by pairs of the map, therefore quad is redundant on
Fig. 5.31 and it can be eliminated as shown in Fig. 5.32.

Summary of the rules for simplifying Boolean expression:
1. Construct the truth table for the given expression.
2. Begin with empty Karnaugh map and enter a 1 in the Karnaugh map for each fundamental

product that produces a 1 output in the truth table. Enter 0s 1s elsewhere.
3. Encircle the octets, quads and pairs roll the Karnaugh map.
4. Eliminate redundant groups if any.



BOOLEAN ALGEBRA 157

5. Write the simplified Boolean expression by ORing the products corresponding to the encircled
groups.

Fig. 5.32 Karnaugh map without redundant group

Example 2: Simplify the Boolean expression

Y A B C A B C A B C A B C= + + +
Solution: The truth table for Y is shown in Table 5.6:

Table 5.6

A B C Y

0 0 0 0

0 0 1 0
0 1 0 0
0 1 1 0

1 0 0 1
1 0 1 1
1 1 0 1

1 1 1 1

Figure 5.33 showns the Karnaugh map for Y.

Fig. 5.33
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There is quad in the map.
There are no redundant groups in the map A is the only variable which remained unchanged in the

map.

∴ The simplified expression Y = A.
This can be proves as follows:

Y A B C A B C A B C A B C= + + +

( )A B C B C B C B C= + + +

(( ) ( ) )A B B C B B C= + + +

(1 1 )A C C= ⋅ + ⋅

( )A C C= +

1A= ⋅

A=

Example 3: Obtain a simplified expression for a Boolean expression F (x. y. z) the Karnaugh map for
which is given below:

Fig. 5.34

Solution: Completing the given Karnaugh map by entering 0s in the empty square, we get the following
Karnaugh map (See Fig. 5.35):

Fig. 5.35

There are no pairs, no octets. There is a quad in the map. The quad consists of the minterms m1, m3,

m5 and m7. Moving horizontally from m1 to m3 i.e.,  X Y Z  to X Y Z  we observe that Y changes from
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complemented form to uncomplemented for,... Therefore Y is eliminated. Moving vertically from m1 to

m5 or m3 to m7, we find that the variable X  changes to X. Hence we eliminate X.

∴ The simplified expression for F (x, y, z) is
F (x, y, z) = Z

Example 4: Simplify F (A, B, C, D) = ∑  (0, 2, 7, 8, 10, 15) using Karnaugh map.

Solution: The minterms the function F are

0 0000m A B C D= =

2 0010m A B C D= =

7 0111m A B C D= =

8 1000m A B C D= =

10m A B C D=

15 1111m A B C D= =
Karnaugh map of the given function is shown in Fig. 5.36:

Fig. 5.36

The Karnaugh map has one pair, and one quad.
There are no over lappings.
Consider the pair m7 + m15.
A is the only variable which changes its form, have A is removed.
The reduced expression for the pair m7 + m15 is B C D quad is m0 + m3 + m8 + m10 in the map

moving horizontally we observe that the variable C changes its form and then moving vertically. We
find that A changes its form. Therefore A and C are removed. The reduced expression for the quad
m0 + m3 + m8 + m10 is .B D

Hence simplified expression for F is

B C D + B D
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Example 5: Simplify

Y = Σ m (0, 1, 4, 5, 6, 8, 9, 12, 13, 14.)

Solution: The Karnaugh map can be constructed as shown in Fig. 5.37.

Fig. 5.37

There is one octet and a quad in the K-map. The quad is obtained by rolling vertically, such that the
left and right edges are joined and over lappings. A, B and D, are the variables eliminated by the Octet in
the map. Quad eliminated the variables A and C.

Octet gives C  and quad gives .B D

Hence, the reduced expression is .f C B D= +

Example 6: Simplify the Boolean function f (A, B, C, D) = Σ m (1, 3, 7, 11, 15) + d (A, B, C, D) where

the don’t care conditions are given by d (A, B, C, D) = Σ m (0, 2, 5).

Solution: The Karnaugh map for f can be constructed as shown in Fig. 5.38 (b).

Fig. 5.38

(a) (b)
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The minterm for d may produce either 0 or 1 for f. The I S and X S are combined so as to endure
maximum number of adjustment squares. The remaining cells are marked 0 as shown in Fig. 5.38 (b).
There are two quads in Fig. 5.38 (a). The don’t care condition in cell 5 is left free; as it does not

contribute to any group in the map. The simplified expression in sum-of-products form is f = A B  + C

D. Combining O S and X S in Fig. 5.38 (b). We get the simplified products-of-sums equation as

( ) ( ).f D A C D A C= + = +
In this case, a variable can be taken for 0 and its complement is taken for 1.

�%��� �  � ���

1. Define a Boolean algebra.
2. Define a sub algebra.
3. Define the dual of a statement S in a Boolean algebra.
4. Define an atom in a Boolean algebra B.
5. Define a Boolean expression and give examples.
6. Define a literal and a fundamental products and give examples.
7. What are idempotent laws for Boolean algebras?
8. What is involution law for Boolean algebras?
9. Write the dual of each statement:

(a) (x + y) (x + 1) = x + x y + y

(b) ( )x y+  = x y

(c) x y  = 0 if and only x y = x.

10. What is a minterm?
11. What is a maxterm?
12. Define a sum-of-products form.
13. Define a product-of-sums form.
14. Prove the following Boolean identities:

(i) a + ( )a b⋅  = a + b

(ii) ( )a a b a b⋅ + = ⋅

(iii) ( ) ( )a b c a b a b⋅ ⋅ + ⋅ = ⋅
15. Simplify the following Boolean expressions:

(a) ( ) ( )a b a b′ ′⋅ + ⋅

(b) ( ) ( ) ( )a b c a b c a b c′ ′ ′ ′ ′⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅
16. Write the following Boolean expressions in equivalent sum-of-products form in three variables:

(a) x1 x2 (b) x1 + x2
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(c) 1 2 3( )x x x′⋅ ⋅ (d) 1 2 3( )x x x′+ ⋅

(e) (x1 + x2) + 1 3( )x x′ ⋅

17. Obtain the sum-of-products and product-of-sums of canonical forms of the following expressions:

(a) 1 2x x⋅ (b) 1 2 3x x x′ +
18. Obtain simplified Boolean expressions which are equivalent to these expressions:

(i) m0 + m1 + m2 + m3

(ii) m0 + m1 + m2 + m5 + m6 + m7

(iii) m2 + m3 + m5 + m6

19. Express F = x (y1 z)1 in complete sum-of-products form.
20. Write each of the following Boolean expressions in complete sum-of-products form:

(i) 2( )E x x y x y y′ ′ ′= + +

(ii) ( ) ( )E x y x y′ ′ ′= +

(iii) 3 1 2 2( )E x x x x′ ′= + +
21. Simplify

(i) X = A B A B+

(ii) X = A B C A B C+

(iii) X = A B C A B C A B C A B C+ + +

(iv) X = A B C D A B C D A B C D A B C D+ + +

(v) X = A B C D A B C D A B C D A B C D+ + +

(vi) X = A B C D A B C D A B C D A B C D A B C D+ + + +
22. Simplify the following Boolean function in product of sums form:

F (A, B, C, D) = ∑  (0, 1, 2, 5, 8, 9, 10)
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6

Logic Gates

��� ����	
����	�

Boolean algebra can be applied to the solution of any electronic circuit involving two possible states.
We begin our study by examining switching circuits. The most elementary circuit is shown in the figure
given below (Fig. 6.1):

Fig. 6.1

The battery B, a single pole throw switch and an indicating lamp are connected in a simple switching
circuit. The electronic circuit is a two-state device. It is for turning ‘on’ and ‘off’ an electronic light in the
circuit. We can also construct a device which permit not only electric current but any quantity that can go
through such as water, information etc. For general discussion we replace the word ‘switch’ by the word
‘gate’.

Consider the switching circuit displayed in Fig. 6.2 (a). When the switch S is open there is no
current flowing in the circuit and the lamp L is off. This condition is indicated by the numeric value ‘0’.
When the switch is closed the lamp L is on. This condition is indicated by the numerical value ‘1’.
Therefore, the value 0 (or dark lamp) will show an open switch and the value 1 will show the closed
switch in the circuit (the value 1 indicated a glowing lamp). The condition tables is the truth table which
lists all the possible combinations of input binary variables is given in Fig. 6.2 (b):

(a) Simple switching circuit (b) Condition table

Fig. 6.2
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We can express the above condition table in different form as shown in Table 6.1:

Table 6.1

State of the switch State of the lamp

Open Off
Closed On

Let P and Q denote the following statements:
P: The switch S is closed.
Q: The lamp L is on.

We can rewrite the condition table as follows:

Table 6.2

P(S) Q(L)

0 0
1 1

Now consider the circuit shown in Fig. 6.3. The circuit has the switches S1 and S2 which are connected
in parallel. When the switch S1 is closed, the current flows exclusively through the upper branch, and the
light (L) is on and when the switch S2 is closed the current flows exclusively through the lower branch
and the light is on. With both the switches closed the current divides equally between both branches still
permitting the lamp to glow. If both the switches S1 and S2 are open the circuit becomes an open circuit
and the light is off. This shows that an OR function can be obtained connected the switches in parallel.
The light is or when either S1 or S2 is closed.

(a) (b)

Fig. 6.3

Let P: The switch S1 is closed.

Q: The switch S2 is closed.

Y: The lamp L is on.

Then the truth Table 6.3 (b) can be written as:
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Table 6.3

P Q Y

0 0 0
0 1 1
1 0 1

1 1 1

Fig. 6.4 (a) Contains the circuit in which two switches S1 and S2 are connected in ‘series’. If both the
switches S1 and S2 are closed then the circuit permits the flow of current in the circuit and the light is on.
In all other combination the circuit is open and the light is off, showing that ‘AND’ function is obtained
(See Fig. 6.4):

(a) (b)

Fig. 6.4

Let P: The switch S1 is closed.

Q: The switch S2 is closed.

Y: The light L is on.

The table of Fig. 6.4 (b) can be written as:

Table 6.4

P Q Y

0 0 1

0 1 1
1 0 1
1 1 1

�� ��������
��		������������

Boolean algebra is different from ordinary algebra. It is a system of mathematical logic. A switching
network (governs) the flow of current through a circuit. Now we will discuss logic gates which are
basically electronic circuits that can be used to actually implement the most elementary logical expressions,
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known as logic gates. There are three basic logic gates, the OR-gate, the AND-gate and the NOT-gate.
Other logic gates that are derived from these three basic gates are NAND-gate, the NOR gate, the EX-
OR gate and the EX-NOR gate.

���� 	������

An OR-gate is a logic circuit with two or more than two inputs and outputs. The output of an OR-gate is
‘0’ only when all of its inputs are at logic ‘0’. For all other input combinations the output is ‘1’. The
symbol for the OR-gate is shown in Fig. 6.5. along with the associated truth table.

(a) (b)

Fig. 6.5 OR-gate

The operation of an OR-gate which is explained by the expression Y = A + B is read as Y equal to A
OR B.

Note: Performing OR operation is the same as taking the maximum of two bits.

��� ��
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An AND-gate is a logic circuit having two or more than two inputs and one output. The output of an
AND-gate is logic ‘1’, only when all of its inputs are in ‘1’ state. In all other possible combination the
output is ‘0’. Fig. 6.6 (a) shows the symbol of an AND-gate. The truth table is given in Fig. 6.6 (b). The
operation of an AND-gate is expressed by:

Y = A + B

(a) (b)

Fig. 6.6
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A NOT-gate is one input and one out put logic gate. The out put of a NOT-gate is always the complement
of the input. A NOT-gate is also known as an inverter or a complementing circuit. Fig. 6.7 shows the
NOT-gate with the associated truth table.

(a) (b) (c)

Fig. 6.7 A NOT-gate, equivalent symbol

���� �	������

The NOR-gate has two or more input, but produces only are output. The NOR operations is symbolised

as Z = A ↓ B.

NOR action is illustrated in Fig. 6.8. The equivalent symbol is shown in Fig. 6.9.

Fig. 6.8 NOR-gate symbol

(a) (b)

Fig. 6.9 NOR-gate equivalent symbol

��� ���
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NAND-gate function is a composite function. In this case an AND function is complemented to produce
a NAND function placing an N in front of AND. The NAND-gate has two or more input signals but
only one output signal. The NAND-gate is a contraction of NOT AND. It can have many inputs as
desired. The symbol for NAND-gate along with the truth table is shown in Fig. 6.10.
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(a) (b)

Fig. 6.10 NAND-gate

NAND operation is symbolised as ↑  i.e., A NAND B is written as A ↑ B.

���� �!"#$%&���	���������'�	�������(��'	�������

EX-OR stands for exclusive OR. It differs from an OR gate in only are of the entries in the truth table.
The EX-OR gate can also L are have two or more inputs but produces one output signal. The symbol for
Exclusive OR is shown in Fig. 6.11. Where the operation of the gate is expressed by Z = A ⊕ B.

(a) (b)

Fig. 6.11 Two input—EX-OR gate
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The EX-NOR gate is logically equivalent to an inverted EX-OR gate i.e., EX-OR gate followed by a
NOT-gate. The symbol for EX-NOR is shown in Fig. 6.12. The operation of the gate is expressed by
Z = A � B.

(a) 2-input EX-NOR gate (b) Truth table for EX-NOR

Fig. 6.12
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Sometimes it is convenient to use more than one representation for a given type of gate, Fig. 6.13
shows alternative symbols used for the logic gates.

We can use the above symbols to analyse and design complex digital systems. We can also apply
the techniques of Boolean algebra to electronic logic. Generally a logic gate network is drawn so that
the flow of information is from the left to right.

The inputs to a logic gate network will be formed on the left of schematic diagram and the outputs
will be found on the right, which makes it easier for us to find the algebraic equation of the total network,
Boolean algebra is useless unless it can be converted into hardware in the form of logic gates. Science of
Boolean algebra can be a useful technique for analysing circuits only if the hardware can be translated
into Boolean expression.

Fig. 6.13 Logic gates, equivalent symbols

Example 1: For the logic circuit shown in Fig. 6.14. write the input-output Boolean expression.
Solution: The output Boolean expression is

Z = (A + B) ( )A C⋅ + ⋅  (B + C).
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Fig. 6.14

Example 2: Represent (A + B) (B + C) (C + A) in NOR-to-NOR form.
Solution: (A + B) (B + C) (C + A) = (A NOR B) NOR (B NOR C) NOR (C NOR A)

Fig. 6.15

Example 3: Implement the logic expression

F = ABC ABC A B+ +

with logic gates.

Solution: The expression F = ABC ABC A B+ +  requires three and gates and one OR-gate. It can
be implemented as shown in Fig. 6.16:
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Fig. 6.16

Example 4: For the equation Z = X Y + W Y  construct a gate structure and minimize it.

Solution: The gate structure for Z = X Y  + W Y  is shown in Fig. 6.17:

Fig. 6.17

Now consider Z = X Y + W Y

The equation can be factored as Z = Y ( )X W+ . The gate structure of Z has only two input gates.

Fig. 6.18
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Example 5: Construct a NAND-gate structure for the expression

( )Z A B C F D E= + + +

Solution: Figure 6.19 shows the NAND-gate network of Z:

Fig. 6.19 NAND-gate network for Z

The equivalent AND-OR network is given in Fig. 6.20:

Fig. 6.20 Equivalent AND-OR network

Example 6: Use NAND-gates and draw a circuit diagram for .= +F X Y Z Z Y

Solution: F X Y Z Z Y= +

= (X NAND (NOT Y) (AND Z) NAND (NOT C NAND B)
The circuit diagram for F can be drawn as shown in Fig. 6.21:

Fig. 6.21
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Example 7: Show that the combination circuits of Fig. 6.22 are equivalent:

(a) (b)

Fig. 6.22

Solution: The logic table for the circuit is shown in Fig. 6.22 (a) is:

Table 6.5

A B Y A B Y

1 1 0 1 1 0

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

(a) (b)

Table 6.5 (a) is logic table for the circuit Fig. 6.22 (a). The logic table for the circuit shown in
Fig. 6.22 (b) is given in Table 6.5(b).

The logic table for the circuits is shown in Fig. 6.22 (a) and Fig. 6.22 (b) are identical. Hence the
circuits are equivalent.

��� �**������	��

Logic gates have several applications to the computers. They are used in the following:
1. Adders,
2. Encoder, and
3. Decoder

����� �++��%

The application of binary bits consists the following elementary operations, namely

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10.

We observe that the left bit gives the carry. When the augend and addend numbers contain more
significant digits, the carry obtained from the addition of two bits is added to the next higher order pair
of significant digits.
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A logic circuit that performs the addition of two bits is called a half adder. The half adder circuit needs
two binary inputs and two binary outputs. The inputs variables designate augend and addend bits, the
output variables produce the sum and carry. It is necessary to specify two output variables because the
sum of 1 + 1 is binary 10. We assign symbols A and B to the input variables, S for the sum function and
C for carry function. Both S and C are out put symbols. The truth table for half adder is given below:

Table 6.6 2-input Half Adder

A B Carry (C) Sum (S)

0 0 0 0
0 1 0 1

1 0 0 1
1 1 1 0

From the table, it is clear that half adder performs binary operation (electronically): at a faster rate.
Logic circuit for half adder is given in Fig. 6.23:

Fig. 6.23 (2-input) Half adder

������� ����
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A logic circuit that performs the addition of three bits is a full adder. It consists of three inputs and two
outputs. The two outputs are SUM and CARRY. Let us denote two of the input variables by A1 and B1,
(to represent two significant bits to be adder) and the represents the carry from the previous lower
significant position. The sum of three binary digits from 0 to 3. The binary numbers 2 and 3 need two
binary digits. Hence we need two outputs designated by the symbols S (SUM) and C (CARRY). The
truth table for the full adder is given below:
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Table 6.7 Full Adder

A1 B1 C1 C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1

0 1 1 1 0
1 0 0 0 1
1 0 1 1 0

1 1 0 1 0
1 1 1 1 1

Logic circuit for Full adder is shown in Fig. 6.24.

Fig. 6.24 (3-input) Full adder

���� 
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A decoder is a combinational logic circuit that converts n input lines to a maximum of 2n unique output
lines. In a 3 to 8 lines decoder three inputs are decoded into 8 outputs where each output represents one
of the minterms of the 3 input variables. If the input variables represent a binary number then the outputs
will be digits of octal system (contain 8 digits). A 3 to 8 lines decoder can also be used for decoding any
3 bit code to provide 8 outputs. The following is the diagram of 3 to 8 decoder:
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Fig. 6.25 A 3 to 8 decoder

The truth table of 3 to 8 lines decoder is given below:

Table 6.8

Inputs Outputs

A B C F0 F1 F2 F3 F4 F5 F6 F7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1
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We observe that the outputs variables are mutually exclusive. A decoder with n input variables can
generate 2n minterms.

����� ��"(+��

A logical circuit which performs the inverse operation of a decoder is called an Encoder. Decimal to
binary encoder converts decimal numbers and a Hexadecimal to binary encoder converts Hexadecimal
number to its binary equivalent. An encoder with 2n input lines will have n output lines. The block
diagram for 24 to 4 encoder is given in Fig. 6.26.

Fig. 6.26

����� ,$#�&-#�!����,�'�

Multiplexers are used to transmit large number of data over a small number of lines. Multiplex means
many to one. A digital multiplexer is a combinational circuit that selects binary information from many
input lines and directs it to a single output line. The selection of a particular input line is controlled by a
set of selection lines. A multiplexer receives binary information from the 2n lines and transmit information
on a single output line (selected from the bit combination of n selection lines). The block diagram of 4 to
1 line multiplexer is shown in Fig. 6.27.

Fig. 6.27 Block diagram for 4 × 1 multiplexers

If a Boolean function F has n variables, we take n –1 of these variables and connect them to the
selection lines of a multiplexer. The remaining variable say X of the function F is used for the inputs of
the multiplexer. The inputs of the MUX are chosen to be either X or X´ or 1 or 0. We can implement F
with a MUX by choosing the four values X, X´, 1 and 0 for the inputs and by connecting the other
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variables to the selection lines. We now explain the method of implementing a Boolean function F of n
variables with 2n –1 to 1 multiplexer, with the help of an example.

Example: Implement

F = (a, b, c) = ∑  (0, 3, 6, 7)

With a multiplexer
Solution: We first express F in its sum of minterms form. The ordered sequence of variables chosen
for the minterms is a b c. Where a is the left most variable in the ordered sequences. Thus, we have

n = 3 (no of variables)
n – 1 = 3 – 1 = 2

we use 2n –1 to 1, i.e. 23–1 to 1 i.e., 8 to 1 multiplexes for the implementation of F. The selected variable
a is in the highest order position in the sequences of variables m0, m1, m2, m3, m4, m5, m6, m7 are the
minterms. We list all the minterm in two rows as shown in Table 6.9. The singled out variable a will be
in the complemented form in the first row and will be in the uncomplemented form in the second row.

Table 6.9

I0 I1 I2 I3

a1 0 1 2 3

a 4 5 6 7

We circle the minterms of the function F and inspect each column separately: we apply the following
rules:

(i) If the two minterms in a column are not circle we apply 0 to the corresponding multiplexer
input.

(ii) If the two minterms are circled, then we apply 1 to the corresponding input of MUX.
(iii) If the bottom row minterm in a column is circled and the top minterm is not circled, apply a to

the corresponding multiplexer input.
(iv) If the minterm of top row is encircled and the bottom row minterm in a column is not encircled,

then we apply a1 to the corresponding multiplexer input applying the above rules we obtain
the values as shown in Table 6.10.

Table 6.10 Implementation table

I0 I1 I2 I3

a1 0 1 2 3

a 4 5 6 7

a1 0 a 1

The inputs I0, I1, I2, I3, are applied the values as shown below:
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Input Value applied  to the input

I0 a´
I1 0
I2 a

I3 1

The function F can be implemented by using MUX as shown in Fig. 6.28.

Fig. 6.28
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If L is a logic circuit with n inputs devices and A1, A2, … An denote n-input sequences. Then each Ai must
contain 2n bits. There are many ways to form A1, A2, … An, so that each Ai contain 2n different possible
combinations of input bits. One assignment scheme is as follows:

A1: Assign 2n–1 bits which are 0’s and 2n –1 bits which are 1s.

A2: Repeatedly assign 2n –2 bits which are 0’s followed by 2n –2 bits which are 1s.

A3: Repeatedly assign 2n –3 bits which are 0’s followed by 2n –3 bits which are 1s.

...

A1, A2, As, … are called special sequences. The complements of these special sequences can be
obtained by replacing 0 by 1 and 1 by 0, in the sequences.

Example 1: Suppose a logic circuit has n = 3, input devices A, B and C, write down the special
sequences for A, B and C and write their complements.
Solution: We have n = 3

There are 23 = 8 bit special sequences for A, B and C. They can be written as follows:
A = 00001111
B = 00110011
C = 01010101
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The special sequences for their complements are

A  = 11110000

B  = 11001100

C  = 10101010

Example 2: Determine how the pair of sequences 110001, 101101, is processed by an AND-gate.
Solution: 1’s can occur as an outputs of an AND-gate. Only when both inputs are 1, therefore the pair
1100001, 101101, has the output 100001 by an AND-gate, (note that 1’s occur in the first and last
positions).

Example 3: How would a NOT-gate process the sequence 100011.
Solution: A NOT-gates changes 0 to 1 and 1 to 0. Hence the output of the given sequence is 01110000.

Example 4: If A = 1100110110, B = 1110000111 and C = 1010010110 find A + B + C.
Solution: 0s occur in the 4th, 7th positions. The remaining positions will have 1s.

Hence A + B + C = 1110110111.

Example 5: If A = 00001111, B = 00110011 and C = 01010101 find A B C.
Solution: A, B and C have 1s in the 8th position.

Hence A B C = 00000001

�'��� � � � ����

I
1. What are logic gates? Name three basic logic gates.
2. What is an OR-gate? Explain in brief the function of an OR-gate.
3. What is an AND-gate.
4. What is an exclusive OR-gate? How does it differ from an OR-gate?
5. What is a NOT-gate? Explain its operations and draw its truth table.
6. Draw the circuit symbol of a NAND-gate.
7. Simplify:

1. ′P Q + ′P Q ′ ′R S  + P Q R ′S

2. ( ′P  + ′Q  + )′R ( ′P  + ′Q  + R) ( ′Q  + R) (P + R) (R + Q + R) ( ′P + Q)

3. P Q R S + ′P R S + P Q S + P Q R ′S  + Q ′R S

II
1. Simplify the following expressions:

(a) Z = ( ) ( ) ( )A B B C B C C D C D A B⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅

(b) Z = (A + B) ( ) ( )A B A B⋅ + ⋅ +

2. What is the significant of Principle of duality. Write the duals of
(a) (X + Y) * (Y + Z) * (Z + X)
(b) A + (B + E) + B * (C + A) + C * (A + B)
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3. D70 = {1, 2, 5, 7, 10, 14, 35, 70} (the division of 70} we define

a + b = lcm (a, b)

a * b = gcd (a, b)

70′ = aa

show that D70 is a Boolean algebra with 1 as the zero element and 70 as the unit element.

4. Find the sum of products form (disjunctive normal form) of the Boolean expression E = (( ) )′xy z

(( ) ( ))′ ′ ′+ +n z y z

5. A logic circuit L has n = 4 inputs A, B, C, D write the 16 bit special sequence for A, B, C, D.
6. Given five inputs A, B, C, D and E find the special sequences which give all the different possible

combinations of inputs bits.
7. For each of the following networks find the output:

(a)

(b)
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(c)

(d)

8. Simplify the Boolean expression and construct a network for the expression.

Z = ABC A BC ABC A BC+ + +
9. Determine the output of the gate

10. If A = 11100111
B = 01111011
C = 01110011

and D = 11101110
Determine the output of the gate

11. Implement F (a, b, c) = ∑  (1, 3, 5, 6) with a multiplexer.
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12. Implement the following functions with a multiplexer:

(i) F (a, b, c) = ∑  (1, 2, 5, 7)

(ii) F (a, b, c, d) = ∑  (0, 1, 4, 8, 9, 14, 15)

13. Show that the combinational circuits of exercise (i) to (ii) are equivalent
(i)

(a) (b)

(ii)

(a) (b)

14. A fundamental product P is called a prime implicant of a Boolean expression E if P + E = E. Find
the prime implicant P of the expression

′ ′ ′ ′ ′ ′ ′= + + + +E x y z x z x y z x y z x y z

15. Draw a logic circuit corresponding Boolean expression

Y = A BC B+ +
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7

Elementary Combinatorics
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����	�

Combinatorics deals with counting and enumeration of specified objects, patterns or designs. Techniques
of counting are important in mathematics and computer science. In this chapter, we shall study basic of
counting. We also develop basic ideas of permutations, combinations, Binomial theorem, power sets
and pigeon hole principle. We begin our study with two basic counting principles.

�� �������	���	������
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Let S be a set and | S | denote the number of elements in S. If S is a union of disjoint non-empty subsets
A1, A2, …, An then

|S| = |A1| + |A2| + … + |An|

In the above statement the subsets Ai of S are all disjoint i.e., they have no element in common. If Ai

and Aj an two subsets of S, then

( )fori jA A i j∩ = ∅ ≠
and we have

1 2 3 ... nS A A A A= ∪ ∪ ∪ ∪
that is each element of S is exactly in one of the subsets Ai. In other words, the subsets A1, A2, … An is a
partition of S. We now state the sum rule for counting events.

Let S be a sample space. Two events E1 and E2 of X are said to be mutually exclusive if the events
have no elements in common. If E1, E2, E3, … En, are mutually exclusive events of S, then we can state
sum rule for counting events as follows:

If E1, E2, … En are mutually exclusive events of a sample space S and E1 can happen in m1 ways. E2

can happen in m2 ways, … , En can happen in mn ways then E1 or E2 or … or En can happen m1 + m2 + …
+ mn ways.

Example 1: How many ways can we get a sum of 7 or 1 when two distinguishable dice are rolled?
Solution: The two dice are distinguishable, therefore the ordered pairs (a, b) and (b, a) are distinct
when a b≠ , i.e., ( ) ( ), ,a b b a≠  for a b≠ .

The ordered pairs in which the sum is 7 are:
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(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1). These ordered pairs are distinct.
∴ There are 6 ways to obtain the sum 7.
Similarly the ordered pairs: (5, 6), (6, 5) are all distinct.
∴ The number of ways in which we get a sum 11 with the two dice is 2.
Therefore, we can get a sum 7 to 11 with two distinguishable dice in 6 + 2 = 8 ways.

Example 2: How many ways can we draw a club or a diamond from a pack of cards?
Solution: There are 13 clubs and 13 diamonds in a pack of cards.

The number of ways a club or a diamond may be drawn 13 + 13 = 26.

Example 3: In how ways can be drawn an ace or a king from an ordinary deck of playing cards?
Solution:

Number of Aces in a pack = 4
Number of kings in a pack = 4
Number ways an Ace or a king can be drawn from the pack = 4 + 4 = 8

��� ���'��#��������(������������� ���)���#�*������#��%&

If A1, A2, …, An are non-empty sets, then the number of elements in the Cartesian product A1 × A2 × …

× An is the product 
1

| |
n

i
i

A
=
∏

1 2
1

| ... | | |
n

n i
i

A A A A
=

× × × = ∏

Product rule in terms of events:

If E1, E2, …, En are events, and E can happen in m1 ways E2 can happen m2 ways, … En can happen in mn

ways, then the sequence of events E, first followed by E2 followed by E3, …, followed by En can happen
in m1 × m2 × … × mn ways.

Example 1: How many possible out comes are there when we roll a pair of dice, one red and one
green?
Solution:  The red die can land in any one of six ways and for each of there six ways, the green die can
also land in six ways.

The number of possible out comes when two dice are rolled = 6 × 6 = 36.

Example 2: In how many different ways one can answer all the questions of a true-false test consisting
of 4 questions?
Solution: There are two ways of answering each of the 4 questions. Therefore by product rule the
number of ways in which all the 4 questions can be answered.

= 2 × 2 × 2 × 2 = 16

Example 3: Find the number n of license plates that can be made where each plate contains two
distinct letters followed by three different digits.
Solution: First letter can be printed in 26 different ways. Since the second letter must be different
from the first, we have 25 contains for the second letter. Similarly the first digit can be printed in 10
ways, the second digit in the license plate can be printed in 9 ways and the third in 8 ways.
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Therefore, the number of license plates that can be printed, so that each plate contains two distinct
letters follower by three different digits 26 . 25 . 10 . 9 . 8 = 4,68,000.

+, + � � � � + ����

1. In how many ways can be draw a king or a queen from ordinary deck of playing cards?
2. How many ways can we draw a club or a spade from a pack of cards?
3. How many ways can we get a sum 6 or 9 when two distinguishable dice are rolled?
4. How many possible out comes are there when we roll a pair of dice, one yellow and one red?
5. In how many different ways are can answer all the questions of a true-false test consisting of 5

questions?
6. How many ways can we get a sum of 8 when two in distinguishable dice are rolled?
7. How many ways can we get a sum of 4 or 8 when two distinguishable dice are rolled? How many

ways can we get an even sum?
8. In how many ways can an organisations containing 26 members elect a president, a treasurer and

a secretary (assuming no person is elected to more than one position)?
9. In a railway compartment 6 seats are vacant on a bench. In how many ways can 3 passengers can

sit on them?
10. There are 10 buses plying between on a bench. In how many ways can 3 passengers can sit on

them?
11. Suppose a license plate contains two letters followed by three digits with the first digit not zero.

How many different plates can be printed?
12. Suppose a license plate contains 3 English letters followed by 4 digits:

(a) How many different license plates can be manufactured if repetition of letter and digits are
allowed?

(b) How many plates are possible if only the letters are repeated?
(c) How many are possible if only the digits can be repeated?

13. How many different license plates are there that involve 1, 2 or 3 letters followed by 4 digits?
14. There are 10 true-false questions on an examinations. How many sequences are possible?
15. Suppose that a state’s license plates consists of three letters followed by three digits. How many

different plates can be manufactures (if repetitions are allowed)?
16. If there are 12 boys and 16 girls in a class find the number of ways of selecting one student as

class representative.

Answers:
1. 8 2. 26 3. 9 4. 36 5. 32 6. 12 7.  8, 18 8. 15,600 9. 120

10. 90 11. 608400 12. 263 × 104, 263 × 10 × 9 × 8 × 7, 26 × 25 × 24 × 104

13. (26 + 262 + 263) 104 14. 1024 15. 263 × 103 16. 28.
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Definition 7.1: A permutation of n objects taken r at a time is an arrangement of r of the objects
(r ≤ n).

A permutation of n objects taken r at a time is also called r-permutation or an r-arrangement.
Various symbols are used to indicate the number of permutations of n things taken r at a time. The one
we shall use in this text is P (n, r), (r ≤ n). The symbols nPr or P (r

n), [n]r or n(r) are also used to denote
the number of permutations of n objects taken r at a time.

Example 1: Consider the three letters a, b, c. The arrangements of the letter a, b, c taken two at a time
are.

ab, ba, ac, ca, bc, cb

∴ The number of 2-arrangements are 6 i.e., the number of permutation of 3 letters taken 2 at a time

( )
2

3 3, 2 6P P= = = .

Notation
In this chapter, we use {P1 a, P2 b, P3 c, P4 d} to indicate either:

(i) That we have P1 + P2 + P3 + P4 objects which include P1 a’s, P2 b’s, P3 c’s, P4 d’s.
(ii) That we have 4 objects a, b, c and d with the condition that:

a can be chosen at most P1 times.
b can be chosen at most P2 times.
c can be chosen at most P3 times.
d can be chosen at most P4 times.

The numbers P1, P2, P3 and P4 are called repetition numbers.

Example 2: The three permutations of {3 a, 1 b, 1 c} are aaa, aab, baa, aac, aca, abc, acb, bac, bca,
cab, cba, aba.
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Definition 7.2: If n is a natural number, then the product of all the natural numbers from 1 to n is
called “n-factorial”. It is denoted by the symbol n! The symbols   and n(n) are also used.

From the definition.

n! = n (n – 1) (n – 2) … 3.2.1

The factorial function n! can also be defined recursively as follows:

0! = 1

(n + 1)! = n! (n + 1), n ≥  0

From the above recursive definition, we get

1! = 0! (1) = 1

2! = 1!(2) = 1.2

3! = 2!(3) = 1.2.3
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Definition 7.3: The number ( – 1) ( – 2) ... ( – 1)+n n n n r  is called ‘falling factorial’. It is denoted

by [n]r

The number ( 1) ( 2) ... ( – 1)+ + +n n n n r  is called ‘rising factorial’. It is denoted by the symbol

[n]r

��-�/ �#�����%����0��!

Definition 7.4: The falling factorial [x]r is a polynomial of rth degree is x. Let us unite the polynomial
as

0 1 2 2[ ] = + + + +�
r r

r r r r rx S S x S x S x

The numbers 0 1 2, , , ..., r
r r r rS S S S  are called the stirling numbers of the first kind.

We have 0 0, 1, 0, if= = = >r k
r r rS S S k r

The recurrence relation is

– 1 0
1 – , 0, 1+ = = =k k k r

r r r r rS S r S S S

Let ≥n r  the number of distributions of n distinct objects into r non-distinct, boxes, no box being

empty is denoted by .r
nS  It is called a stirling number of the second kind. We have the recurrence

formula.

– 1
1 , if 1+ = + < <r r r

n n nS S r S r n

1
1 1, 1, 0 if= = = >n r

n nS S S r n

0 0
0 01, 0 if , 0= = = >r

nS S S r n

The number 1 2 ...+ + + n
n n nS S S  is called nth Bell number. It is denote by Bn

Theorem 7.1: (Number of r-permutation without repetition). The number of r-permutations of n objects

is p (n, r) = n (n – 1) (n – 2)…(n – r+1) = ( )
!

– !

n

n r

Proof: The first element in an r-permutations of n objects can be chosen in n different ways. Once the
first element has been selected, the second element can be selected in n–1 ways. We continue selecting
the elements, having selected (r – 1)th element. We select rth element i.e., the last element. The rth
element in the permutation can be selected in n – r +1 ways. By product rule, the number of r-permutations
of a set of n distinct objects is

P (n, r) = n (n – 1) (n – 2)…(n – r +1)

We may also write P (n, r) in factorial
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P (n, r) = n (n – 1) (n – 2)…(n – r +1) = 
( ) ( ) ( )

( )
1 ... 1 ... 2 1

– ... 2 1

− − + − ⋅
⋅

n n n r n r

n r

( )
!

– !
= n

n r

��/ �	12+
�+,�.�1+�

Example 1: Find 8!
Solution: For n ≥  0, we have

(n + 1) = n! (n + 1)
Hence,

8! = (7 + 1)!
= 7! 8

= 6! 7 8⋅
= 5! 6 7 8⋅ ⋅
= 4! 5 6 7 8⋅ ⋅ ⋅
= 3! 4 5 6 7 8⋅ ⋅ ⋅ ⋅
= 2! 3 4 5 6 7 8⋅ ⋅ ⋅ ⋅ ⋅
= 1! 2 3 4 5 6 7 8⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= 1 2 3 4 5 6 7 8⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= 40,320

Example 2: Simplify ( )1 !

!

n

n

+

Solution:

( ) ( ) ( )
( )

1 ! 1 1 ... 3 2 1
1

! 1 ... 3 2 1

n n n n
n

n n n

+ + − ⋅ ⋅
= = +

− ⋅ ⋅

or
( ) ( ) ( )1 ! 1 !

1
! !

n n n
n

n n

+ +
= = +

Example 3: Prove that 2 P (n, n – 2) = P (n, n)
Solution:

= 2 P (n, n – 2) = 2 ( )( )
!

2 !

n

n n− −

! 2 !
2

2! 2!

n n

n n

⋅= ⋅ =
− +

= n! = P (n, n).
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Example 4: How many words of three distinct letters can be formed form the letters of the word
LAND?
Solution: The number of three distinct letter words that can be formed from the 4 letters of the word

LAND is P (4,3) = ( )
4! 4!

4! 24
4 3 ! 11

= = =
−

��3 �+�.�����	���4��5�1�6+�+1+.+���

Theorem 7.2: The number of permutations of n objects of which are q1 are alike, q2 are alike, …, qr

are alike is

P (n, q, q2, …, qr) =
1 2

!

! q ! ... !r

n

q q

Where n = q1 + q2 + … + qr

Proof: Let the number of permutation be x.

If the q1 like objects are unlike, then for each of these x arrangements, the q1 like objects could be
rearranged among themselves in q1! Ways without altering the positions of the other objects.

∴ The number of permutations would be x q1!
Similarly; if q2 like objects were unlike; each of these x q1! Permutations would give rise to q2!

Permutations
Therefore, the number of permutations would be x q1! q2!
Similarly, if all the objects were unlike number of permutations would be x q! q2! … qr!
But if all the objects were unlike, the number of permutations with the n objects would be n! Hence

x q! q2! … qr! = n!

We have
1 2

!

! q ! ... !r

n
x

q q
=

i.e., P (n q1, q2, …, qr) = 
1 2

!

! q ! ... !r

n

q q

Example: There are 4 black, 3 green and 5 red balls. In how many ways can they be arranged in a
row?
Solution: Total number of balls = 4 black + 3 green + 5 red = 12

The black balls are alike,
The green balls are, and the red balls are alike,

∴ The number of ways in which the balls can be arranged in a row = 
12 !

27,720
4 ! 3 ! 5 !

=

��3�� 	�'���'��*����!

In combinational analysis, many problems are concerned with choosing a ball from an urn containing n
balls or a card from a deck. When we choose one ball after the other from the urn (or a card from a deck)
say r times, we call each choice an ordered sample of size r, we have two cases:
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(i) Sampling with replacement

The drawn ball may be replaced in the urn before the next ball is drawn. There are n different
ways to choose each ball, therefore by fundamental principle of counting (product rule); there
are nr different ordered sample with replacement of size r.

(ii) Sampling without replacement

When the ball drawn is not replaced in the urn after it is drawn; repetitions do not occur, in the
ordered sample. In this case, an ordered sample of size r without replacement, is an r-permutation
of the objects in the urn.

Hence there are ( )
!

!

n

n r−  different ordered samples of size r without replacement.

Example 1: Suppose an urn contain 5 balls. Find the number of ordered sample of size 2.

(i) With replacement  (ii) Without replacement
Solution:

(i) There are 5 balls, and each ball in the ordered sample can be chosen in 5 ways.
Hence, there are 5.5 = 25; samples with replacement.

(ii) The first ball in the ordered sample can be chosen in 5 ways and the next ball in the ordered
sample can be chosen in 4 ways (when the first drawn ball is not replaced).

There are 5 × 4 = 20, samples without replacement.

Example 2: In how many ways can one choose two cards in succession from a deck of 52 cards, such
that the first chosen card is not replaced.

Solution: There are 52 cards in the deck of cards since the chosen card is not replaced the first can be
chosen in 52 different ways and the second can be in 51 different ways.

∴ The number of ways in which the 2 cards are chosen = 52 × 51 = 2,652

Example 3: A box contains 10 light bulbs.

Find the number n of ordered samples of:

(a) Size 3 with replacement, and
(b) Size 3 without replacement.

Solution:

(a) n = 10r

= 103 = 10 × 10 × 10 = 1,000

and (b) P (10, 3) = 10 × 9 × 8 = 720

��7 �����1����+�.�����	��

Definition 7.5: A circular permutation of n objects is an arrangement of the objects around a circle.

In circular arrangements, we have to consider the relative position of the different things. The
circular permutations are different only when the relative order of the objects is changed otherwise they
are same.
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Fig. 7.1
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Definition 7.6: Let n distinct be given. If the n objects are to be arranged round a circle we take an
objects and fix it in one position.

Now the remaining (n – 1) objects can be arranged to fill the (n – 1) positions the circle in (n – 1)!
ways.

Hence the number of circular permutations of n different objects = (n – 1)!

��7� ���0���� �
�  ����#�������*�������#*#���!

We consider the order; clockwise or anti-clockwise of objects around a circle as the same circular
permutation. Every arrangement with n objects round a circle is counted twice in (n – 1)! circular
permutations.

The total number of different permutations of n distinct objects is

( )1 !

2

n −
=

Example 1: In how many ways can a party of 9 persons arrange themselves around a circular table?
Solution: One person can sit at any place in the circular table. The other 8 persons can arrange themselves
in 8! ways i.e., the 9 persons can be arranged among themselves round the table in (9 – 1)! = 8! ways.

Example 2: In how many ways 5 gents and 4 ladies dine at a round table, if no two ladies are to sit
together?

Fig. 7.2

Solution: Since no two ladies are to sit together, they should, seat themselves in between gents (i.e., a
lady is to be seated in between two gents). The 5 gents can sit round the circular table in 5 positions
(marked G in the Fig. 7.2). They can be arranged in (5 – 1)! = 4! ways. The ladies can sit in the 4 out of
5 seats (marked X in Fig. 7.2). This can be done in P (5, 4) ways.

The required number of ways in which 5 gents and 4 ladies can sit round a table.

= ( )4! 5, 4P⋅

( ) ( )4 3 2 1 5 4 3 2= ⋅ ⋅ ⋅ × ⋅ ⋅ ⋅
= 2,880
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Example 3: Twelve persons are made to sit around a round table. Find the number of ways they can sit
such that 2 specified are not together.
Solution: 12 persons can sit round a table in (12 – 1)! = 11! ways.

The total number of ways in which 2 specified persons are together is 2! 10!.
The required number of seating arrangements in which 2 specified persons are not together.

= 11! 2! 10!− ⋅
= 11 10! 2! 10!⋅ − ⋅
= 10 ! (11 – 2)

= 9 10!⋅

+, + � � � � + ���

1. In how many ways can 5 Telugu, 3 English, 2 Hindi books arranged on a shelf, if the books of
each language are to be together?

2. Suppose a license plate contains two letters followed by three digits with the first digit not zero.
How many different license plates can be printed?

3. How many license plates can be formed involving 3 English letters and 4 non-zero digits, if all
the letters must appear either in the beginning or in the end.

4. From the digits 1, 2, 3, 4, 5, 6 how many three digit odd numbers can be formed, if the repetition
of digits is not allowed?

5. There are 10 true-false questions on an examinations. How many sequences are possible?
6. Suppose that a state’s license plates consists of three letter followed by three digits. How many

different plates can be manufactured (if repetitions are allowed)?
7. Suppose a license plate contain 1 or 2 letters followed 3 digits. How many different license plates

can be printed?
8. Suppose a license plate contains 3 English letters followed by 4 digits.

(a) How many different plates can be manufactured if repetition of letters and digits are allowed?
(b) How many plates are possible if only the letters are repeated?
(c) How many are possible if only the digits can be repeated?

9. Solve for n in 
( )2 !

56
!

n

n

+
=

10. Find n if 
( )
( )

1 !
12

1 !

n

n

+
=

−
11. A man wished to travel from one point in a city to a second point which is five blocks south and

six blocks east of his starting point. In how many ways he make the journey if be always travels
either south or east?

12. Find the number of ways of arranging the letter of the word TENNESSEE all at a time (a) if there
no restriction (b) if the first two letters must be E.

13. Suppose a license plate contains three distinct letters followed by four digits with first digit not
zero. How many different license plate can be printed?
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14. In how many ways can 52 playing cards be distributed to four digits giving 13 cards each?
15. Find the number of arrangements that can be made out of the letters of the following words:

(i) Accountant
(ii) Independent

(iii) Assassination.
16. How many five digit numbers can be formed with the digits 2, 3, 5, 7, 9 which are:

(a) Odd
(b) Even
(c) Greater then 30,000
(d) Lie between 30,000 and 90,000.

17. In how many ways 6 rings be worn on 4 fingers when (i) there can be only one ring on each
finger (ii) there can be any number of rings on each finger.

18. In how many ways 6 gents and 5 ladies dine at a round table, if no two ladies are to sit together?
19. If P (n, 4): P (n, 3) = 9: 1 find n.
20. In how many ways 7 ladies and 7 gents can be seated at a round table; if no two ladies are to sit

together?
21. In how many ways can 12 beads of which 3 are alike of one kind, 2 are alike of the another kind

and the rest are different be formed into a ring?
22. In how many ways can 4 men and 3 ladies be arranged at a round table if the 3 ladies (i) never sit

together (ii) always sit together?
23. How many words can be formed out of the letters of the word DAUGHTER, so that the vowels

always occur together?
24. Suppose repetitions are not permitted.

(a) How many ways three digit numbers can be formed from the six digits 2, 3, 4, 5, 7 and 9?
(b) How many of these numbers are less than 400?
(c) How many are even?
(d) How many are odd?
(e) How many are multiples of 5?

25. Find the number of ways that three Americans, four French men, four Danes and two Italians can
be seated in a row so that those of the same nationality sit together to solve the problem if they sit
at a round table.

26. Find the member n of permutations that can be formal from all the letters of the word MISSISSIPPI.
27. Find n if 2 P (n, 2) + 50 = P (2n, 2).
28. How many routes are there form the lower-left corner of an n × n square grid to the upper-right

corner if we are restricted to travelling only to the right or, upward?
29. How many of the different permutations of the letters of word ENGLISH will (i) start with E

(ii) start with E and end with N?
30. How many different numbers of six digits can be formed using the digits 0, 1, 2, 3, 4 and 5. How

many of these are divisible by 5?
31. Twelve persons are made to sit around a table. Find the number of ways; they can sit such that 2

specifies persons are not together.
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Answers:
1. 5! 3! 3! 2! 2. 608400 3. 2 × 263 × 94 4. 60 5. 1024 6. 263 × 103 7. (26 + 262) 103

8. 263 × 104, 263 × 10 × 9 × 8 7, 26 × 25 × 24 × 104 9. 6 10. 3 11. 924 12.  (a) 3780 (b) 630

13. 14, 04, 00, 000 14. 52/(131)4 15.  (i) 2,26,800, (ii) 7560 (iii) 10810800

16. (a) 96 (b) 24 (c) 96 (d) 72 17. 86, 200 18. 9 19. 3628800 20. 1663200 21. (i) 4320 (ii) 720

22. 4320 23. (a) 120 (b) 40 (c) 40 (d) 80 (e) 20
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Definition 7.7: A combination of n objects taken at a time is an unordered selection of r of the n
objects (r ≤ n).

A combination of n objects taken r at a time is also called r-combination of n objects.

Example 1: The two combinations of a, b, c, d taken two at a time are ab, ac, ad, bc, bd and cd.

Example 2: Consider the objects a, b, c from which the selections are to be made, by taking 2 objects
at a time.
Solution: The 2-combinations are ab, ac, bc.

Example 3: The 3-combinations of four objects a, b, c, d taken 3 at a time are abc, abd, acd, bcd.
The number of combinations of n objects taken r at a time is demoted by C (n, r). The symbols

( ) ( ), ,
r

n
c rrn n  and ,n rc  are also used to denote r-combinations of n objects.

Theorem 7.3: (Number of r-combinations without repetition). The number of r-combinations of n
objects taken r at a time is

( ) ( )
( )1

, !

! ! !

P n r n
C n r

r r n r
= =

− ; ( )1 r n≤ ≤

Proof: r-Combination means a selection of r-objects from the n objects, in which order of the objects
does not matter. Each r-combination contains r-objects and these r objects can be arranged among
themselves in i! ways. Hence each r-combination gives rise to r! permutations. Therefore, c(n, r)
combinations will give rise to c (n, r). r! permutations. But the number of r-permutations of n objects is
P (n, r).

Hence     ( ) ( ), ! ,C n r r P n r⋅ =

or ( ) ( ),
,

!
=

P n r
C n r

r

( )
!

! !

n

r n r
=

−
( ) ( )

!
,

!

n
P n r

n r

⎛ ⎞
∴ =⎜ ⎟⎜ ⎟−⎝ ⎠

( )1 r n≤ ≤

Corollary 1:

( ) ( )
! !

, 1
! ! ! 0!

n n
C n n

n n n n
= = =

− (Boundary condition)
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Corollary 2:

( ) ( )
! !

, 0 1
0! 0 ! 0! !

n n
C n

n n
= = =

− (Boundary condition)

Corollary 3: C (n, r) = C (n, n – r) (Symmetric property)
Proof:

( ) ( ) ( ) ( ) ( )
! !

,
! – – ! ! – + !

n n
C n n r

n r n n r n r n n r
− = =

− −

( ) ( ) ( )! !
,

! r! ! !•
= = =

−
n n

c n r
n r r n r

Corollary 4: If C (n, x) = C (n, y) then either x = y or x + y = n

Proof: C (n, x) = C (n, y)

⇒ x = y  … (i)

and       C (n, x) = C (n, y)

⇒ C (n, x) = C (n, n – y) (by cor. 3)

⇒ x = n – y

⇒ x + y = n  … (ii)

from (i) and (ii) either x = y or x + y = n

����� �8��0!�#

Definition 7.8: Let A be a set containing n elements. An r-subset of A is a selection of r elements of A
without regard to the order.

Each r-subset is a r-combination and the number of r-subsets of A is

C (n, r) = 
( ),

!

P n r

r

Combinationally C (n, r) represents, the number of ways of choosing r objects from n distinct
objects (i.e., number of ways of selecting r elements from the n elements of the set A).

��9 �	4+���+�

Definition 7.9: If A is a set containing n objects, then the set containing all the subsets of A is called
the power set of A.

The power set of A is denoted by P (A) (or by 2A).

Example 1: Set A = {1, 2}

Then P (A) = { ∅  {1}, {2}, A}

Example 2: Let A = {a, b, c}

Then P (A) = { ∅  {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
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Let A be a non-empty set with n distinct objects: Each element of the set A either is a member of a
particular subset of A or is not a member. The first element may either selected or not selected as a
member of a subset. It can therefore be treated in two ways, selected or rejected. For each of these, the
second element of the set may treated in two ways selected or rejected. Therefore, the first two elements
may be treated in 2 × 2 = 22 ways. Similarly, the third element may be either selected or rejected in two
ways for each of the 22 ways. Hence the first three elements may be treated in 23 ways. By continuing
the argument, we can show the n elements of the set A can be treated in 2n ways. Therefore, total number
of subsets of A is 2n.
i.e., if | A | = n,
then | P (A) | = 2n

It may happen on certain occasions that we require the number of subsets of a set which contain
repetitions of certain elements for example: consider the set A = {a, a, b, b, b, b, c}. A has seven
elements of which 2 are alike of one kind and 4 are alike of a second kind.

For any subset we may select no, one or two a’s. Hence a’s may be selected in 3 ways. Similarly for
each of these ways, the four b’s may be selected in 5 ways. Therefore the a’s and b’s may be selected in
3 × 5 = 15 ways. The for each of these 15 ways the remaining element c can be selected in 2 ways.
Therefore, the number of subsets of A is

3 × 5 × 2 = 30
In the same way, we may prove that the number of subsets of a set A of n elements, of which p are

alike of one kind, q are alike of a second kind, and r are alike of a third kind, is
(p + 1) (q + 1) (r + 1) 2n-p-q-r

where (n ≥ p + q + r)

Example 1: Find the number of subsets of
A = {2, 2, 2, 3, 3, 5, 11}

Solution: There are three 2’s two 3’s in the set. The remaining two elements i.e., 5 and 11 are distinct,
we have p = 3, q = 2

The number of subsets of A is
(3 + 1) (2 + 1) 27 – 3 – 2

= 4 × 3 × 22

= 48

Example 2: How many selections any number at a time, may be made from three white balls, four
green balls, one red ball and one black ball, if atleast one must be chosen.
Solution: Total number of balls

= 3 white + 4 green + 1 red + 1 black = 9
we have p = 3, q = 4

Hence the number of selections that can be made is
(3 + 1) (4 + 1) 29 – 7

= 4 × 5 × 22

= 80 (This includes the null set)
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If atleast are ball is to be chosen then the number of selections
= 80 – 1
= 79

��9� ���0��*#���!�� ���#(��%!�#*:��%�*�;����0���� �#(���*#�*�#���
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Each one of the n different things may either be selected or not selected i.e., there are two ways of
selecting for each one of the n things.

∴ The total number of combinations of n things taking any number of things is 2n.
But this includes the case in which all the things are rejected.
Hence the total number of ways in which one or more things are taken.

Corollary:

The total number of combinations of n things taken 1, 2, 3, …, n at a time i.e., C (n, 1) + C (n, l) + … +
C (n, n) = 2n – 1.

Example: In how many ways can a person invite one or more of his 5 friends to a party?
Solution: For every friend there are two possibilities i.e., he may be invited or he may not be invited
to attend the party.

The number of ways in which we can invite his five friends at a party is 25.
But this includes the case when none of his friend is invited.
Hence, the number of ways in which he invites one or more of his five friends to a party is

25 – 1 = 32 – 1 = 31

��9�- ���0��*#���!�<(���*���#(��%�$���#(��%!�*�����#�'�  ����#

Suppose that out of m + n + p + …, things m are alike, and of one kind, n are alike and of second kind
and the rest are different, say they are k in number.

Out of m things we may take 0, 1, 2, … or m. Hence there (m + 1) ways of selecting the m things
similarly, n things which are alike may be selected in (n + 1) ways and, P things which are alike may be
selected in (P + 1) ways the remaing k different things may be selected in 2k ways. These include the
case in which all are rejected.

∴  The total numbers of combinations

= (m + 1) (n + 1) (p + 1) 2k – 1

��= �������
+�����+�

Example 1: Prove that C (n, r) = C (n, n – r).

Solution:
Method 1: C (n, r) denotes the number of selections of n objects when r-things are selected, and the
remaining (n – r) objects are not selected. Therefore, selecting of r-things is the same as discarding
(n – r) objects. For each selection of r things i.e., for each r-combination there is a discarding of n – r,
remaing objects. The number of ways in which we discord (n – r) objects is C (n, n – r).
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Since the set of r-combinations and the set of discarding of (n – r) objects are in one-one corresponding
we get

C (n, r) = C (n, n – r)

Method 2: See Corollary 3 of Theorem 7.

Example 2: (Pascal’s Identity)

Show that C (n, r) = C (n – 1, r – 1) + C (n – 1, r)

Solution:
Method 1: C (n, r) is the number of r-combinations of n objects. Let n be any one of the n objects. Fix
the object x the C (n, r) combinations can be grouped into:

(i) Those r-combinations that contain the objects x.
(ii) Those r-combinations that do not contain the object x.

Since the objects x is in all r-combinations of (i) we are to choose (r – 1) objects in each combinations
of (i) from the remaining (n – 1) objects, this can be done in C (n – 1, r – 1) ways.

The number of combinations that contain x, is
C (n – 1, r – 1)

To count the number of r-combinations of (ii) i.e., the number of r-combinations which do not
contain x, we omit the objects x from n objects and choose r objects from the remaining (n – 1) objects.
Therefore, the number r-combinations that do not contain x is C (n – 1, r).

Thus C (n, r) = C (n – 1, r – 1) + C (n – 1, r)

Method 2: Consider R.H.S.
C (n – 1, r – 1) + C (n – 1, r)

( )
( ) ( )

( )
( )

1 ! 1 !

1 ! 1 1 ! ! 1 !

n n

r r r r n r

− −
= +

− − − + − −

( )
( ) ( )

( )
( )

1 ! 1 !

1 ! ! ! 1 !

n n

r n r r n r

− −
= +

− − − −

( )
( ) ( ) ( )

( )
( ) ( )

1 ! 1 !

1 ! 1 ! 1 ! 1 !

n n

r n r n r r r n r

− −
= +

− − − − − − −

( )
( ) ( )

1 ! 1 1

1 ! 1 !

n

r n r n r r

− ⎡ ⎤
= +⎢ ⎥− − − −⎣ ⎦

( )
( ) ( ) ( )

1 !

1 ! 1 !

n r n r

r n r r n r

⎡ ⎤− + −= ⎢ ⎥− − − ⋅ −⎢ ⎥⎣ ⎦
( )

( ) ( ) ( )
1 !

1 ! 1 !

n n

r r n r n r

⋅ −
=

⋅ − − ⋅ − −

( ) ( )!
,

! !

n
c n r

r n r
= =

−
Example 3: (Pascals row sum identity)

Show that C (n, 0) + C (n, 1) + … + C (n, n) = 2n
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Solution: This is equivalent to finding the number of subsets of a set A with n elements. The number
of subsets of A can be considered as follows:

The number of subsets having no elements (i.e., subsets with 0 elements is C (n, 0)
The number of subsets having 1 elements is C (n, 1) …
The number of subsets with n elements is C (n, n). Adding we get the number of elements in the

power set of A.
i.e., | (A) | = C (n, 0) + C (n, 1) + … + C (n, n)
but the number of elements in the power set of A is 2n.

Hence C (n, 0) + C (n, 1) + … + C (n, n) = 2n

���> �������	����
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Definition 7.10: Let S be a non-empty set. The collection {A1, A2, …, Ar} of subsets of S is a partition
of S if and only if

(i) 1 2 ... rS A A A= ∪ ∪ ∪
(ii) For any ,i jA A S∈

either ori j i jA A A A= ∩ = ∅
A1, A2, …, Ar are called cells of the partition and each Ai a non-empty subset of S.

���>� ���!!��*�#�#���

Definition 7.11: If {A1, A2, …, Ar} and { B1, B2, …, Bp} are both, partitions of a non-empty set S, then

{ }i jA B∩  forms a partition of S. { }i jA B∩  is called a cross-partition of S.

Example 1: Let S = {a, b, c, d, e, f, g, h} and A1 = {a, d, e}, A2 = {b, c}, A3 = {f} A4 = {g, h} then
{A1, A2, A3, A4} forms a partition of S we observe that

(i) 1 2 3 4 ,A A A A S∪ ∪ ∪ =  and

(ii) i jA A∩ = ∅  for all ,i jA A S∈

���>�- 	�'���'��*�#�#���

Definition 7.12: A partition a non-empty set is called an ordered partition of S if there is a specified
order on the subsets of S.

An ordered t-tuple of sets { A1, A2, …, At} is called a t-part ordered partition if the sets A1, A2, …, At

form a partition of S.

Example 1: Let S = {a, b, c, d, e} and A1 = {a, b}, A2 = {c}, A3 = {d}, A4 = {e} { A1, A2, A3, A4} is an
ordered partition of S. It is a 4-part ordered partition.

Theorem 7.4: Let S contain n distinct objects. Then the number of ways S can be partitioned in r
subsets A1, A2, …, Ar with P1 objects in A1, P2 objects in A2 …, and Pr objects in Ar is

( )1 2
1 2

!
; , , ...,

!, !, ..., !
=r

r

n
P n P P P

P P P
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Proof: Since the P1 objects going into A1 can be chosen in C (n, p1) ways, the P2 objects going into A2

can be chosen in C (n – p1, p2) ways, the P3 objects going into A3 can be chosen in (n – p1, – p2, p3) ways
…, and the Pr objects going into Ar can chosen in C (n – p1, – p2 – … – pr–1, pr) ways the total number of
partitions is

C (n, p1) C (n – p1, p2) C (n – p1, – p2, p3) C (n – p1, – p2 – …, pr-1, pr)

( )
( )

( )
( )

( )
( )1 2 11 1 2

1 1 2 2 3 3

..., !! !!
...

! ! ! ! ! ! ! 0!
−− − − −− − −

= ⋅ ⋅
− − −

r

r

n P P Pn P n P Pn

P n P P n P P n P P

1 2

!

! ! ..., !
=

r

n

P P P

Example 2: A farmer buys 4 cows, 2 goats and 5 ducks from a person who has 7 cows, 5 goats and 8
ducks. How many choices the farmer have:
Solution: The farmer can choose 4 cows from 7 cows in C (7, 4) ways, 2 goats from 5 goats in C (5,
2) ways and 5 ducks from 8 ducks in C (8, 5) ways.

∴ The farmer can choose 4 cows, 2 goats and 5 ducks in C (7, 4) C (5, 2) C (8, 5)

7 6 5 4 5 4 8 7 6

1 2 3 4 1 2 1 2 3

⋅ ⋅ ⋅ ⋅ ⋅ ⋅= ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= 19,600 ways.

Theorem 7.5: The number of combination of p1 + p2 + … + pr objects if p1 are alike of one kind, p2 are
alike of another kind …, pr are alike of rth kind is

(p1 + 1) (p2 + 1) … (pr + 1) – 1
Proof: Out of (p1, + p2 + … + pr) objects, any number of objects can be selected, and each combination
may contain any number of objects from 1 to (p1, + p2 + … + pr) objects.

Consider P1 objects out of the P1 like things, none or 1 or 2 or 3 … all of the P1 may be selected.
Therefore, the number of combinations with P1 like objects is (P1 + 1).

Similarly the number of possible combinations with P2 like objects is (P2 + 1) …, the number of
combinations of Pr objects is (Pr + 1).

∴ The total number of combinations with P1 + P2 + … + Pr objects is

(P1 + 1) (P2 + 1) … (Pr + 1)
but these combinations include the case in which all objects are rejected.

∴  The total number of combinations is

(P1 + 1) (P2 + 1) … (Pr + 1) – 1

Example 3: There are twelve students in a class. Find the number of ways that the twelve students
take three different tests if four students are to take each test.
Solution: We find the number of ordered partitions of twelve students into cells containing four students

each. There are 
12!

4! 4! 4!  = 34,650 such partitions.

The required number of ways, the students can write the take the tests is 34,650.
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Example 4: Find the number m of ways that a set X containing ten elements can be partitioned into
two cells.

Solution: Let A denote a subset of X each A divides X into two disjoint sets A and  (complement of A).
Thus there are 210 such divisions of X. This number includes the case in which A = ∅  and A = X (i.e.,
improper subsets of X).

Hence the number of partitions ,A A⎡ ⎤⎣ ⎦  of X is 210 – 2 = 1024 – 2 = 1022 since each unordered

partition determines two ordered partitions, we have

1022
511

2
m = =

Thus, there are 511 partition of X into two non-empty disjoint cells.
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Let U n r,� �  denote r-permutations of n-objects with unlimited repetitions, and v (n, r) denote the number
of r-combinations with unlimited repetitions, then

( ) ( ) ( ), and , 1 , 1rU n r n V n r C n r n= = − + −

Consider the set { }1 2, , ..., na a a∞ ⋅ ∞ ⋅ ∞ ⋅  where a1, a2, …, an are all distinct. Any r-combination

is of the form { }1 1 2 2, , ... , n nx a x a x a⋅ ⋅ ⋅  where each xi is a non-negative integer and x1 + x2 + … +
xn = r.

The numbers x1 + x2 + … + xn are called repetition numbers. Conversely any sequence of
non-negative integers

x1 + x2 + … + xn, where 
1

n

i
i

x r
=

=∑
corresponds to a r-combination { }1 1 2 2, , ... , n nx a x a x a⋅ ⋅ ⋅ .

The following observations are made:

The number of r-combinations of { }1 2, , ..., na a a∞ ⋅ ∞ ⋅ ∞ ⋅ .

= The number of non-negative integers solution of x1 + x2 + … + xn = r.
= The number of ways of placing r indistinguishable balls in n numbered boxes.
= The number of binary numbers with n – 1 one’s and r zeros.
= C (n – 1 + r, r)
= C (n – 1 + r, n – 1)

Example 1: Find the 4-combinations of {1, 2, 3, 4, 5, 6}.
Solution: The 4-combinations are

1234, 1235, 1236, 1245, 1246, 1256, 1345, 1346, 1356, 1456, 2345, 2346, 2456, 3456.

Example 2: Find the number of 3-combinations of { }1 2 3 4, , ,a a a a∞ ⋅ ∞ ⋅ ∞ ⋅ ∞ ⋅
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Solution: We have n = 4, r = 3
The number of 3-combinations of the given set is C (4 – 1 + 3, 3)

= C (6, 3)
= 20

Example 3: Find the number of non-negative integral solutions to n1 + n2 + n3 + n4 = 20
Solution: We have n = 4, r = 20

The number of non-negative integral solutions
= C (4 – 1 + 20, 20)
= C (23, 20) = 1,771

Example 4: Find the number of 4-combinations of 5 objects with unlimited repetitions.
Solution: We have n = 5, r = 4

The number of 4-combinations
= C (5 – 1 + 4, 4)
= C (8, 4)
= 70

Example 5: Find the number of ways of placing 8 similar balls in 5 numbered boxes.
Solution: The number of ways of placing similar balls in 5 numbered boxes is

= C (5 – 1 + 8, 8)
= C (12, 8) = 495

Example 6: Find the number binary numbers with five 1’s and three 0’s.
Solution: The number of binary numbers with five 1’s and three 0’s is

= C (5 + 3, 3)
= C (8, 3)
= 56

Example 7: How many integral solutions are there to x1 + x2 + x3 + x4 + x5 = 16, where each xi ≥  2?
Solution: Let xi = yi + 2, where yi ≥  0

We have x1 + x2 + x3 + x4 + x5 = 16

⇒ y1 + 2 + y2 + 2 + y3 + 2 + y4 2 + y5 + 2 = 16

⇒  y1 + y2 + y3 + y4 + y5 = 6

The number of integral solutions of x1 + x2 + x3 + x4 + x5 = 16 is the same as the number of integral
solution of y1 + y2 + y3 + y4 + y5 = 6.

∴ There are C ( 5 – 1 + 6, 6) = C (10, 6) such solutions.

Example 8: How many integral solutions are there of x1 + x2 + x3 + x4 + x5 = 30, where x1 ≥  2, x2 ≥  3,
x3 ≥  4, x4 ≥  2, x5 ≥  0?

Solution: Let x1 = y2 + 2, x2 = y2 + 3, x3 = y3 + 4, x4 = y4 + 2, x5 = y5 + 0
x1 + x2 + x3 + x4 + x5 = 30

⇒ y1 + 2 + y2 + 3 + y3 + 4 + y4 2 + y5 + 0 = 30

⇒ y1 + y2 + y3 + y4 + y5 = 19
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The number of integral solutions of x1 + x2 + x3 + x4 + x5 = 30, where x1 ≥  2, x2 ≥  3, x3 ≥  4, x4 ≥
2, x5 ≥  0 is the same as the number of integral solutions of

y1 + y2 + y3 + y4 + y5 = 19.

There are C (5 – 1 + 19, 19) = C (23, 19) such solutions.

Example 9: How many outcomes are possible by costing a 6 faced die 10 times?
Solution: This is same as placing 10 similar balls into 6 numbered boxes.

There are C (6 – 1 + 10, 10)
= C (15, 10) possible outcomes.

Example 10: Enumerate the number of non-negative integral solutions to the inequality.

x1 + x2 + x3 + x4 + x5 ≤  19
Solution: We can express the problem as follows:

x1 + x2 + x3 + x4 + x5 = 0

x1 + x2 + x3 + x4 + x5 = 1

x1 + x2 + x3 + x4 + x5 = 2

…

x1 + x2 + x3 + x4 + x5 = 19

The number of non-negative integral solutions of
x1 + x2 + x3 + x4 + x5 = 0

is C (5 – 1 + 0, 0).
The number of non-negative integral solutions of

x1 + x2 + x3 + x4 + x5 = 1

is C (5 – 1 + 1, 1).

∴ The number of non-negative integral solutions of
x1 + x2 + x3 + x4 + x5 = 19

is C (5 – 1 + 19, 19).

∴ The number of non-negative integral solutions of
x1 + x2 + x3 + x4 + x5 ≤  19

is C (5 – 1 + 0, 0) + C (5 – 1 + 1, 1) + … + C (5 – 1 + 19, 19).

+, + � � � � + ���-

1. If C (n + 1, r + 1): C (n, r): C (n – 1, r – 1) : 11:6:3, find n and r.
2. A committee of seven is to be formed from a boys and 5 girls. In how many ways can this be

done, when the committee contains?
(i) Exactly three girls.

(ii) Atleast three girls.
3. Among 20 members of a team, there are two wicket keepers and five bowlers. In how many

ways can eleven persons be chosen to include only one wicket keeper and atleast three bowlers?
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4. How many different seven-person can be formed each containing 3 women from the available
set of 20 women and 4 men from an available set of 30 men?

5. In how many ways can a person invite one or more of his seven friends to a party?
6. How many triangles can be formed by joining 12 points, 7 of which are in the same straight line?

7. In how many ways 5 white balls and 3 black balls can be arranged in a row so that no two black
balls may be together?

8. In how many ways can a committee of 6 men and 2 women be formed out of 10 men and 5
women?

9. A student is two answer out of 10 questions in an examination
(i) How many choices he has?

(ii) How many, if he must answer the first three questions?

(iii) How many, if he must answer atleast four of the five questions?
10. Out of 4 officers and 10 clerks in an office, a committee consisting of 2 officers and 3 clerks is to

be formed. In how many ways committee be done if:
(i) Any officers and any clerk can be included?

(ii) Are particular clerk must be on the committee?

(iii) Are particular officer cannot be on the committee?
11. If C (n, 15) = C (n, 27) find the value of C (n, 30).
12. If P (n, r) = 5040, and C (n, r) = 210, find n and r.
13. From 6 consonants and 4 vowels how many words can be made, each containing 4 consonants

and 3 vowels?

14. A committee of 8 is to be selected out of 6 males and 8 females. In how many ways can it be
formed so that the male way not be out numbered?

15. There are twelve points in a given plane, no three of them on the same time. How many lines are
determined by these points?

16. In how many ways can three or more persons be selected from twelve persons?
17. Which regular polygon has the same number of diagonals as sides?
18. Find the regular polygon which has twice as many diagonals as sides.

19. Find the number of triangles that can be formed by the vertices of an octagon.
20. Find the number of ways in which 9 toys can be divided evenly among three children.
21. Find the number of ways in which fourteen people can be partitioned into six committees, where

two of the committees contain three people each and the remaining four committees contain two
people each.

22. In how many ways can a cricket eleven be selected out of 14 players when the captain is always
to be included?

23. A box contains 2 white balls, 3 black balls and 4 red balls. In how many ways three balls be
drawn from the box if atleast are black ball is to be included in the draw?

24. How many different possible outcomes are possible by tossing 6 similar coins?
25. There are 5 true and false questions in an examination. How many sequences of answers are

possible?
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26. Find the 3-combinations of {3 a, 2 b, 2 c, 1 d}.
27. There are 25 true or false questions on an examination. How many different ways can a students

do the examination, if he or she can also choose to leave the answer blank?

28. Find the number of 4-combinations of { }1 2 3 4 5, , , ,a a a a a∞ ⋅ ∞ ⋅ ∞ ⋅ ∞ ⋅ ∞ ⋅ .

29. Find the number of 3-combinations of 5-objects with unlimited repetitions.

30. Find the number of non-negative integral solutions to x1 + x2 + x3 + x4 + x5 = 50.

31. How many integral solutions are there to x1 + x2 + x3 + x4 + x5 = 20, where each xi ≥  2?

32. Find the number of integral solutions to x1 + x2 + x3 + x4 + x5 = 20,

where x1 ≥  3, x2 ≥  2, x3 ≥  4, x4 ≥  6, x5 ≥  0.

33. Enumerate the number of placing 20 indistinguishable balls into 5 boxes, where each box is non-
empty.

34. How many different outcomes are possible form tossing 10 similar dice?

35. Enumerate the number of non-negative integral solutions to the in equality
x1 + x2 + x3 + x4 + x5 ≥ 19.

36. Find the number of integral solutions to x1 + x2 + x3 + x4 + x5 =50,

where x1 ≥  4, x2 ≥  7, x3 ≥ –14, x4 ≥  10.

37. Find the number of 10-permutations of {3 a, 4 b, 2 c, 1 d}.

Answers:
1. n = 10, r = 5 2. (i) 1260, (ii) 1716 3. 54054 4. 31, 241, 700 5. 127 6. 185 7. 20

8. 2100 9. (i) 45 (ii) 21 (iii) 35 10. (i) 720 (ii) 210 (iii) 360 11. 496 12. n = 10, r = 4

13. 302400 14. 1414 15. 66 16. 4017 17. Pentagon 18. 7 sides (Heptagon) 19. 56
20. 1680 21. 3153150 22. C ( 13, 10) 23. 64 24. 7 25. 32

26. aaa, aab, aac, aad, bba, bbd, cca, ccb, ccd, abc, abd, acd, bcd. 27. 325 28. 70 29. 35

30. 316, 251 31. C (14, 10) 32. C (9, 5) 33. C (19, 15) 34. 3003

35. C (5 – 1 + 0, 4) + C (5 – 1 + 1, 4) + … + C (5 – 1 + 19, 4) 36. C (54, 3) 37. 12, 600
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In this section, we discuss the Pigeonhole principle. It is also known as the Dirichlet’s drawer principle
or the shoe box principle and it can be stated as follows:

Theorem 7.6: If n pigeons are assigned to m pigeonholes and m < n, then some pigeonhole contains
atleast two pigeons.
Proof: Let h1, h2, …, hm denote the m pigeonholes and P1, P2, …, Pm, Pm + 1, …, Pn denote the n
pigeons (where m < n).We consider the assignment of the n pigeons to m pigeonholes as follows:

Assign pigeon p1 to the pigeonhole h1, pigeon p2 to the pigeonhole h2, …, and pigeon pm to the
pigeonhole hm.

This assigns as many pigeons possible to individual pigeonholes. Since m < n, there are pi (n – m)
pigeons that have not yet been assigned. Atleast one pigeonhole will be assigned a second pigeon.

Example 1: If ten people are chosen in any way, show that atleast two of then will have been born on
the same day.
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Solution: There are ten people and the number of days in a week is only seven. If each person (pigeon)
is assigned to the day of the week (pigeonhole) on which he or she is born, the pigeonhole principle tells
us that two more people must be assigned to the same day of the week.

In the above example, the people (objects) are taken as the pigeons and the days of the week as
taken as pigeonholes. In general, to apply pigeonhole principle, we must identify the pigeons i.e., the
objects and the pigeonholes i.e., categories of the desired characteristic. Also we must be able to count
the number of pigeons and pigeonholes.

Example 2: Show that if seven numbers from to 1 to 12 are chosen, then two of them will add upto 13.

Solution: Construct six different sets, each containing two numbers that add up to 13 as follows
x1 = {1, 12}, x2 = {2, 11}, x3 = {3, 10}, x4 = {4, 9}, x5 = {5, 8}, x6 = {6, 7}. Each of the seven numbers
belong to one of these six sets. Since there are six sets, the pigeonhole principle tells us that two of the
numbers chosen belong to the same set. These numbers add upto 13.

Theorem 7.7: (The extended pigeonhole principle)

If n pigeons are assigned to m pigeonholes, then one of the pigeonholes must contain atleast / 1n m +⎢ ⎥⎣ ⎦
pigeons [ /p q⎢ ⎥⎣ ⎦ denotes the largest integer less than or equal to the rational number p/q].

Proof: We prove the theorem by contradiction. Let each pigeonhole contain no more than ( ) /n m m−⎢ ⎥⎣ ⎦
pigeons. Then, there are at most ( 1) /m n m⋅ −⎢ ⎥⎣ ⎦ pigeons in all but ( 1) / ( 1) / .− ≤ −⎢ ⎥⎣ ⎦n m m n m

( 1) / 1n m n⇒ − = −⎢ ⎥⎣ ⎦
i.e., there (n – 1) pigeons in all. This contradicts our assumption. Hence one of the pigeonholes must

contain atleast ( 1) / 1n m− +⎢ ⎥⎣ ⎦  pigeons.

Example 3: Show that if any 26 people are selected, then we may choose a subset of 4 so that all 4
were born on the same day of the week.
Solution: We assign each person to the day of the week on which she or he was born. Then the
number of pigeons (people) are to be assigned to 7 pigeonholes (days of the week). With n = 26 and
m = 7.

Therefore atleast (26 1) /7 1− +⎢ ⎥⎣ ⎦ , that is 4 people must have been born on the same day of

the week.

Example 4: Show that there are atleast 6 different ways to choose 3 numbers from 1 to 10, so that all
choices have the some sum.

Solution: Three numbers can be choses from the 10 numbers in 
3

10 120C =  ways

The least sum = 1 + 2 + 3 = 6
The largest sum that we can get from this numbers 1 to 10 is 8 + 9 + 10 = 27
We have 22 such sums inclusive of 6 and 27
Let A be the set of sums obtained by taking three numbers from 1 to 10, then

A = {6, 7, 8, ..., 27}

If each sum is taken as a pigeonhole, then atleast one of the pigeonhole must contain
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120 1
1

22

−⎢ ⎥ +⎢ ⎥⎣ ⎦
 = 5 + 1 = 6 pigeons,

i.e., one pigeonhole contains atleast 6 different ways of 3 numbers having the same sum.

+, + � � � � + ���/

1. Show that if any five numbers from 1 to 8 are chosen, then two of them will add upto 9.
2. If eight people are chosen, in any way from a group show that, atleast two of them will have been

born on the same day of the week.
3. Show that if any 30 people are selected, then we may chose a subset of 5 so that all 5 were born

on the same day of the week.
4. Prove that if any 14 numbers from 1 to 25 are chosen, then one of them is a multiple of another.
5. Show that if any 11 numbers are chosen from the set {1, 2, …, 20}, then one of them will be a

multiple of another.
6. If 20 processors are interconnected, show that atleast two processors are directly connected to

the same number of processors.

���- ���	.��1��5+	�+.

In this section, we obtain the formula for the expansion of (a + b)n. The Binomial theorem gives a
formula for the coefficients in the expansion of (a + b)n. Since

( )( ) ( )
factors

...( )
−

+ + ++ = �����������
n

n

a b a b a ba b

the expansion results from selecting either a or a from each of the n factors. Multiplying the selection
together, and then summing all such products obtained. Let us consider the expansion of (a + b)3 as an
example:

(a + b)3 = (a + b) (a + b) (a + b)
= (a + b) [(a + b) (a + b)]
= (a + b) [(a + b) a + (a + b) b]
= (a + b) (aa + ba + ab + bb)
= a [aa + ba + ab + bb] + b [aa +ba + ab + bb]
= aaa + aba + aab + abb + baa + bba +bab + bbb

There are eight terms in the expansions of which some are alike. Each term is a product three
factors, the first being obtained from the first binomial; the second from the second binomial, and the
third from the third binomial in (a + b) (a + b) (a +b). All such possible selections are included in the
eight terms. Each of the eight terms is a product of three letters are selected from each of the binomial
factors. In the expansion a3 (i.e., aaa) appears only once; a2 b (i.e., aba, aab, bba) appears three times,
ab2 (i.e., abb, bba, bab) appears three times and b3 (i.e., bbb) appears only once.

Therefore, we can write
(a + b)3 = a3 + 3a2 b + 3ab2 + b3
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We observe that each term of this expansion is formed by selecting one and only one term from
each of the three binomial factors; multiplying these together, and adding like products. We can select
either none, one, two or three b’s. If we select one a from each of factor. This can be done in only C
(3, 0) one way. This gives the first term aaa i.e., a3. If we select one b, we can select it from any one of
the three factors. This can be done in C (3, 1) = 3 ways. For each of these selections. We must select one
a from each of the other two factors, and this can be done in only one way. Hence, we have three terms
each equal to a2 b giving the second term 3a2 b. We may how select two b’s from the three factors in C
(3, 2) = 3 ways, and an a must be selected in one way from the remaining factor. This gives the term
3ab2. Finally, we select three b’s in C (3, 3) = 1 way and obtain the term bbb = b3. Therefore, we can
write

(a + b)3 = C (3, 0) a3 + C (3, 1) a2 b + C (3, 2) ab2 + C (3, 3) b3

= a3 + 3a2 b + 3ab2 + b3

( )
3

3

0

3, r r

r

C r a b−

=

= ⋅∑
we now consider the expansion of (a + b)n where a and b are real numbers and n is a positive integer.

Theorem 7.8: (The Binomial theorem)
Let n be a positive integer then for all a and b.

(a + b)n = C (n, 0) an + C (n, 1) an-1 b + C (n, 2) an-2 b + … + C (n, r) an-r br + … + C (n, n) bn

( )
0

,
n

n r r

r

C n r a b−

=

= ⋅∑
Proof: First Proof

(a + b)n = (a + b) (a + b) … n factors

Each term in the expansion is obtained by forming the product of one term each binomial factor.
Therefore each term in the expansion is of the form

an-r br (r = 0, 1, 2, …, n)

The term an-r br known as the general term is formed by selecting one b from each of r of the n
factors. This can be done in C (n, r) ways. For each of these ways, the (n – r) a’s can be selected, one
from each of the remaining (n – r) binomial factors, in only one way. Hence coefficient of an-r br is C
(n, r). Therefore

( )
0

( ) , −

=

+ = ⋅∑
n

n n r r

r

a b c n r a b

 = C (n, 0) an + C (n, 1) an-1 b + C (n, 2) an-2 b2 + … + C (n, r) an-r br + … + C (n, n) bn

Second Proof (Proof by mathematical induction)
Let r denote the set of all positive integers, we use the identities:

C (n, r) + C (n, r + 1) = C (n + 1, r + 1),

and C (k, k) = C (k + 1, k + 1) = 1.
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Let S be the set of positive integers for which:

( ) ( )
0

,
n

n n r r

r

a b C n r a b−

=

+ = ⋅∑
Taking x = 1, we obtaining

( ) ( ) ( )
1

1 1 0 0 1

0

1, 1, 0 1, 1r r

r

C r a b C a b C a b−

=

⋅ ⋅ = +∑
= a + b

The theorem holds for x = 1, i.e., 1 S∈ .

Assume that the theorem is true for n = k, i.e., ,∈K S  hence

( ) ( )
0

,
k

k k r r

r

a b C k r a b−

=

+ = ⋅∑
= C (k, 0) ak + C (k, 1) ak – 1 b + … + C (k, r – 1)ak – r + 1 b + C (k, r) ak – r br + … + C (k, k)bk.

Then

(a + b)k + 1 = (a + b) (a + b)k

= a (a + b)k + b (a + b)k

= C (k, 0) ak + 1 + C (k, 1) ak b + C (k, 2) ak – 1 br + … +

C (k, r – 1)ak – r + 1 br – 1 + C (k, r) ak – r + 1 br + … + C (k, k) abk.

= C (k, 0) ak b + C (k, 1) ak – 1 b2 + C (k, 2) ak – 2 b3 + … +

C (k, r – 1)ak – r + 1 br  + C (k, r) ak – r + 1 br + 1 + … + C (k, k) bk + 1.

= C (k, 0) ak + 1 + [C (k, 0) + C (k, 1)] ak b + [C (k, 1) + C (k, r)] ak – 1 br + ... +

[C (k, r – 1) + C (k, r)] ak – r + 1 br + … + C (k, k) bk + 1.

= C (k + 1, 0) ak + 1 + C (k + 1, 1) ak b + C (k + 1, 2)] ak – 1 br + … +

C (k + 1, r) ak – r + 1 br + … + C (k + 1, k + 1) bk + 1.

( )
1

1

0

1,
k

k r r

r

C k r a b
+

+ −

=

= + ⋅∑
Therefore, the theorem is true for x = k + 1 also i.e., 1 , if+ ∈ ∈k S k S

Hence S = N
i.e., by the principle of mathematical induction the theorem is true for all positive integers and

( ) ( )
0

,
n

n n r r

r

a b C n r a b−

=

+ = ⋅∑  for all ∈n N

We note the following in the expansion:
(i) The number of terms in the expansion of (a + b)n is n + 1.

(ii) The general term is C (x, r) an-r br (i.e., (r + 1) the term is the general term). It is denote by Tr+1.
(iii) The coefficients of terms equidistant from ends of the expansion are equal.
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Consider the following expansions:
(a + b)0 = 1
(a + b)1 = a + b
(a + b)2 = a + 2ab + b2

(a + b)3 = a3 + 3a2 b + 3ab2 + b3

(a + b)4 = a4 + 4a3 b + 6a2 b2 + 4ab3 + b4

(a + b)5 = a5 + 5a4 b + 10a3 b2 10a2 b3 + 5ab4 + b5

It can be seen that the coefficients follow a definite pattern which can be most easily demonstrated
by means of triangle known as Pascal’s Triangle.

Fig. 7.3

We can form the lines of the triangle by using the identity
C (x, r) + C (x, r + 1) = C (x + 1, r + 1).

Example 1: Expand (2a + b)4.
Solution:

(2a + b)4 = C (4, 0) (2a)4 + C (4, 1) (2a)3 b + C (4, 2) (2a)2 b2 + C (4, 3) (2a) b3 + C (4, 4) b4.

= 16a4 + 32a3 b + 24 a2 b2 + 8 ab3 + b4.

Example 2: Find the general term in the expansion of 
10

3 1
x

x
⎛ ⎞+⎜ ⎟⎝ ⎠

.

Solution:

( )
10

103 3 11
x x x

x
−⎛ ⎞+ = +⎜ ⎟⎝ ⎠

the general term in the expansion is

Tr+1 = C (10, r) (x3)10–r (x–1)r

= C (10, r) x30–3r x–r

= C (10, r) x30–4r
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Example 3: Find the term containing a4 in the expansion of 
82

a
a

⎛ ⎞−⎜ ⎟⎝ ⎠
.

Solution: The general term is

( ) 8
1

2
8,

r
r

rT C r a
a

−
+

−⎛ ⎞= ⎜ ⎟⎝ ⎠

( ) ( )8 18, 2
rrC r a a− −= −

( ) ( ) ( )8 18, 2
rrrC r a a− −= −

= C (8, r) (–2)r a8–r a–r

= C (8, r) (–2)r a8–2r

Putting 8 – 2r = 4, we get r = 2
Hence the term containing a4 is

Tr+1 = T3 = C (8, r) (–r)r a4

= C (8, r) 4 a4

= 28 4 a4

= 112 a4

Example 4: Find the term independent of x in the expansion of 
12

2 1
x

x
⎛ ⎞+⎜ ⎟⎝ ⎠

.

Solution:

( )
12

122 2 121
x x x

x
−⎛ ⎞+ = +⎜ ⎟⎝ ⎠

The general term in the expansion of (xr + x-1)12 is

Tr+1 = C (12, r) (x2)12–r (x–1)r

= C (12, r) x24–2r x–r

= C (12, r) x24–3r

If 24 –3r = 0

3r = 24 ⇒ r = 8

Hence, the coefficient x0 is C (12, 8)
i.e., the term independent of x is C (12, 8) = 495

���-�

Replacing a by x and b by 1 we can write binomial theorem as:

( ) ( ) ( )
0 0

1 , ,
n n

n n r n r

r r

x C n r x C n n r x− −

= =

+ = = −∑ ∑
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( ) ( )
0

, 1
n

nr

r

C n r x x
=

= = +∑

Consider ( ) ( )
0

1 ,
r

n r

r

x C n r x
=

+ = ∑
replacing x by –x, we have

( ) ( ) ( ) ( ) ( )
0 0

1 , , 1
n n

n r r r

r r

x C n r x C n r x
= =

− = − = −∑ ∑
taking a = b = 1 binomial theorem can be written as

(1 + 1)n = C (n, 0) + C (n, 1) + … + C (n, n)

2n = C (n, 0) + C (n, 1) + … + C (n, n)

(refer Example 3, Pascal’s row sum identity under Section 7.9)
If we set a = 1 and b = –1 in the binomial theorem, we get.

(1 – 1)n = C (n, 0) – C (n, 1) + C (n, 2) + … + (–1)n C (n, n)

or     C (n, 0) – C (n, 1) + … + (–1)n C (n, n) = 0

which shows that the alternating sum of the members of any row of Pascal’s triangle is zero. This can
also be written as

C (n, 0) + C (n, 2) + C (n, 4) + … = C (n, 1) + C (n, 3) + …
The coefficients

C (n, 0), C (n, 1), C (n, 2) ,…, C (n, n)
are called Binomial coefficients. These coefficients can also be written as,

C0, C1, C2, …, Cn

���/ �	12+
�+,�.�1+�

Example 1: Prove that C (n, 1) + C (n, 3) + … = C (n, 0) + C (n, 2) + … = 2n – 1.

Solution: We know that

n (C, 1) + n (C, 3) + n (C, 5) + … = n (C, 0) + n (C, 2) + n (C, 4)

Let S denote the common total of these sums. Adding right-hand side to the left, we get
C (n, 0) + C (n, 1) + C (n, 2) + C (n, 4) + … + C (n, n) =2s

⇒  2n = 2s

⇒ S = 2n – 1.

Example 2: In the expansion of (1 + x)n, prove that

C0
2 + C1

2 + C2
2 + … + Cn

2 = ( )2

2 !

!

n

n
Solution: We have

(1 + x)n = C (n, 0) + C (n, 1) x + … + C (n, n) xn … (i)
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We know that the coefficients of the terms equivalent from the beginning and end are equal, therefore,
we can write

(1 + x)n = C (n, n) + C (n, n – 1) x + … + C (n, 0) xn … (ii)
multiplying (i) and (ii), we get

(1 + x)2n = [C (n, 0) + C (n, 1) x + … + C (n, n) xn ] x [ C (n, n) + C (n, n – 1) x + … + C (n, 0)] xn

from the right hand side, we see that the coefficients of xn is
C (n, 0)2 + C (n, 1)2 + … + C (n, n)2.

But the coefficient of xn in (1 + x)2n is given by

C (2n, n) = 
( )2

2 ! 2 !

! ! !

n n

n n n
=

⋅

C0
2 + C1

2 + Cn
2 = 

( )2

2 !

!

n

n

Example 3: If (1 + x)n = C (n, 0) + C (n, 1) x + C (n, 2) x2 + … + C (n, n)xn.
Prove that C (n, 1) + 2 C (n, 2) + 3 C (n, 3) + … + n C (n, n) = n 2n – 1.

Solution:
C (n, 1) x + 2 C (n, 2) x2 + … + n C (n, n)xn

= nx + 2 ⋅
( )2 1

2 !

n −
⋅

x2 + … + n xn

= nx + n (n – 1) x2 + … + n xn

= nx [1 + (n – 1) x + … + xn – 1]
= nx [C (n – 1, 0) + C (n – 1, 1)x + … + C (n – 1, n – 1)xn – 1]
= nx (1 + x)n – 1

Putting x = 1 on both sides, we get
C (n, 1) + 2 ⋅ C (n, 2) + … + n ⋅ C (n, n) = n ⋅ 2n – 1

Example 4: If C (n, 0), C (n, 1), C (n, 2), …, C (n, n) are the coefficients in the expansion of (1 + x)n,
prove that:

C (n, 0) C (n, r) + C (n, 1), C (n, r + 1) + … + C (n, n – r) C (n, n) = ( ) ( )
2 !

! n + r !

n

n r−

Solution: We know that
(1 + x)n = C (n, 0) + C (n, 1) x + C (n, 2) x2 + … + C (n, r) xr + … +

C (n, n – 1) xn – 1 + C (n, n) xn … (i)
writing in the reverse order we get

(1 + x)n = C (n, n) x2 + C (n, n – 1) xn – 1 + … + C (n – 1) x + C (n, 0) … (ii)
Since C (n, r) = C (n, n – r)

we have C (n, n) = C (n, 0), C (n, n – 1) = C (n, 1)
we can therefore write

(1 + x)n = C (n, 0)xn + C (n, 1) xn – 1 + C (n, 2) xn – 2 + … + C (n, n –1) x +C (n, n) … (iii)
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multiplying (i) and (ii) and equating the coefficient of xn+r on both sides we get
C (n, 0) + C (n, r) + C (n, 1) + C (n, r + 1) + C (n, 2) C (n, r + 2) + … + C (n, n – r) C (n, n)

= Coefficient of xn+r in (1 + x)2n

= C (2n, n + r)

( ) ( )
2 !

! n – r !

n

n r
=

+

Example 5: Prove that

( )
( )

( )
( )

( )
( )

( )
( )

( ), 1 , 2 , 3 , 1
2 3 ...

, 0 , 1 , 2 , 1 2

C n C n C n C n n n n
n

C n C n C n C n n

+
+ ⋅ + ⋅ + + =

−

Solution: We know that

( )
( )

, 1
,

, 0 1

C n n
n

C n
= =

( )
( )

( )
( )

2 1
, 2 11 2

2 1
, 1

1

n
C n n n

n
nC n n

⋅ −
−⋅⋅ = = = −

( )
( )

( )( )

( )

3 1 2
, 3 1 2 3

3 2
1, 2

1 2

n n n

C n
n

n nC n

⋅ − −
⋅ ⋅⋅ = = −

−
⋅

( )
( )

, 1
1

, 1

C n n
n n

C n n n
= ⋅ =

−
Adding, we get

( )
( )

( )
( )

( )
( )

( )
( )

, 1 , 2 , 3 ,
2 3 ...

, 0 , 1 , 2 , 1

C n C n C n C n n
n

C n C n C n C n n
+ ⋅ + ⋅ + +

−
= n + (n – 1) + (n – 2) + … + 1 ≤  1 + 2 + 3 +… + (n – 1) + n

( )1

2

n n +
=

���3 .�1���	.��1��5+	�+.

The binomial theorem can be extended to give a formula powers of multinomials (x1 + x2 + … + xt)
n as

follows:

Theorem 7.9: The Multinomial Theorem
Let n be a positive integer, then for all x1 + x2 + … + nt

(x1 + x2 + … + xt)
n = P∑  (n; q1, q2, …, qt) x x xq q

t
qt

1 2
1 2 ...
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where the summation extends over all sets of non-negative integers q1, q2, …, qt

where q1 + q2 + … + qt = n.

Proof: The coefficient of 1 2
1 2 ... tq q q

tx x x  is the number of ways of arranging n letters

{q1 x1, q2 x2, …, qt xt}

The coefficient of 1 2
1 2 ... tq q q

tx x x  is (n; q1, q2, …, qt)

Hence

(x1 + x2 + … + nt)
n = P∑  (x; q1, q2, …, qt) 1 2

1 2 ... tq q q
tx x x

In the above expansion, 1 2
1 2 ... tq q q

tx x x  is a selecting of n objects with repetition from t distinct

types. The number of ways of selecting the objects is C (n + t – 1, n).
Therefore, the number of terms in the expansion of  (x1 + x2 + … + nt)

n is C (n + t – 1, n).
Example 1: Find the coefficients of x5 y10 z5 w5 in the expansion of (x + 7 y + 3 z + w)25.
Solution: We have n = 25, x1 = x1, x2 = 74, x3 = 3 z, and x4 = w

∴ The coefficients of x5 y10 z5 w5 in the expansion of (x + 7 y + 3 z + w)25 is

P (25, 5, 10, 5, 5) = 
5 10 5 520!1 7 3 1

5!10! 5! 5!

⋅ ⋅ ⋅

Example 2: Find the number of terms in the expansion of  (2x + 3y –5z)8.
Solution: We have n = 8, t = 3

Hence the number of terms is
C (n + t – 1, n) = C (8 + 3 – 1, 8)

= C (10, 8) = 45

+, + � � � � + ���3

1. Expand (1 – x + xr)4 in ascending powers of x.

2. Find the 10th term of 
12

2 1
2 x

x
⎛ ⎞+⎜ ⎟⎝ ⎠

.

3. Find the term independent of x in the expansion of 
12

2 1
2 x

x
⎛ ⎞−⎜ ⎟⎝ ⎠

.

4. Prove that the term independent of x in the expansion of 
3

2

1
n

x
x

⎛ ⎞−⎜ ⎟⎝ ⎠
 is ( ) ( )

3 !
1

! 2 !
n n

n n
− .

5. Give a combinational proof for Pascal’s column sum identify given by
C (r, r) + C (r + 1, r) + … + C (n, r) = C (n + 1, r + 1)

6. Prove the Pascal’s diagonal sum identity
C (n + 1, r) = C (n + 1, 1) + C (n + 2, 2) + … + C (n + r, r)

7. Use the diagonal sum identity of Pascal to show that
1 . 2 + 2 . 3 + … + n (n + 1) = n (n + 1) (n + 2) /3.
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8. Prove that following by combinational argument:
(i) C (2n, 2) = 2 C (n, 2) + n2

(ii) (n – r) C (n, r) = n C (n – 1, r)
9. Show that

C (n, 0) + C (n + 1, 1) + C (n + 2, 2) + … + C (n + r, r) = C (n + r + 1, r)
10. Prove that

C (n, 0) + 2 C (n, 1) + 22 C (n, 2) + … + 2n C (n, n) = 3n

11. Show that

( ) ( )1 1

2

n n
x x+ + −

 = C (n, 0) + C (n, 2) x2 + … + C (n, q) xq

where q = n if n is even
n – 1 if n is odd

12. Show that the product of r consecutive integers is divisible by r!.
13. State and prove Binomial theorem.
14. State Multinomial theorem.

15. In the expansion of (1 + px)n, the first three terms are 1, 5x,
245

4

x
. Find the values of n and p.

16. Find the coefficient of x1
2 x3 x4 x5

4 in the expansion of (x1 + x2 + x3 + x4 + x5)
10. Also find the

number of terms in the expansion.

17. Find the coefficient of x3 y3 z2 in the expansion of (2x – 3 y + 5 z)8.

18. In the expansion of 
2

3

1 n

a
a

⎛ ⎞−⎜ ⎟⎝ ⎠
 the fifth term in 10a– 4.

Find the value of n.
19. In the expansion of (ax + by)n the coefficients of the first three terms are 729, 486, and 135

respectively, if a > 0. Find the values of a, b and n.
20. Find the coefficient of x2 y3 z2 in (x + y + z)7.

Answers:

1. 1 – 4x + 10x2 – 16x3 + 19x4 – 16x5 + 10x6 – 4x7 + x8. 2. 2

1760

x
3.7920 15.

1

2
P = , n = 10

16. 12,600, 1001 17. (23) (–3)3 (5)2 (560) 18. n = 8 19. a = 3, 
1

3
b = , n = 6    20. 210.
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8

Graph Theory

��� ����	
����	�

Graph theory is intimately related to many branches of mathematics. It is widely applied in subjects like,
Computer Technology, Communication Science, Electrical Engineering, Physics, Architecture,
Operations Research, Economics, Sociology, Genetics, etc. In the earlier stages it was called slum
Topology.

Euler, Cayley, Sir William Hamilton, Lewin, and Kirchoff, laid foundations to the graph theory.
Graph theory was born in 1736 with Euler’s paper on Konigsberg bridge problem. The Konigsberg
bridge problem is the best known example in graph theory. It was a long pending problem. Euler solved
this problem by means of a graph. Euler became father of graph theory. Kirchoff, Cayley, Mobius,
Hamilton and De Morgan have laid strong foundations and contributed much to the development of the
subject. In this chapter, basic concepts and terms of graph theory have been introduced.

�� ������
�������	��

���� �����

Definition 8.1: A graph G is a pair of sets (V, E), where V is a non-empty set. The set V is called the set
of vertices and the set E is called the set of edges (or lines).

A graph may be represented by a diagram in which each vertex is represented by a point in the plane
and each edge is represented by a straight line (or curve) joining the points. The objects shown below
(see Fig. 8.1) are graphs.

Fig. 8.1

Note:

(i) In a graph G = (V, E), the sets V and E are assumed to be finite sets.
(ii) A vertex of a graph is called a node, a point; a junction or 0-cell. An edge of a graph is called a line, a

branch, a 1-cell or an arc.
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(iii) If G = (V, E); {or (V (G), E (G))} is a graph, then the number of vertices in G is denoted by |V| (|V (G)|),
and the number of edges in a is denoted by |E| (or |E (G) |).

(iv) If {u, v} is an edge in a graph G, then the vertices u and v are said to be adjacent.

��� ����
������ ������

Definition 8.2: Let G = (V, E) be a graph. If the elements of E are unordered pairs of vertices of G then
G is called a non-directed graph.

The graph in Fig. 8.2 are non-directed graphs

Fig. 8.2

Note: If e is an edge of a non-directed graph G, connecting the vertices u and v of G, then it is denoted by
e = {u, v}. The points u and v are called the end points of the edge e.

���! 
������ �������"���
�#����$

Definition 8.3: Let G = (V, E) be a graph. If the elements of E are ordered pairs of vertices, then the
graph G is called a directed graph.

Note: If e is an edge of a directed graph G, denoted by e = (u, v), then e is a directed edge in G. The edge e begins
at the point u and ends at u. The vertex u is called the origin or initial point of the directed edge e and v is called the
destination or terminal point of e. The graphs in Fig. 8.3 are directed graphs.

Fig. 8.3 Digraphs

���% ��&'�(���

Definition 8.4: An edge associated with the unordered pair { , }i iv v  where iv V∈  of a graph G = (V,

E) is called a self-loop in a graph G is an edge joining a vertex to itself.
In Fig. 8.4, there is a loop incident on the vertex v.

Fig. 8.4
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Definition 8.5: A graph which allows more than one edge to join a pair of vertices is called a Multigraph.
Fig. 8.5 (a) is a multigraph in which, we have

G = {{a, b}, {a, d}, 2 (a, c), (c, d)}
Fig. 8.5 (b) is a multigraph in which, we have

G = {{a, b}, {a, c}, 3 {b, d}, {c, d}, {a, d}}

Fig. 8.5 Multigraph
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Definition 8.6: A graph G with no self-loops is called a simple graph.
The graphs in Fig. 8.6 are simple graphs.

Fig. 8.6 Simple graphs

���. ������-�&�������

Definition 8.7: If graph G is not a simple graph, then it is called a non-simple graph (see Fig. 8.7)

Fig. 8.7 Non-Simple graph

���� �+&&������

Definition 8.8: A graph G = (V, E) in which the set of edges E is empty is called a Null graph (see
Fig. 8.8.)
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Fig. 8.8 Null graph

Note: A finite graph with one vertex and no edges is called a trivial graph.

���/ 0��#��� ������

Definition 8.9: A graph G is in which weight are assigned to every edge is called a weighted graph
(Fig. 8.9)

Fig. 8.9 Weighted graph

����1 ������������

Definition 8.10: A graph G = (V, E) in which both V (G) and E (G) are finite sets is called a finite graph.

����� 23�+ �#����

Definition: A graph having loops but no multiple edges is called a Pseudograph (see Fig. 8.10)

Fig. 8.10 Pseudograph
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Definition 8.11: Let G be a non-directed graph. An unordered pair {u, v} is an edge incident on u and
v. If G is a directed graph. An edge {u, v} is said to be incident from u and to be incident to v.

��!�� �� �#���

Definition 8.12: In a directed graph G, the number of edges ending at vertex v of G is called the
indegree of v.
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The indegree of a vertex v of G is denoted by deg ( )G v+  (or by indeg (v)).

Example: In the graph given below (Fig. 8.11) the indegree of the vertex V1 is 3:

Fig. 8.11
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Definition 8.13: Let G be a directed graph and v be a vertex of G. The outdegree of v is the number of
edges beginning at v.

The outdegree of a vertex v in G is denoted by deg ( )G v−  (or by outdeg (v)).

In the Fig. 8.12, the outdegree of the vertex v1 is 2.

Fig. 8.12
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In a non-directed graph G, the degree of a vertex v is determined by counting each loop incident on v
twice and each other edge once. The degree of the vertex v in G is denoted by d (v) or by deg G(v) and is
defined as follows:

Definition 8.14: The number of edges incident with a vertex v of a graph, with self-loops counted
twice is called the degree of the vertex v. The degree of a vertex is sometimes referred to as its valency.

Note: A vertex of odd degree is an odd vertex of G and that of even degree is called even vertex.

Example 1: In the graph of Fig. 8.13
deg (v1) = 1, deg (v2) = 3, deg (v3) = 1, deg (v4) = 1,

Fig. 8.13
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Example 2: In the graph of Fig. 8.14, we have deg (v1) = 3, deg (v2) = 4, deg (v3) = 2, deg (v4) = 3 or

d1 = 3, d2 = 4, d3 = 2, d4 = 3

Fig. 8.14

��!�%

Minimum degree and maximum degree: For a graph G = (V, E), we introduce the following symbols:

δ (G) = Minimum of all the degrees of the vertices of a graph G.

Δ (G) = Maximum of all the degrees of the vertices of a graph G.

Thus

δ  (G) = min {deg ( ): }i iv v V∈

Δ  (G) = max {deg ( ): }i iv v V∈

��!�) (�6�&� ������

Definition 8.15: A graph G in which each vertex is assigned a unique label is called a labeled graph.
The graph G in Fig. 8.15 is a labeled graph.

Fig. 8.15 Labeled graph
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Definition 8.16: A vertex of degree zero in a graph is called an Isolated vertex.
The vertex v4 in Fig. 8.16 is an Isolated vertex.

Note: An Isolated vertex in a graph G has no edges incident with it. Every vertex in a null graph is an isolated
vertex.
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Fig. 8.16
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Definition 8.17: A vertex of a graph with degree one is called a pendant vertex. (or an end vertex). In
the graph shown in Fig. 8.17, the vertices v1 and v4 are pendant vertices.

Fig. 8.17
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Definition 8.18: A graph G is said to be k-regular, if every vertex of G has degree k.

Note:

(i) For a k-regular graph

( ) ( )G G Kδ = Δ =
i.e., all the vertices (points) of G have the same degree K.

(ii) A regular graph of degree zero has no lines.

(iii) In a regular graph of degree 1, every component contains exactly one line.

(iv) If G is a 2-regular graph, then every component has a cycle.

(v) If G is a regular graph of degree 3, it is called a cubic graph. (see Fig. 8.18). Every cubic graph has an
even number of points.

Fig. 8.18 Cubic graph
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Definition 8.19: A simple graph G, in which every pair of distinct vertices are adjacent is called a
complete graph. If G is a complete graph of n vertices then it is denoted by kn.

Figure 8.19 shows K3 K4 and K5.

Fig. 8.19 Complete graphs K3, K4 and K5.

Note:

(i) In a complete graph, there is an edge between every pair of vertices.

(ii) Kn is called (n – 1)-regular graph.

(iii) Kn has exactly 
n n − 1

2

� �
 edges.
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Definition 8.20: If G = (V, E) is a finite then the number of vertices denoted by |V| is called the order
of G.

Thus, the cardinality of the vertex set V of G the order of G.

Example: The graph shown in Fig. 8.20 is of order 6.

Fig. 8.20

��) ��8��	�������27

Definition 8.21: If G = (V, E) is a finite graph, then the number of edges in G is called the size of G.
It is denoted by |E| (cardinality of E).

Example 1: The size of the graph shown in Fig. 8.21 is 6.
We shall often refer to a graph of order n and size m an (n, m)-graph.
If G is a (p, q) graph, then G has p vertices (points) and q edges (lines).
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Fig. 8.21

Example 2: Let V = {v1, v2, v3, v4}, and
E = {(v1, v2), (v1, v3), (v1, v4)}

G  = (V, E) is a (4, 3) graph G can be represented by the Fig. 8.22.

Fig. 8.22
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Definition 8.22: Let G be graph with v = {v1, v2, v3, ..., vn} as the vertex set. Also let di = deg (vi), then
the sequence (d1, d2, ..., dn) in any order is called the degree sequence of G.

Note:

(i) The vertices of a graph G, are ordered so that the degree sequence is monotonically increasing so that

1 2 3( ) ... ( )nG d d d d Gδ = ≤ ≤ ≤ ≤ = Δ
(ii) The set of distinct non-negative integers occurring in a degree sequence of a graph G is called its degree

set.
(iii) Two graphs with the same degree sequence are said to be degree equivalent.

(iv) It is customary to denote the degree sequence in power notation.

If (2, 2, 2, 3, 3, 4, 5, 5, 6) is the degree sequence of a graph G, then it is represented in power notation
as 23 32 41 52 61, the degree set being (1, 2, 3).

Example: Consider the graph shown in Fig. 8.23.

Fig. 8.23
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We have d (v1) = 0, d (v2) = 2, d (v3) = 1, d (v4) = 2, d (v5) = 4, d (v6) = 1
v1 is not adjacent with any other vertex of G, hence v1 is an isolated vertex of G.
The degree sequence of G is (0, 1, 1, 2, 2, 4). There are two vertices of odd degree in G (The vertices

v3 and v6 are odd).

Theorem 8.1:
(i) The sum of degrees of the vertices of a non-directed graph G is twice the number of edges in G i.e.,

1

deg ( ) 2 | |
n

i
i

v E
=

=∑
(ii) If G is a directed graph

1 1

deg ( ) deg ( )
n n

G i G i
i i

v v− +

= =

=∑ ∑
where |V| = number of vertices in G = n

Proof:
(i) Let G be a non-directed graph. Each edge of G is incident with two vertices and hence contributes 2
to the sum of degree of all the vertices of the non-directed graph G.

Then the sum of degrees of all the vertices in G is twice the number of edges in G.

i.e.,
1

deg ( ) 2 | |
n

G i
i

v E
=

=∑
(ii) Let G be digraph and e be an edge associated with a vertex pair (vp, vq). The edge e contributes one
to the outdegree of vp and one to the indegree of vq. This is true for all the edges in G.

Hence
1 1

deg ( ) deg ( ) | |
n n

G i G i
i i

v v E+ −

= =

= =∑ ∑
Corollary 1: In a non-directed graph, the number of vertices of odd degree vertices is even.
Proof: Let G = (V, E) be a non-directed graph. Let W denote the set of odd degree vertices and U
denote the set of even degree vertices in G.

Then deg ( ) deg ( ) deg ( )
i i i

i i i
v V v W v U

v v v
∈ ∈ ∈

= +∑ ∑ ∑

or deg ( ) deg ( ) deg ( )
∈ ∈ ∈

− =∑ ∑ ∑
i i i

i i i
v V v U v W

v v v ... (i)

deg ( )
i

i
v V

v
∈
∑  is even and deg ( )

i

i
v U

v
∈
∑  is also even, therefore

deg ( ) deg ( )
i i

i i
v V v U

v v
∈ ∈

−∑ ∑  is even; i.e. L.H.S. of (i) is even
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 Thus each deg (vi) on R.H.S. is odd the number of summands must be even.

∴ The number of odd degree vertices in G is even.

Corollary 2: If K = ( ),Gδ  is the minimum degree of the vertices of a non-directed graph G = (V, E)

then

K |V| ≤  2 |E|

in particular, if G is a k-regular graph then
K |V| = 2 |E|

If G is a simple graph, then G is without parallel edges or self-loops. Let G be a simple graph with
one vertex. The number of edges in G is zero i.e., (1–1). The maximum degree of a vertex in a simple
graph G with one vertex is zero. If G is a simple graph with 2 vertices then the maximum degree of any
vertex in a is 1 = (2–1). In general it can be shown that the maximum degree of any vertex in a simple
graph with n vertices is (n–1). This can be stated in the form a theorem as follows:
Theorem 8.2: The maximum degree of any vertex in a simple with n vertices is n – 1.

��, �	(4�
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Example 1: Draw a simple graph with 3 vertices.
Solution: The graph shown in Fig. 8.24 is a simple graph with 3 vertices.

Fig. 8.24

Example 2: Draw a graph representing the problem of three houses and three utilities say water, gas
and electricity.
Solution: Let H1, H2 and H3 denote the houses. The utilities, water, gas and electricity be denoted by
W, G and E respectively. The houses can be connected by the utilities as shown Fig. 8.25.

Fig. 8.25
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Example 3: Draw the graphs of the chemical compounds.
(a) C2 H6 (b) C4 H10

Solution: (a) The graph of C2 H4 is

Fig. 8.26 (a)

(b) The graph of C4 H10 is

Fig. 8.26 (b)

Example 4: Represent the graph
G = {(1, 2, 3, 4), (x, 4): |x – 4| ≤  1)}

Solution: We have
V = {1, 2, 3, 4}
E = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4)}

and G = (V, E) is a non-directed graph. It can be represented as shown in Fig. 8.27.

Fig. 8.27

Example 5: For the graph shown in 8.28. Verify deg ( ) 2 | |iv E=∑
Solution: We have V = {v1, v2, v3, v4, v5}

E = {e1, e2, e3, e4, e5, e6, e7)
d1 = deg (V1) = 3, d2 = deg (V2) = 4, d3 = deg (V3) = 2,
d4 = deg (V4) = 3, d5 = deg (V5) = 1 and |E| = 7
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deg ( )iv∑  = d1 + d2 + d3 + d4 + d5

= 3 + 4 + 3 + 3 + 1 = 14

∴ deg ( )iv∑  = 14 = 2 × 7 = 2 |E|

Fig. 8.28

Example 6: A sequence d = (d1, d2, ... dn) is graphic, if there is a simple non-directed graph with the
degree sequence d. Show that the following sequences are not graphic:

(i) (2, 3, 4, 5, 6, 7) (ii) (2, 2, 4)
Solution: (i) The number of odd vertices in the degree sequence is 3 i.e., odd and the number of
vertices in G = 6.

Maximum degree of any vertex in a simple graph is = n – 1 = 6 – 1 = 5. But the maximum degree in
the given degree sequence is 7, therefore the given degree sequence is not graphic.

(ii) The graph contains 3 vertices. The maximum degree in the graph must be (3 – 1) = 2, but the
maximum degree in the sequence is 4. Hence, the given degree sequences is not graphic.
Example 7: Draw a picture of the following graph and state whether it is directed or non-directed and
whether it is simple:

G = (V, E) where
V = {a, b, c, d, e} and E = {(a, b), (a, c), (a, d), (a, e), (e, e), (c, d), (a, a), (b, c), (c, c)}.

Solution: The given graph G is a directed graph and is not simple:

Fig. 8.29
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Example 8: Find the order and size of the graph G shown in Fig. 8.30:

Fig. 8.30

Solution:
|V| = order of G = 4
|E| = size of G = 8

Example 9: Give an example of:
(i) A Simple graph,

(ii) A Pseudo graph, and
 (iii) A Multigraph.

Solution:
(i) Figure 8.31 (a) is a Simple graph.

(ii) Figure 8.31 (b) is a Pseudo graph.
 (iii) Figure shown in 8.31 (c) is a Multigraph.

(a) (b) (c)

Fig. 8.31 (a) Simple Graph (b) Pseudo Graph (c) Multigraph

Example 10: Draw a non-simple graphs G with degree sequence (1, 1, 3, 3, 3, 4, 6, 7).
Solution: G is non-directed, therefore G permits self-loops in it. It be drawn as shown in Fig. 8.32.
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Fig. 8.32

Example 11: Show that every cubic graph has even number of vertices.
Solution: Let G be a cubic graph with p vertices.

The deg ( ) 3iv p=∑ ... (i)

L.H.S. of (i) is even, therefore R.H.S. i.e., 3p is even hence p is even.

Example 12: If G = (V, E) is a (p, q) graph then show that 
2

.
q

p
δ ≤ ≤ Δ

Solution: Let V = {v1, v2, ..., vp} then we have deg ( )ivδ ≤ ≤ Δ

or
1

deg ( )δ
=

≤ ≤ Δ∑
p

i
i

p v p

or 2δ ≤ ≤ Δp q p

Hence
2δ ≤ ≤ Δq

p
Example 13: Suppose G is a non-directed graph with 12 edges. If G has 6 vertices each of degree 3
and the rest have degree less than 3, what is the minimum number of vertices G can have?
Solution: Number of edges in G = 12

Hence deg( )iv∑  = 2 |E| = 2 × 12 = 24

we have 6 vertices of degree 3. Let n denote the number of vertices each of whose degree is less than 3.

Then deg( )iv∑  < 6.3 + 3x

or  24 < 18 + 3x

or  3x > 6
or   x > 2

The least positive integer for which the inequality x > 2 holds is x = 3.
Hence, the minimum number of vertices G can have is 3 + 6 = 9.
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Example 14: A non-directed graph G has 8 edges. Find the number of vertices, if the degree of each
vertex is 2.
Solution: Given |E| = 8

We have

1

deg( )i
i

v
=
∑  = 2 |E|

i.e., 2 |V| = 2 × 8
or |V| = 8

Thus number of vertices in G = 8

Example 15: Show that a simple graph of order 4 and size 7 does not exist.

Solution: Let G be a group with order 4 and size 7, we have | | 4V n= = and | |E =  number of edges =

7 Maximum number of edges in G

1
( 1)

2
n n= −

1
4(4 1)

2
= −

6=

Maximum number of edges, G can have is 6
It is given that number of edges in G is 7

| | 7 6E = >
which is contradiction

Hence, G cannot exist
i.e., there cannot be a Simple graph with order 4 and size 7.
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1. Define:
(a) Graph
(b) Self-loop
(c) Digraph
(d) Multigraph
(e) Pseudo graph
(f) Order of a graph
(g) Size of a graph

Give examples.
2. Draw a diagram for each of the following graphs:

(a) V = {(a, d), (a, f), (b, c), (b, f), (c, e)}
(b) V = {v1, v2, v3, v4, v5), E = {(v1, v1), (v2, v3), (v2, 4v), (v4, v5)}
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(c) V = {a, b, c, d, e}, E = {(a, a), ... (a, b), (b, c), (c, d), (c, e), (d, e)}
(d) V = {a, b, c, d}, E = {(a, a), (a, b), (b, c), (c, c), (c, d), (d, a)}

3. Describe the graph G, given below:

4. (a) Give two example for a regular graph of degree 1.
(b) Give two examples for a regular graph of degree 2.

5. Draw a simple graph of
(i) Two vertices.

(ii) Four vertices.
6. Draw the graphs of the following chemical compounds:

(a) CH4 (b) C2 H6

7. Find the indegree and the outdegree of each vertex in the graph G:

8. Find the order and size of the graph G:
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9. Show that the maximum number of edges in a simple graph with n vertices is 
( 1)

.
2

n n −

10. Nine members of a club meet each day for lunch at a round table. They decide to sit such that
every member has different neighbours at each lunch. How many days can this arrangement
last?

11. Show that every cubic graph has an even number of vertices (points).
12. Show that in any group of two or more people, there are always two with exactly the same

number of friends inside the group.
13. Construct a cubic graph on 10 vertices. Draw three different representations.
14. Give an example of a 3-regular graph (cubic graph) on 6 vertices.

15. Show that the size of m-regular (p, q) graph is .
2

P m⋅

16. Suppose you are married and you and your husband visited a party with 3 other married couples
no. one shakes hands with himself or his wife. How many hands you have shaken and how many
did your husband shake? Give limits.

17. What is the largest number of vertices in a graph with 35 edges, if all vertices are degree atleast
3?

18. Show that there exists a 4-regular graph on 6 vertices. Construct a graph as an example.
19. Let G be a (p, q) graph all of whose points have degree or k + 1. If G has k > 0 points of degree

k, show that t = p (k + 1) – 2q.
20. Is there a simple with the degree sequence:

(i) (1, 1, 3, 4, 6, 7)
(ii) (1, 2, 3, 3, 3, 4, 6, 7)

(iii) (1, 1, 2, 3)
(iv) (2, 3, 3, 4, 5, 6)
(v) (2, 2, 4, 8)

(vi) (6, 6, 6, 6, 4, 3, 3, 0)
(vii) (6, 6, 5, 4, 3, 3, 1)

21. Which of the following sequences are graphical? Construct a group in possible cases.
(i) 6, 5, 5, 4, 3, 3, 2, 2, 2

(ii) 5, 5, 4, 4, 3, 2, 2, 1, 1
(iii) 7, 6, 5, 4, 4, 3, 2, 1
(iv) 4, 4, 4, 4, 3, 3
(v) 3, 3, 3, 3, 3, 3, 3, 3

22. A graph G has 21 edges, 3 vertices of degree 4 and other vertices are of degree 3. Find the
number of vertices in G.

23. Show that there is no graph with the sequence (1, 1, 3, 3, 3, 4, 6, 7).
24. Find the indegree and out degree of each vertex of G.
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Answers:
7. Vertex: v1 v2 v3 v4 v5 v6 v7

Indegree: 0 2 2 4 1 1 2

Outdegree: 4 1 0 0 3 3 1

8. Order of G = 6

Size of G = 10

10. 4 days

13.

14.
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15. 0 and 36

16. 23

17. 11

20. (i) to (vii) – No

21. (i) Yes (ii) No (iii) No (iv) Yes (v) Yes

22. 13
24. Vertex: v1 v2 v3 v4 v5

Indegree: 1 1 4 3 1
Outdegree: 2 3 1 2 2
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In a graph G two edges are said to be in series if they have exactly one vertex in common.
In Fig. 8.33, the edges e1 and e2 are in series. v1 is the common vertex. The edges e3 and e5 are in

series.

Fig. 8.33
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In a graph G, if there is an edge e incident from the vertex u to the vertex v or incident on u and v, then
the vertices u and v are said to be adjacent.

In the graph of Fig. 8.34 (i) The vertices v1 and v2 are adjacent.
Two non-parallel edges in a graph G, are said to be adjacent, if they are incident on the same vertex.
In the graph of Fig. 8.34 (ii) The edges e1 and e2 are adjacent.

(i) (ii)

Fig. 8.34
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A graph can be represented by a matrix. There are two ways of representing a graph by a matrix; namely
(i) Adjacent matrix and (ii) Incidence Matrix.
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Definition 8.23: Let G be a graph with n vertices and no parallel edges. The adjacency matrix of G in
a n × n symmetric binary matrix A(G) = [aij]nxn where

aij = 1 if vi and vj in G are adjacent
aij = 0 if vi and vj in G are adjacent

where vi and vj are vertices of G .

The adjacency matrix A(G) of a graph G with n vertices is (i) Symmetric (ii) The principal diagonal
entries are all 0’s if and only if G has no self-loops and (iii) ith row sum and ith column of A(G) is the
degree of vi.
Example 1: The adjacency matrix of the simple graph G shown in Fig. 8.35 (i) is given in 8.35 (ii):

(i) (ii)

Fig. 8.35

Example 2: The adjacency matrix of the graph G, shown Fig. 8.36 (a) is given in 8.36 (b):

(a) (b)

Fig. 8.36
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Definition 8.24: Let G be a digraph with n vertices, containing non-parallel edges. The adjacency
matrix A(G) of the digraph G is an n × n matrix defined by

a

b d

c

e

a b c d e

0a 1 0 1 0

1b 0 0 1 1

0c 0 0 1 1

1d 1 1 0 1

0e 1 1 1 0

G: Adjacency matrix ; A (G) =x

Aditya
Highlight
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v1

v2

v3

v4

A(G) = [aij]nxn

Where aij = 1 if there is an edge directed from vi to vj

= 0 otherwise.

Example 1: Consider the digraph shown in Fig. 8.37 (a)
The Adjacency matrix is given in 9.37 (b):

(a) (b)

Fig. 8.37

The adjacency matrix of a graph is also called the connection matrix. It has different names in
different disciplines.

In the adjacency matrix of a graph, every non-zero element on diagonal represents a self-loop at the
corresponding matrix. We can find the adjacency matrices of multigraph; but we avoid parallel edges in
the definition of A (G).

Example 2: Find the adjacency matrix or the graph shown in Fig. 8.38.
Solution: The adjacency matrix A (G) of the given multigraph is:

1 3 1 0 0

3 0 0 1 1
( )

0 1 0 2 2

0 1 1 2 0

A G

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

Fig. 8.38
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Definition 8.25: Let G be a graph with n vertices and m edges. The incidence matrix denoted by X (G)
is defined as the matrix X (G) is defined as the matrix

X (G) = [xij]nxn

Where xij = 1, if jth edge ej is incident on ith vertex vi, and
= 0, otherwise

X (G) is an n by m matrix whose n rows correspond to the n vertices, and m columns correspond to
m edges. A graph and its incidence matrix are shown in Fig. 8.39:

Fig. 8.39 Graph and its incidence matrix

The incidence matrix contains only two elements 0 and 1. Each column in the incidence matrix of a
graph has exactly two 1’s appearing in that column. The sum of 1’s in each row represents the degree of
a vertex corresponding to the row. A row with all 0’s in the incidence matrix represents an isolated
vertex. Two identical columns in an incidence matrix correspond to parallel edges in the graphs G.

���1 (��?�
���2���������	��"	���
;�����<����������$

There are two ways of maintaining a given graph G in the memory of a computer; namely
(i) Sequential representation of G

and (ii) Linked representation of G.
Sequential representation of a graph in the memory of a computer uses the Adjacency matrix A (G)

of G. This type of representation has a number of major draw backs. Hence linked representation, also
called the Adjacency structure, is described below by means of an example.

Consider the graph G shown in Fig. 8.40 (a)

(a) (b)

Fig. 8.40
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The graph G may equivalently defined by the table in 8.40 (b). Which shows that each vertex in a
followed by its list of adjacent vertices. Here the symbol φ  is used to denote the empty list. The table
may also be presented in the form shown below:

G = [A: B, D; B: A, C, D; C: B, E; D: A, B; E: C; F: ]∅
Where a colon “:” seperates a vertex from its list of adjacent vertices and a semicolon “;” seperates

the different lists. The linked representation of a graph G, maintains G in the memory by using its
adjacency lists and will contain two files namely (i) Vertex file and (ii) Edge file. The vertex file will
contain the list of vertices of G, usually maintained by a linked list and the edge file will contain all the
edges of G. Each record of the edge file will correspond to a vertex in an adjacency list and hence,
indirectly to an edge of the graph G.

Example 1: Suppose a graph G is presented by the following table:
G = [A: D; B: C; C: E; D: B, D, E; E: A]

Draw the graph also find the number of vertices and edges in G.
Solution: The graph of G can drawn as shown in Fig. 8.41.

Fig. 8.41

Number of vertices in G = 5
Number of edges in G = 6

���� �7���<�(��*����:

Definition 8.26: Let G be a graph whose edges are labeled. The cycle matrix C = [Cij] of the graph G
has a row for each cycle and a column for each edge with

Cij = 1 , if the cith cycle contains edge ej

      = 0, otherwise

Example: Consider the graph shown in the figure given below

Fig. 8.42
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The cycles in the graph are
z1 = {e1, e2, e3}

      z2 = {e2, e4, e5, e6}
 z3 = {e6, e7, e8}

            z4 = {e1, e3, e4, e5, e6}
            z5 = {e2, e4, e5, e7, e8}

                  z6 = {e1, e3, e4, e5, e7, e8}
The cycle matrix of G is:

1 2 3 4 5 6 7 8

1

2

3

4

5

6

1 1 1 0 0 0 0 0

0 1 0 1 1 1 0 0

0 0 0 0 0 1 1 1

1 0 1 1 1 1 0 0

0 1 0 1 1 0 1 1

1 0 1 1 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

e e e e e e e e
z

z

z

z

z

z

��� 2��7�*����:

Definition 8.27: Let G be a connected graph. Let u and v be any vertices of G. If P1, P2, …, Pr, 1,≥r

denote distinct paths from u to v in G, then the path matrix

P(u, v) = [pij] is defined as follows

   Pij = 1, if jth edge lies in a ith path

        = 0, otherwise

Example: Consider the graph G, given below:

Fig. 8.43

The distinct paths in the graph G between the vertices u and v are:
P1 : u – b – d –v

P2 : u – c – d – v
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     P3 : u – c – a – d – v
P4 : u – a – d – v

      P5 : u – a – c – d – v

1

2

3

4

5

0 1 0 0 0 0 1 0 1

0 0 1 0 0 0 0 1 1

0 0 1 0 1 1 0 0 1

1 0 0 0 0 1 0 0 1

1 0 0 0 1 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ua ub uc ue ac ad bd cd dv
p

p

p

p

p

The path matrix of a tree is a row matrix.

�:��� � � � ���

I. Find the Adjacency Matrix A (G) of the following graphs:

(a)

(b)

(c)
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(d)

(e)

(f)

(g)
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II. Write the incidence matrix for the graph G.

(i)

(ii)

(iii)

(iv)
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(v)

III. Draw the graph G, corresponding to each Adjacency matrix.

(a)

0 1 0 1 0

1 0 0 1 1

0 0 0 1 1

1 1 1 0 1

0 1 1 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

(b)

1 0 0 1

0 0 2 1

0 2 0 0

1 1 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

(c)

0 1 1 1 0

1 0 0 1 0

1 0 0 1 1

1 1 1 0 1

0 0 1 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

(d)

1 1 1 2

1 0 0 0

1 0 0 2

2 0 2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

IV. Draw the digraph of the incidence matrix.

(a)

0 1 0 1 0

0 0 2 0 0

( ) 0 0 0 0 0

1 0 1 0 1

0 0 1 1 0

X G

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

(b)

0 0 0 1 0 1 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1

1 1 1 0 1 0 0 0

0 0 1 1 0 0 1 0

1 1 0 0 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

V. The adjacency structure of a graph G is given as
G = [A: B, E; B: A, E, F, G; C: D, G, H; D: C, H; E: A, B; F: G; G: B, C, F; H: C, D]

Answers Exercise 8.2:
I.

(a)

0 2 0 1

0 0 1 1
( )

2 1 1 0

0 0 1 1

A G

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

(b)

0 0 0 1

1 0 1 1
( )

1 0 0 1

1 0 1 0

A G

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠
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(c)

0 1 2 0

1 0 1 1
( )

2 1 0 0

0 1 0 0

A G

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

(d)

1 1 1 2

1 0 0 0
( )

1 0 0 2

2 0 2 2

A G

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

(e)

0 1 1 1 1

1 0 1 0 0

( ) 1 1 0 1 1

1 0 1 0 1

1 0 1 1 0

A G

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

(f)

0 0 1 0 1

0 1 0 1 1

1 0 0 1 0

0 1 1 0 2

1 1 0 2 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

(g)

0 1 0 1 0

1 0 1 0 1

( ) 0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

A G

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

II.

(i)

1 1 1 0 1 0 0 0

1 0 0 1 0 0 0 0

0 0 1 1 0 0 1 1

0 0 0 0 1 1 0 1

0 1 0 0 0 1 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

(ii)

1 1 0 0 0 0 0 0

0 0 1 1 1 0 0 0

1 0 0 0 0 1 0 0

0 0 0 0 1 1 1 1

0 1 0 1 0 0 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

(iii)

1 0 0 0 0 0 1

1 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 0 1 1 1

0 0 0 1 0 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

(iv)

1 0 1 0 0 0

0 1 1 0 0 0

1 1 0 0 0 0

0 0 0 1 0 1

0 0 0 1 1 0

0 0 0 0 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠
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(v)

1 0 1 1 1 0

0 1 1 0 0 0

0 0 0 0 1 0

1 1 0 0 0 1

0 0 0 1 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

III.

(a)

(b)

(c)
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(d )

IV.

(a)

(b)

V.

���! 0�(?�@�2��7����
���������

Definition 8.28: A walk in a graph is defined as a finite alternating sequences of vertices and edges v0,
e1, v1, e2, v2, e3, ..., vn – 1, en, vn, beginning and ending with points (vertices) in which each edge is incident
with two points immediately proceeding and following it.
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A walk in a graph is denoted by w.
The walk v0, e1, v1, e2, ..., vn – 1, en, vn, may be written as v0–v1–v2 ...,

–vn –1, – vn, and is called v0 – vn walk. The vertices v0 and vn with which the walk begins and ends are
called the initial and the terminal vertices (i.e., v0 is called initial vertex vn is called the terminal vertex).
If , v0 ≠ vn then the walk is called an open walk. v0 = vn then the walk is called a closed walk. A walk is
also called a chain.
Definition 8.29: A walk in a graph; in which no edge is repeated is called a trail.
Definition 8.30: A closed trail is called tour in a graph G.
Definition 8.31: The number of edges in walk is called the length of the walk.
Example 1:

Fig. 8.44

Consider the graph G in Fig. 8.42
W1: v1 e1 v2 e2 v3 e3 v4 e4 v5; is called a walk

The length of the walk is 4.
Since the edges are not repeated the walk w, is a trail.

W2: v2 e2 v3 e3 v4 e5 v2; is called a closed walk
No edge in W2 is repeated therefore W2 is closed trail, hence a tour.

Definition 8.32: Let G be a non-directed graph. A sequence P of zero or more edges of the form
{v0, v1},{v1, v2}, {v2, v3}, ..., {vn – 1, vn}, where v0, v1, v2 ..., vn, are the vertices of G is called a path in G.
It is denoted by P.

The vertex v0 is called the initial vertex and the vertex vn is called the terminal vertex of the path P.
The path P can also be written as v0 – v1 – v2 – ... – vn, is called v0 – vn path.

If v0 ≠ vn the path P is called an open path and if v0 = vn, the path P is called a closed path.

The number of occurrences of edges in a path P is called the length of the path.

Note:

(i) A path in a graph is an open walk which no vertex (and no edge) appears more than once.

(ii) The terminal vertices of an open path are of degree one.

(iii) If P is a path in G = (V, E), then ( ) ( )⊆V P V G  and ( ) ( )⊆E P E G  also 1 ≤ |V (P)| ≤  |E (P)| ≤ n.

(iv) Any v0 – vn contains a v0 – vn path.

Definition 8.33: If all the edges and vertices in a path P are distinct except possibly the end points
then the path P is called a simple path.

If P is an open simple path of length n then P has (n + 1) distinct vertices, and if P is a closed path
of length n, then P has n distinct vertices and n distinct edges.
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Definition 8.34: A closed walk in which no vertex (except its terminal vertices) appear more than
once is called a circuit.

A circuit in a graph is a closed non-intersecting walk in which every vertex is of degree two (see
Fig. 8.45). A circuit with no other repeated vertices except its end points is called a cycle. The terms a
circuit and cycle or synonymous.

In the Fig. 8.46 (a) v3 – v4 – v5 – v3 is a cycle and in the Fig. 8.46 (b), v1 – v2 – v4 – v5 – v1 is a cycle.

Fig. 8.45

Fig. 8.46

Theorem 8.3: In a graph G, any v0 – vn walk contains a path.
Proof: We prove the theorem by induction on the length of the walk.

If the length of the v0 – vn path 0 or 1, then the walk is obviously a path.
Now, let us assume that the result holds for all walks of length less than n.

Let v0, v1, v2, ... vn be a walk of length n. If all the vertices vi ; 1 ≤ i ≤  n are distinct then the walk is
a path, if not there exists i and j such that vi = vj for some i, j such that ; 1 ≤ i ≤ j ≤ n.

Now the walk v0 – v1 – v2 – ... vi, vj + r, ... vn is a v0 – vn walk, whose length is less then n, which by
induction hypothesis contains a v0 – vn path.

Theorem 8.4: If ( ) ;G Kδ ≥  then graph G has a path of length k.

Proof: Let v1 be an arbitrary vertex in G, choose a vertex say v2, which is adjacent to v1. Since ( ) ,G Kδ ≥
there exist atleast k – 1 vertices other them v1, which are adjacent to v2. Choose another vertex 3 1v v≠
such that v3 is adjacent to v2. In this may we can find vertices v4, v5, v6, ... vi, where 1 ( ).i Gδ≤ ≤  Having
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chosen the vertices v1, v2, ... vi, where 1 ( ).i Gδ≤ ≤  We can find another vertex vi + 1 which is different
from the vertices v1, v2, ... vi, such that vi + 1 is adjacent to vi. Proceeding in this way. We can find a path
of length k in G.

We now state the following theorem without proof:

Theorem 8.5: A closed walk of odd length in a graph G contains a cycle.

���% ������27�

Definition 8.35: Let G and H be two graphs. H is called a subgraph of G if V (H) is a subset of V (G)
and E (H) is a subset of E (G).

If H is a subgraph of G then
(i) All the vertices of H are in G.

(ii) All the edges of H are in G.
 (iii) Each edge of H has the same end points in H as in G.

Example 1: In Fig. 8.47 the graph H is a subgraph of G.

Fig. 8.47

Example 2: In Fig. 8.48 H is a subgraph of G.

Fig. 8.48 Subgraph

���%�� �������#��+6#����

Defintintion 8.36: A subgraph H of a graph G is called a spanning subgraph of G if V (H) = V (G): i.e.,
H contains all the vertices of G.

In the graphs shown in Fig. 8.49 H is a spanning subgraph of G.
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Fig. 8.49 Spanning subgraph

Two subgraphs H1 and H2 of a graph G are said to vertex disjoint if 1 2( ) ( ) .V H V H∩ = ∅

���%� � #��
�3=������+6#����

Definition 8.37: Two subgraphs H1 and H2 of a graph G are said to be edge disjoint subgraphs of G if
H1 and H2 do not share any edges in common.

���) ��*	4�(�	��4����������
��
������	*������27

Definition 8.38: The removal of a vertex vi from a graph G results in a subgraph of G; consisting of all
points of G except vi and all edges of G not incident with vi. The obtained is denoted by G–vi and is the
maximal subgraph of G not containing vi (Fig. 8.50 (a)).

The removal of an edge ej from a graph results in the spanning subgraph of G which containing all
the edges of a G except the edge ej. It is denoted by G – ej and is the maximal subgraph of G not
containing ej. (Fig. 8.50 (b)).

Fig. 8.50 (a) Graph minus a vertex v1

Fig. 8.50 (b) Graph minus edge e

G: v5 v2

v4

v1

v3

v5 v2

v4 v3

G:

e
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���, �

���	��	����4����:

Definition 8.39: Let G be a graph and v be a vertex which is not in G then the graph obtained by
joining v with each vertex of G, is the sum graph G + K1. It is denoted by G + v (see Fig. 8.51).

Fig. 8.51

���. 	2�����	���	�����27�

���.�� �������'������3

Definition 8.40: Let G = (V1, E1) and G2 = (V2, E2) be two graphs whose vertex sets v1 and v2 are

disjoint. Then the union of G1 and G2 denoted by 1 2G G∪  is defined as the graph G = (V, E) such that

(i) V (G) = V (G1) ∪ V (G2) = 1 2V V∪

(ii) E (G) = E (G1) ∪ E (G2) = 1 2E E∪

Example 1: If
G1 is the graph

and G2 is the graph

then 1 2G G∪

Fig. 8.52

���.� �+-��'��A�������3

Definition 8.41: Let G1 = (V1, E1) and G2 = (V2, V2) denote two vertex disjoint graphs. Then the sum

of G1 and G2 denoted by G1 + G2 is defined as 1 2G G∪  together with all the edges joining vertices of V1

to vertices of V2.
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Example: If

G1 is the graph and G2 is the graph

then G1 + G2 is the graph given below:

Fig. 8.53 Sum of two graphs

���.�! �����3��������'������3

Definition 8.42: Let G1 and G2 be two graphs. Then the intersection of G1 and G2 denoted by 1 2G G∩
is defined as the graph G such that

(i) V (G) = V (G1) ∩ V (G2).
(ii) E (G) = E (G1) ∩ E (G2).

Example:
Let

then 1 2G G∩  is the graph

Fig. 8.54 Intersection of two graphs
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���.�% 2�� +����'��A�������3

Definition 8.43: Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with 1 2 .V V∩ = ∅  Then the

product of G1 and G2 denoted by G1 × G2 is the graph having V = V1 × V2 and u = {u1, u2} and V = {u1.
u2} are adjacent if
u1 = v1 and u2 is adjacent to V2 is G2 or u, is adjacent to V1 and G1 and u2 = v2.

Example: If

G1 is the graph and G2 is the graph

then G1 × G2 is the graph given below:

Fig. 8.55

���.�) ��-��3������"(�5���#�������2�� +���$��'����A�����

Definition 8.44: Let G1 and G2 be two graphs. The composition of G1 and G2 denoted by G1[G2] is a

graph G = G1[G2] such that

(i) V (G) = 1 2{( , ): ( ), ( )}u v u v G u V G∈ ∈

(ii) E (G) = 1 1 2 2{{( , ), ( , )} :u v u u  either 1 2 ( )u u E G∈  or 1 2u u=  and 1 2 2( )}v v E G∈

Example:

Let G1: and G2:

then G = G1[G2] is the graph
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Fig. 8.56

Now we state the following theorem without proof:

Theorem 8.6: Let G1 be a (p, q) graph and G2 be (p2, q2) graph then:

(i) 1 2G G∪  is (p1 + p2, q1 + q2) graph

(ii) G1 + G2 is a (p1 + p2, q1 + q2 + p1 p2) graph
(iii) G1 × G2 is a (p1 p2, q1, p2 + q2 p1) graph

and (iv) G1[G2] is a (p1, p2, p1, q2 + p2
2, q1) graph

The proof is left to the reader as an exercise.

���� �	*2(�*����	�������27

Definition 8.45: Let G be a graph with n vertices then Kn – G is called the complement of G. It is
denoted by .G

A graph and its complement are shown in Fig. 8.57.

(a) Graph G (b) Complement G  of G

Fig. 8.57 A graph and its complement

������ ��-�&�-�����'����+6#����

Definition 8.46: Let G be a graph and H be a subgraph of G. The complement H in G is the graph

obtained by deleting the edges of H from those of G.
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The complement of H in G is denoted by H  (or H  (G)). In Fig. 8.58 (a) G is a given graph, and in
Fig. 8.58 (b): H is a subgraph of G. The complement of H in G is shown in Fig. 8.58 (c).

(a) (b) (c)

Fig. 8.58 Complement of a subgraph

���/ �	������
����27

A graph G is said to be connected if every pair of points in G are joined by a path. If G is not connected
then G is called a disconnected graph.

A maximal connected subgraph of G is called a component of G. If G is disconnected then G has
atleast two components.

Fig. 8.59 A connected graph

Clearly a graph G is connected iff it has exactly one component.

Theorem 8.7: If G is a graph with n with points and 1
( )

2

n
Gδ −≥  then G is connected.

Proof: Let assume that G is not connected. Then G has more than one component. Consider any
component G1 = (V1, E1) of G.

Let 1 2v v∈  since 
1

( )
2

n
Gδ −≥  there exist atleast 

1

2

n −
 points in G1 which are adjacent to v1 in G1.

Then we have 1
| | 1

2

n
V

−≥ +

or
1

| |
2

n
V

+≥

Thus each component of G has atleast 
1

2

n +
 points and G has least two components.

Hence the number of points (vertices) in ( 1)
2

2

n
G

+≥  i.e., |V(G)| ≥  (n + 1) which is a contradiction.

Thus G is connected.
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��1 2������	��

Definition 8.47: Let G = (V, E) be a graph. A partition of the vertex set V(G) is a collection 1{ }i iV α≤ ≤

of non-empty subsets of V such that

(i) 1 2 3 ... , ( 1)V V V V Vα α∪ ∪ ∪ ∪ = ≠

and (ii) wheneveri jV V i j∩ = ∅ ≠

A partition of the edge set E(G) is a collection {Ei} of non-empty subsets of E such that 1 .i β≤ ≤

(i) 1 2 3 ... , ( 1)E E E E Eβ β∪ ∪ ∪ ∪ = ≠

(ii) wheneveri jE E i j∩ = ∅ ≠
The partition of the edge set E is also called edge decomposition of G.

Example: Consider the graph shown in Fig. 8.60.

Fig. 8.60

V1 = {a, b, c}, V2 = {d, e, f, g}, V3 = {h, i} is a vertex partition of the vertex set V (G).
and E1 = {(a, c), (c, b)}, E2 = {(c, d), (d, e), (e, f)} E3 = {(e, g)}, E4 = {(g, h)}, E5 = {(g, i)}is an edge
decomposition of G.

Theorem 8.8: A graph G is connected if and only if for any partition of V into subsets V1 and V2 there
is an edge joining a vertex of V1 to a vertex of V2.

Proof: Let G be a connected graph and 1 2V V V= ∪  be a partition of V into two subsets.

Let 1u V∈  and 2 .v V∈  Since the graph G is connected there exists a u – v path in G say u = v0, v1,

v2, ... vn = v. Let i be the least positive integer such that 2.iv v∈  Then 1 1iv V− ∈  and the vertices 1,i iv v−

are adjacent. Thus there is an edge joining 1 1iv V− ∈  and 2 .iv V∈
Conversely
Let G be a disconnected graph.
Then G contains atleast two components.
Let V1 be the set of all vertices of one component and V2 be the set of remaining vertices of G.

clearly 1 2V V V∪ =  and 1 2 .V V∩ = ∅
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The collection {V1, V2} is a partition of V and there is no edge joining any vertex of V1 to any vertex
of V2.

Hence the theorem.

Theorem 8.9: If G is a simple graph with n vertices and k components; then G can have at most
(n – k) (n + k + 1)/2 edges.
Proof: Let G be a simple graph with n vertices and G1, G2, G3, ... Gk be the k components of G. Let the
number of vertices in ith component Gi be ni.

Then
| V(G1) | + | V(G2) | + ... + | V(Gk) | = n1 + n2 + ... + nk = | V(G) | = n where ni > 1

and max 
( 1)

| ( )|
2

i i
i

n n
E G

−≤

∴
1

| ( ) | | ( )|
=

≤ ∑
k

i
i

E G max E G

1

( 1)

2

k
i i

i

n n

=

−= ∑

2

1 1

1

2

k k

i i
i i

n n
= =

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑

2

1

1

2

k

i
i

n n
=

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑

i.e., ( ) 2

1

1
| |

2 =

⎡ ⎤
≤ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑

k

i
i

E G n n ... (1)

Now

1

( 1)
k

i
i

n
=

−∑  = (n1 – 1) + (n2 – 1) + ... + (nk – 1)

= (n1 + n2 + ... + nk) – (1 +1 + ... k times)

= n – k

squaring on both sides
2

1

( 1)
k

i
i

n
=

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦
∑  = (n – k)2 = n2 + k2 – 2nk

or 2

1

( 1)
=

−∑
k

i
i

n  + 2 (non-negative terms) = n2 + k2 – 2nk

or 2

1

( 1)
=

−∑
k

i
i

n  = n2 + k2 – 2nk – 2 (non-negative terms)
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or
2 2 2

1

( 1) 2
=

− ≤ + −∑
k

i
i

n n k nk

or
2 2 2

1 1 1

1 2 2
= = =

+ − ≤ + −∑ ∑ ∑
k k k

i i
i i i

n n n k n k

or
2 2 2

1

2 2
=

+ − ≤ + −∑
k

i
i

n k n n k n k

or
2 2 2

1=

− ≤ − + − + −∑
k

i
i

n n n nk n nk k k

= n (n – k + 1) – k (n – k + 1)

= (n – k) (n – k + 1)

i.e.,
2

1

( ) ( 1)
k

i
i

n n n k n k
=

− ≤ − − +∑ ... (2)

from (1) and (2), we get

|E(G)| ≤  (n – k) (n – k + 1)/2

Hence proved

Corollary: If
1

( – 1) ( – 2),
2

>m n n  then a simple graph with n vertices and m edges are connected.

Proof: Let G be a simple graph with n vertices and m edges.
Let us assume that G is disconnected. Then we have

1
( – 1) ( – 2)

2
>m n n

Since G is a disconnected graph, G has at least two components. Therefore for 2,≥k  we have

1
( – ) ( – 1)

2
≤ +m n k n k

Hence
1

( – 2) ( – 1)
2

≤m n n

Contradicting our assumption that

1
( – 1) ( – 2)

2
>m n n

Therefore graph G is a connected graph.
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Theorem 8.10: If G is not connected then G  is connected.
Proof: Let G be disconnected graph. Then G has more than one component.

Let u, v be any two vertices of G. The theorem is proved if we show that there is a u – v path in .G

If u,v are in different components of G, then u,v are not adjacent in G. Hence, they are adjacent in .G
If u, v are in the square components of G. Choose a vertex w in a different component of G. Then

u – w – v is a u – v path in .G  Hence G  is connected.

��� �<�(�����27

Definition 8.48: A cycle graph of order n is a connected graph whose edges form a cycle of length n.
Cycle graph of order n is denoted by cn. The graph shown in Fig. 8.61 is a cycle graph of order 5.

Fig. 8.61 Cycle graph of order 5 (c5)

�� 2��7����27

Definition 8.49: Let G be a cycle graph order n. The graph obtained by removing an edge from G is
called a path graph of order n. It is denoted by Pn.

The graph shown in Fig. 8.62 is a path graph order 5.

Fig. 8.62 Path graph of order 5 (P5)

��! 07��(����27

Definition 8.50: Let G be a cycle graph order (n – 1). The graph obtained by joining a single new
vertex v to each vertex of G is called a wheel graph of order n.

A wheel graph of order n is denoted by wn. The new vertex v is called the “hub”. The graph shown
in Fig. 8.63 is a wheel graph.

Fig. 8.63 Wheel graph (W6)
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Theorem 8.11: If G is a graph with 6 points then G or G  contains a triangle.

Proof: Let G = (V, E) be a graph with 6 points and .v V∈  The vertex v is adjacent either in G or in G
to the other five points of G. Let us assume u1, u2 and u3 are three adjacent vertices of v in G. If any two
of these vertices are adjacent then the 2 adjacent vertices and v form a triangle. If no two of the points u1,

u2, u3 are adjacent in G. Then they are adjacent in G and form a triangle in .G

��% ��2����������27

There are a number of special classes of graph. One example is the bipartite graph. We now introduce,
few more graphs which are important.
Definition 8.51: A graph G is called a bipartite graph if its vertex set V can be partitioned into two
disjoint subsets A and B such that every edge in G, joins a vertex in A to a vertex in B. The graph shown
in Fig. 8.64 is a bipartite graph.

Fig. 8.64 Bipartite graph

A bipartite graph can have no self-loop.

��%�� ��-�&�������������������

Definition 8.52: A bipartite graph G in which every vertex of A is adjacent to every vertex in B is
called a complete bipartite graph. Where A and B are partitioned subsets of the vertex V of G.

If |A| = m and |B| = n, then the complete bipartite graph is denoted by km, n and has m n lines. The
graphs in Fig. 8.65 are complete bipartite.

(a) (b)

Fig. 8.65 Complete Bipartite graphs

��%� ����������

Definition 8.53: A complete bipartite graph k1, n is called a star graph (see Fig. 8.66).
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Fig. 8.66 Star graph (k1, 6)

��) �	(4�
��:�*2(��

Example 1: Draw the complement of the graphs G shown in Fig. 8.67.

Fig. 8.67

Solution: The complement of G is shown in Fig. 8.68:

Fig. 8.68 Complement of G

Example 2: Draw simple unlabeled graphs of 3 vertices.
Solution: The graphs shown in Fig. 8.69 are simple graphs with three vertices.

(a) (b) (c)

Fig. 8.69 Simple unlabeled graphs
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Example 3: Find the number of connected graphs with four vertices and draw them.
Solution: There five connected graphs with four vertices (see Fig. 8.70):

(i ) (ii ) (iii ) (iv ) (v )

Fig. 8.70

Example 4: Draw the graph K2, 5

Solution: The graph K2, 5 has 2 × 5 = 10 edges and 7 vertices. It is shown in Fig. 8.71. The partitioned
sets are A = {u1, u2} and B = {v1, v2, v3, v4, v5}.

Fig. 8.71

��, ��	*	�27��*

Definition 8.54: Two graphs G and G′  are isomorphism if there is a function : ( ) ( ),f V G V G′→

from the vertices of G to the vertices of G′  such that

(i) f is one-one,
(ii) f is onto, and

(iii) For each pair of vertices u and v of G, { , } ( )u v E G∈  if and only if { ( ), ( )} ( )f u f v E G′∈  (i.e.,

f-preserves adjacency).

If :f G G′→  is an isomorphism, then G and G′  are said to be isomorphic and if two graphs G and

G′  are isomorphic then there may be several isomorphisms from G to .G′

If two graphs G and G′  are isomorphic and :f G G′→  is an isomorphic then

(i) | ( )| | ( )|V G V G′=

(ii) | ( ) | | ( ) |E G E G′=

(iii) The degree sequences of G and G′  are the same.

 (iv) If v0 – v1 – v2 – ... – vk – 1 – v1 is a cycle of length G,

then f (v0) – f (v1) – f (v2) – ... – f (vk – 1) – f (v1) is a cycle in .G′
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Two graphs G and G′  may have same number of vertices and same degree sequence, but they may
not be isomorphic. The graphs shown in Fig. 8.72 have same degree sequence, send same number of
vertices. But are non-isomorphic.

(a) (b)

Fig. 8.72 Non-isomorphic graphs with same degree sequence

Usually we employ the adjacency matrix to check whether or not the given G and G′  are isomorphic
suppose :f G G′→  is a one-to-one onto function. Let v0 – v1 – v2 – ... – vn be the vertex ordering of G

and f (v0) – f (v1) – f (v2) – ... – f (vn) be the corresponding vertex ordering of G′ . Let A (G) denote the

adjacency matrix for the vertex ordering v0 – v1 – ... – vn of G and ( )A G′  denote the adjacency matrix for

the vertex ordering f (v0) – f (v1) – ... – f (vn) of .G′  If A ( ) ( );G A G′=  then we conclude that the graphs

G and G´ are isomorphic and if ( ) ( )A G A G′≠  then f is not an isomorphism.

Theorem 8.12: Let G = (V, E) and ( , )G V E′ ′ ′=  be any two graphs and :f G G′→  an isomorphism.

If v V∈  then deg ( ) deg ( ).v f v=
Proof: Two points u1 and v1 of v are adjacent in the graph G if and only if f (u1) and f (v1) are adjacent

in .G′  Also f is one-to-one and onto. Therefore the number of vertices which are adjacent to v V∈  is

equal to the number of vertices in v1 which are adjacent to f (v). Hence deg (v) = deg f (v).

Definition 8.55: An isomorphism of a graph G onto itself is called an automorphism of G.

��. �	(4�
��:�*2(��

Example 1: Show the graphs G and G′  shown in Fig. 8.73 are isomorphic.

Fig. 8.73

Solution: Define a mapping :∅  G → G´ such that

∅  (a) → a1

∅  (b) → c1
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∅  (c) → b1

∅  (d) → f 1

∅  (e) → c1

∅  (f) → g1

∅  (g) → d1

clearly the mapping ∅  is one-to-one and onto. ∅  preserves the adjacency.

∅  G G′→  is an isomorphism note that both G and G′  have 7 vertices and 14 edges each. Every

vertex in G and G′  is of degree 4.

Example 2: Show that the graphs G and G′  (in Fig. 8.74) are isomorphic.

(a) (b)

Fig. 8.74

Solution: Consider the map :f G G′→  defined as follows:

f (a) = v1, f (b) = v2, f (c) = v3, f (d) = v4,  f (e) = v5. The adjacency matrix of G for the ordering a,

b, c, d, e and the adjacency matrix of G′  for the ordering.

a → v1, b → v2, c → v3, d → v4, e → v5 is the matrix.

0 1 1 1 0

1 0 1 0 0

1 1 0 1 0

1 0 1 0 1

0 0 0 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

i.e., ( ) ( )A G A G′=

Hence G and G′  are isomorphic.

Example 3: Show that the graph G in Fig. 8.75 has a sub-graph isomorphic to K3, 3. Identify the
sub-graph.
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Fig. 8.75

Solution: Delete the edge {c, f} from G. We get a sub-graph of G whose vertex set can be partitional
into the sets.

A = {a, c, f}, B = {b, d, e} and the sub-graph obtained can be drawn as follows:

Fig. 8.76

Clearly the sub-graph obtained is K3, 3. Hence G has a sub-graph which is isomorphic to K3, 3.

Definition 8.56: A graph G is said to be self-complementary, if G is isomorphic to its complement G
graphs G shown in Fig. 8.77 is self-complementary.

Fig. 8.77 Self-Complementary graph

Example 4: Show that a graph G is self-complementary if it has 4n or 4n + 1 points (n is a non-
negative integer).
Solution: Let G = (V, E) be a self-complementary graph with m points.

Since G is self-complemary, G is isomorphic to .G

We have | E (G) | = | ( )|E G
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or | E (G) | = | ( )|E G  = 
( 1)

2

m m −

or 2 | E (G) | = 
( 1)

2

m m −

i.e., | ( )|E G  = 
( 1)

4

m m −

( 1)

4

m m −
 is an integer and one of m or (m – 1) is odd.

i.e., m or (m – 1) is a multiple of 4.

Hence n is of the form 4n or 4n + 1.

Note: From the above it is clear that; a graph G with n vertices is isomorphic to its complement of n or n – 1) is a

multiple of 4 and number of edges in G = number of edges in 
( 1)

4

n n −

Example 5: Can be graph with seven vertices be isomorphic to its complement.

Solution: We have n = 7

Since n – 1 = 7 – 1 = 6

Neither 7 n or 6 is a multiple of 4.

Hence a graph with 7 vertices cannot be isomorphic to its complement.

Example 6: Show that the graphs shown in Fig. 8.78 are isomorphic.

Fig. 8.78

Solution:

(i) Both the graphs G and G1 have same number of vertices i.e., |V (G)| = |V (G1)| = 6.

(ii) Both the graphs G and G1 have same number of edges i.e., |E (G)| = |E (G1)| = 9.

(iii) The degree sequences of G and G1 are same i.e., ( 3, 3, 3, 3, 3, 3).

But the graphs are not labeled. We label the vertices of the graphs as shown in Fig. 8.79:
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Fig. 8.79

Define a mapping : G G′∅ →  by ( )i iv v′∅ =
The mapping ∅  – preserves adjacency.

Hence G and G′  are isomorphic.

Example 7: Show that graphs G1 and G2 are not isomorphic (Fig. 8.80).

Fig. 8.80

Solution: We have number of vertices in G1 = number of vertices in G2 and number of edges in G1 =
number of edges in G2. In the graph G1, we have a vertex V3 of degree 3.

There are two pendant vertices adjacent to V3 in G1 but in the graph G2, the C which is of degree 3
has only are pendant vertex adjacent to it. Hence adjacency is not preserved in the graphs.

∴ G1 and G2 are not isomorphic.

Example 8: Give an example to show that two graphs of same order and same size need not be
isomorphic.
Solution: Consider the graphs G1 and G2  as  shown in Fig. 8.81.

Fig. 8.81

Both the graphs G1 and G2 have same number of vertices and same number of edges, but adjacency
is not preserved.

The degree sequence of G1 is (1, 1, 1, 3)
The degree sequence of G2 is (1, 1, 2, 2)
Therefore, G1 and G2 are not isomorphic.

G :1

v2

v3 v4 v5 v6

G :2

a b c d e

fv1



GRAPH THEORY 271

�:��� � � � ���!

1. A graph G has 16 edges and each vertex is of degree 2. Find the number of vertices in G.
2. Draw the following graphs:

(a) 2-regular graph
(b) 3-regular graph
(c) K2, 5 (d) K3, 3 (e) N5 (null graph having 5 vertices)
(f) W5 (g) K4 (h) K5

3. A graph G has 35 edges and each vertex of G has degree atleast 3. Show that maximum number
of (Possible) vertices that G can have is 23.

4. Draw the complement of the graph:

5. Show that the graphs G and G1 are isomorphic:

6. Show that the graphs G and G1 have the same degree sequence but are not isomorphic:

7. Show that the following graphs are not isomorphic:
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8. Show that the graphs G and G1 are isomorphic:
(a)

(b)

(c)

(d )

(e)
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9. In the following graphs group those which are isomorphic to each other:
(O.U., MCA, 1991)

(i) (ii)

(iii) (iv)

10. Let Cn be a cycle graph with n vertices. Prove that C5 is the only cycle graph isomorphic to its
complement.

11. Prove that the following three graphs are isomorphic:

12. Show that the following graphs are isomorphic:
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13. Show that every cubic (3-regular) graph has even number of points.
14. Prove that two graphs are isomorphic if and only if their complements are isomorphic.

(O.U., MCA, 1995)
15. G1 and G2 are two isomorphic graphs. Show that G2 is connected if G1 is connected.
16. If a graph of n vertices is isomorphic to its complement how many vertices must it have.
17. Prove that the cycle graph C5 is isomorphic to its complement.
18. Show that the graphs G and G1 are isomorphic.

19. Prove that a simple graph with n vertices must be connected if it has more than 
( 1) ( 2)

2

n n− −

edges.
20. Write down all possible non-isomorphic sub-graphs of the graph G. How many of them are

spanning sub-graphs?

21. Show that maximum number of lines among all p point graphs with no triangle is [P2/4].

22. Define isomorphic graph. Give example. (MKU, 2001)

��� �	����

Definition 8.57: A graph is acyclic if it has no cycles. A forest is an acyclic graph.

Fig. 8.82 A Forest
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Definition 8.58: Let G be a connected graph. If v is a vertex of G such that G – v is not connected then,
the vertex v is called a cut vertex.

Fig. 8.83

If v is a cut vertex of G, then the removal of the vertex v increase the number of components in G.
A cut vertex is also called a cut point.

Theorem 8.13: A vertex v in a connected graph G is a cut vertex if and only if there exist vertices u
and w distinct from v such that every path connecting u and w contains the vertex v.
Proof: Let v be a cut vertex in a connected graph G. Then G – v is disconnected and G – v contains
atleast two components say A and B. Let u be a vertex of A and W be a vertex of B. There is no path in
G –v connecting u and w. Since G is connected there exists a path P from u to w in G. If the path does not
contain v, then the removal of v from G will not disconnect the vertices u and w, which is a contradiction
to the fact that u and v lie is two different components of G – v.

Conversely; if every path from y to w contains the vertex v, then removal of v from the graph G
disconnects u and w. Hence u and w lie in different components of G. Which shows that G – v is a
disconnected graph. Thus v is a cut vertex of G.

��!1 �����
���"���
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Definition 8.59: Let G be a connected graph. If e is an edge of G, such that G-e is not connected, the
edge e is called a cut edge (or bridge). In the graph of Fig. 8.84, the edge e is a cut edge.

Fig. 8.84

��!� �������

Definition 8.60: Let G be a connected graph. A cut set in G is a set of edges whose removal from G
leaves the graph G disconnected provided no proper subset of these edges disconnects the graph G.

Aditya
Highlight
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A cut set in a graph always breaks the graph G into two parts. Every edge in a tree is a cut set, since
the removal of any edge from a tree breaks the tree into two parts. In the graph shown in Fig. 8.85, the
set of edges {a, c, d, f} is a cut set.

Cut sets are of great importance in studying the properties of networks.

Fig. 8.85

��! ��2����(����
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Definition 8.61: A connected graph with at least one cut vertex is called a separable graph.

If G is a separable graph, then G is connected and there exists a subgraph H of G such that H and H
(complement of H in G) have only one vertex in common.
Definition 8.62: A graph G is called a non-separable graph if it is connected, non-trivial and has no
cut points. It is often called a block.

Fig. 8.86 A graph and its blocks

��!! (���(�
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A graph in which each vertex is assigned a unique label is called labeled graph. Labeled graphs are
useful in counting the number of different graphs. The graph G in Fig. 8.87 is a labeled graph.

Fig. 8.87 A Labeled graph

A graph is called a weighted graph is each edge e is assigned a non-negative number w (e) called the
weight of e. The graph G in Fig. 8.88 is a weighted graph.
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Fig. 8.88 A Weighted graph

If G is weighted graph and P is path G, then the weight of the path P is the sum of weights of the
edges in the path.

��!% �	������4��<
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Definition 8.63: Let G be a connected graph. The edge connectivity of G is the minimum number of
lines (edges) whose removal results in a disconnected or a trivial graph.

The edge connectivity of a connected graph G is denoted by ( ).Gλ  If G is a disconnected graph,

then ( )Gλ  = 0. If G connected graph G has a bridge, then the edge connectivity of G is one.

From the definition, edge connectivity is the minimum cardinality of a cut set among all the cut sets
of a connected graph.

��!%� 4����5���������B��>

Definition 8.64: Let G be a connected graph. The minimum number of vertices whose removal results
in a disconnected or trivial graph is called the vertex connectivity of G.

The vertex connectivity of G is denoted by k (G). If k (G) then G has a vertex v such that G – v is not
connected and the vertex v is called a cut vertex or articulation point. If G = Kn the complete graph with
n vertices then k (G) n – 1. The vertex connectivity Cn (cycle graph with n vertices) is two. (for n ≥  4).
If a graph G has a bridge then the vertex connectivity of G, i.e., k (G) = 1.

Theorem 8.14: The edge connectivity of a connected graph G cannot exceed the minimum degree of

G, i.e., ( ) ( ).G Gλ δ≤
Proof: Let G be a connected graph and v be a vertex of minimum degree in G. Then the removal of
edges incident with the vertex v disconnects the vertex v from the graph G. Thus the set of all edges
incident with the vertex v forms a cut set of G. But from the definition, edge connectivity is the edge

connectivity of G cannot exceed the minimum degree of v, i.e., ( ) ( ).G Gλ ≥ Δ

Theorem 8.15: The vertex connectivity of a graph G is always less then or equal to the edge connectivity

of G i.e., ( ) ( ).k G Gλ≤
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Proof: If graph G is disconnected or trivial then ( ) ( ) 0.k G Gλ= =  If G is connected and has a bridge

e, then 1.λ =  In this case K = 1, since either G has a cut point incident with e or G is K2.

∴ ( ) ( )k G Gλ≤  when ( ) 0Gλ =  or 1, finally let us suppose that ( ) 2.Gλ ≥  The G has λ  lines

whose removal disconnects G. Clearly the 1λ −  of these edges produces a graph with a bridge

e = {u, v}. For each of these 1λ −  edges select an incident point which is different from u or v. The

removal of these points (vertices) also removes 1λ −  edges and if the resulting graph is disconnected

then 1 .k λ λ≤ − <  If not the edge e = {u, v} is a bridge and hence the removal of u and v will result in

either a disconnected or a trivial graph. Hence k λ≤  in each case and this completes the proof of the

theorem.

Thus, the vertex connectivity of a graph does not exceed the edge connectivity and edge connectivity
of a graph cannot exceed the minimum degree of G. Hence the theorem given below:

Theorem 8.16: For any graph G, ( ) ( ) ( )k G G Gλ δ≤ ≤

A graph G is n-connected if K (G) ≥  n and n-edge connected if ( ) .G nλ ≥  Thus a non-trivial graph

is 1-connected if and only if is connected and 2-connected if and only it is a block having more than

one edge.

A maximal n-connected sub-graph G is called an n-component of G. Two distinct n-components of
a graph G have at most n – 1 points in common. The graph shown in Fig. 8.89 is a 3-component graph.

Fig. 8.89 A graph with two 3-components

Example 1: G is (p, q), prove that, if G is K-connected then .
2

p k
q ≥

Solution: Let G be K-connected graph.

Then ( )q Gδ≤

We have
1 1

deg ( ) ( )
2 2iq v p Gδ≥ ≥∑

or
2

p k
q ≥
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Example 2: Find the edge connectivity and the vertex connectivity of the graph in Fig. 8.90.

Fig. 8.90

Solution: The minimum number of edges removal disconnects the graph is 3 and the minimum number
of vertices required to disconnect the graph is 1.

∴ Edge connectivity ( )Gλ  = 3

Vertex connectivity k (G) = 1.

��!%�! �����@�����+-'��������� �
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Let G be a graph. The length of the largest simple parts between any two vertices of G is called the girth of
G, while the length of the longest cycle between any two vertices in G is called the circumference of G.
The length of the longest path between any two vertices of a connected graph G is called the diameter of G.

If G is a cycle graph with n vertices (i.e. Cn), then the diameter of G is (n – 1) and the circumference
of G is n.

If G is a complete graph within vertices (i.e. kn), then the circumference of G is n and the diameter
of G is (n–1).

The girth of C3 is 2.

The circumference of C3 is 3 and diameter of C3 is 3/2.

The girth of k4, (complete graph with 4 vertices) is 3.

The circumference of k4 is 4 and the diameter of k4 is 2.

The girth of km, m (complete Bipartite graph) is 2m–1.

The circumference of km, m = 2m if m > 1
= 0 if m = 1

The diameter of km, m = m if m > 1
= 0 if m = 1

Example 1: The girth of k1, 1 is 1
The circumference of k1, 1 = 0
The radius of k1, 1 = 0

Example 2: The Girth of 3, 3 2 3 1 5k = ⋅ − =

The circumference of 3, 3 2 3 6k = ⋅ =

The diameter of 3, 3 3k m= =
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1. Define
(a) The edge connectivity of a connected graph. (MKU, MCA, 2002)
(b) The vertex connectivity of a graph.

2. Prove that there is no 3-connected graph with 7 edges.

3. If a graph G is not connected then show that G  is connected.

4. Let G be a connected graph and v is a point of G, then show that the following are equivalent:

(a) v is a cut point of G.

(b) There exists a partition V – {v} into subsets U and W such that for each u U∈  and w W∈
the points v is on every u – w path.

(c) There exists two points u and w distinct from v such that v is on every v – w path.

5. If e is an edge of a connected graph. Show that the following statements are equal:

(a) e is bridge of G.

(b) There exists a partition of V into two subsets A and B such that for every point u A∈  and
∈w B  the edge e is on every u – w path.

(c) There exist two points, u and w such that the edge e is on every u – w path.

6. Show that every non-trivial connected graph has atleast two points which are not cut points.
7. Find the edge connectivity and vertex connectivity of the graph given below:

8. Prove that the vertex connectivity of a graph G can never exceed the edge connectivity of G.
9. Define a connected graph. (MKU, MCA, May 2002)

��!) ��������
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The concept of a tree is important for these interested in applications of graphs. The important applications
of trees include searching, sorting, syntax checking and database management. The tree is one of the
most non-linear structures used for algorithm development in computer science. In this section, we shall
define a tree and study its properties.

��!)�� ����

Definition 8.65: A tree is a connected graph without any circuits.
From the definition, it is clear that a tree is a connected and a cyclic graph. It has neither self-loops

nor parallel edges and is denoted by the symbol T. Since trees are a cyclic, we adopt a convention
similar to that used for Hasse diagrams. Trees may be directed or non-directed.
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Definition 8.66: A connected, a cyclic, directed graph is called a directed tree.
The graph in Fig. 8.91 (a) is a non-directed tree and graph shown in Fig. 8.91 (b) is a directed tree:

(a) (b)

Fig. 8.91 Tree

If T is a tree, then it has a unique simple non-directed path between each pair of vertices. A tree with
only are vertex is called trivial tree. If T is a not a trivial tree then it is called a non-trivial tree. The vertex
set (i.e., the of nodes) of a tree is a finite set. In most cases the vertices of a tree are labeled.

Theorem 8.17: A simple non-directed graph G is a tree if and only if G is connected and has no cycles.
Proof: Let G be a tree. Then each pair of vertices of G are joined by a unique path, therefore G is
connected. Let u and v be two distinct vertices of G. Such that G contains a cycle containing u and v.
Then u and v are joined by atleast two simple paths, one along one portion of the cycle and the other path
completing the cycle. This contradicts our hypothesis that there is a simple unique path between u and v.
Hence tree has no cycle.

Conversely let G be a connected graph having no cycles. Let v1 and v2 be any pair of vertices of G
and let there be two different simple paths say P1 and P2 from v1 to v2. Then we can find a cycle in G as
follows: Since the paths P1 and P2 are different, there must be a vertex say u, which is on both P1 and P2

but its successor on P1 is not on P2. If u´ is the next point on P1 which is also on P2, the segments of P1

and P2 which are between P1 and P2 form a cycle in G. A contradiction. Hence there is atmost one path
between any two vertices of G, which shows that G is a tree.

Theorem 8.18: Any non-trivial tree has atleast one vertex of degree 1.
Proof: Let G be a non-trivial tree, then G has no circuits. Let v1 be any vertex of G. If deg (V1) = 1,

then the theorem is at once established. Let 1deg ( ) 1v ≠  move along any edge to a vertex V2 incident

with v1. If 2deg ( ) 1v ≠  then continue to another vertex say v3 along a different edge. Continuing the

process, we get a path v1 – v2 – v3 – v4 – ... in which none of the 1
iv s  is repeated. Since the number of

vertices in a graph is finite, the path must end some where. The vertex at which the path ends is of

degree are, since we can enter the vertex but cannot leave the vertex.

Theorem 8.19: A tree T with n vertices has exactly (n – 1) edges.
Proof: The theorem will be prove by mathematical induction on the number of vertices of a tree. If
 n = 1 then there are no edges in T. Hence the result is trivial.

If n = 2 then the number of edges connecting the vertices is one i.e., n –1. Hence the theorem is true
for n = 2. Assume that the theorem holds for all trees with fewer than n vertices. Consider a tree T with
n vertices. Let V be a vertex in T of degree 1 and let T ′  denote the graph obtained by removing the
vertex v and edge e associated with it from T. Consider T ′ = T – e.
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T ′  has n – 1, vertices and fewer edges than T. If v1 and v2 are any two vertices in ,T ′  then there is
a unique simple path from v1 to v2 which is not affected by the removal of the vertex and edge.

T ′  is connected and no edges in it, therefore T ′  is a tree. T ′  has n –1 vertices and n–1–1 = n –2

edges. T has are more edge than .T ′
∴ Number of edges in T = n – 2 + 1 = n – 1. Hence T has exactly n – 1 edges.

Theorem 8.20: Every non-trivial tree has atleast 2 vertices of degree 1.
Proof: Let m denote the number of vertices of degree 1 (i.e., pendant vertices) and n be the number of
vertices in the tree T (where n ≥  2).

Let v1, v2, v3, ..., vm denote the m vertices of degree 1 in T. Then each of the remaining n – m vertices
vm+1, vm+2, ..., has degree atleast two.

Thus deg (vi) = 1 for i = 1, 2, ..., m

≥  2 for i = m + 1, m + 2, ..., n

We have
1

n

i=
∑ deg (vi) 1 ( – )≥ + ⋅n n m

or  2(n – 1) ≥  2n – m

or  2n – 2 ≥  2n – m

or  –2 ≥  – m

or  m ≥  2

Thus T contains atleast two vertices of degree 1.

Theorem 8.21: A graph G is a tree if and only if G has no cycled and |E| = |V| – 1.
Conversely, let G be a graph such that G has no cycles and |E| = |V| – 1. Clearly G is connected.

Let G1, G2, G3, ... Gk be k components of G where K > 1.
G has no cycles, therefore each Gi, is connected and each Gi has no cycle in it.
Number of edges in each Gi = |Vi| – 1
Hence number of edges in G

= |V1| – 1 + |V2| – 1 + ... + |Vk| – 1
= |V1| + |V2| + ... + |Vk| – K
= |V| – K

by hypothesis G has | V | – 1edges
Thus | V | – k = | V | – 1

or K = 1
The number of components in G is one and G is connected.
Hence G is a tree.

��!, 
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If u and v are two vertices of a connected graph G, there may be more than one path joining u and v.
Various concepts can be defined based on the lengths of such paths between vertices of G. The simplest
is given below:
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Definition 8.67: If G is connected graph and u and v are any two vertices of G, the length of the
shortest path between u and v is called the distance between u and v and is denoted by d (u, v).

The distance function on defined above has the following properties. If u, v and w are any three
vertices of a connected graph then.

(i) d (u, v) ≥  and d (u, v) = 0 iff u = v

(ii) d (u, v) = d (v, u)

and (iii) d (u, v) ≤ d (u, w) + d (w, v)

from the above, it is clear that distance in a graph is a metric.

Example 1: In the graph shown in Fig. 8.92.

Fig. 8.92

Definition 8.68: Let G be a connected graph. For any vertex v on G, the eccentricity of v denoted by
e (v) is

e (v) = max {d (u, v) : u, v ∈ v}
e (v) is the length of the longest path in G starting from the vertex v.

Example 2: In the graph shown in Fig. 8.93. e (v1) = 3

Fig. 8.93

Definition 8.69: The diameter of a connected r graph G is defined as the maximum eccentricity among
all vertices of the graph G. It is denoted by d.

Hence d = diameter of G = max { ( ): }e v v V∈

Definition 8.70: The radius of a connected graph G is defined as the maximum eccentricity among all
vertices of the graph. It is denoted by r.

Thus r = radius of G = min { ( ): }e v v V∈

Note: The radius of connected graph may not be half of its diameter.
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Example 3: Consider the tree T shown in Fig. 8.94.

Fig. 8.94

We have e (v1) = 5, e (v2) = 5, e (v3) = 4,
e (v4) = 3, e (v5) = 3, e (v6) = 4,
e (v7) = e (v8) = 5

The radius of T = r = 3
and the diameter of T = 5

Definition 8.71: The centre of connected graph G is defined as the set of vertices having minimum
eccentricity among all vertices of the graph. It is denoted by C or C (G).

C = C (G) = centre of G = { : ( ) }v V e v r∈ =

Example 4: Consider the graph shown in Fig. 8.93.

Fig. 8.95

e (v1) = 4, e (v2) = 3, e (v3) = 2,
e (v4) = 3, e (v5) = 4, radius of G = i = 2.
Hence centre of G = {v3}.

Note:

(1) Let G be a connected graph and v1, v2, ..., vn be ‘n’ vertices of G e (v1), e (v2), ... e (vn) is called the
eccentricity sequence of G.

(2) The distance between two adjacent vertices of a connected graph G is 1.
(3) The maximum distance from each vertex of G occurs at a pendant vertices of G.

(4) If C (G) = V (G) then G is called self-centred graph.
(5) If P is a path of even length the P has only one vertex at the centre.
(6) If P is a path of odd length this centre of P contains two adjacent vertices.

Example 5: In the graph shown in Fig. 8.96:

Fig. 8.96

Centre of G = {v3, v4}
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Example 6: In the graph shown in Fig. 8.97. C (G) = {v4, v5}:

Fig. 8.97

Theorem 8.22: If r is the radius and d is the diameter of connected graph G then r ≤ d ≤  2r.

Proof: From the definition of ‘r’ and ‘d’, we have r ≤ d  ... (1)

Let u, v be the ends of a diametral path and w be the central vertex then

D = d (u, v) ≤ d (u, v) + d (w, v) ≤ r (Triangle inequality)

or  d ≤  2r ... (2)

From (1) and (2)

r ≤ d ≤  2r

��!. �2�����������

Definition 8.72: Let G be a connected graph. The sub-graph H of G is called a spanning tree of G if

(i) H is a tree

and (ii) H contains all the vertices of G.

A complete graph kn has nn – 2 different spanning trees.

Example 1: In the Fig. 8.98 H is spanning tree of G.

Fig. 8.98
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Example 2: Find all the spanning trees of the graph G shown in the Fig. 8.99.

Fig. 8.99

Solution: The spanning trees of G are given below (Fig. 8.100):

Fig. 8.100

Theorem 8.23: A non-directed graph G is connected if and only f G contains a spanning tree.

Proof: Let T be a spanning tree of G. There exists a path between any pair of vertices in G along the
tree T. G is connected.
Conversely let G be a connected graph and K be the number of cycles in G. If K = 0, then G has no
cycles and G is connected. Therefore G is a tree when K = 0.

Let us suppose that all connected graphs with fewer than K cycles have a spanning tree. Let G be a
connected graph with n cycles. Let e be an edges in one of the cycle. G – e is a connected graph and
G – e contains all the vertices of G.

∴ The spanning tree if G – e is also spanning tree for G.
Hence by mathematical induction the result holds for all connected graphs.
If G is a connected graph and T is a spanning tree of G. Edges of G present in T are called the

branches of G with respect to Tj and the edges of G which do not belong to T are called the chords of G
with respect to T. If G has n vertices and e edges then, the number of branches with respect to the
spanning tree T of G is n – 1 and the number of chords is e – n + 1.

The number of branches in a connected graph G is called the rank of G and the number of chords is
called the nullity of G. If G has k components then the rank of G is defined as the sum of ranks of the
components; i.e.,
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rank (G) = 
1

rank ( )
k

i
i

G
=
∑

=
1 1 1

( 1) 1
k k k

i i
i i i

n n
= = =

− = −∑ ∑ ∑
= n – k

where Gi, i = 1, 2, ..., K are K components of G.

and nullity of (G) = 
1

k

i=
∑  nullity (Gi)

=
1

( 1)
k

i i
i

e n
=

− +∑

=
1 1 1

1
k k k

i i
i i i

e n
= = =

− +∑ ∑ ∑
= e – n + 1
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Definition 8.73: Let G be a connected weighted graph. A minimal spanning tree of G is a spanning
tree of G whose total weight is as small as possible.

There are various methods to find a minimal spanning tree in connected weighted graph. Here we
consider algorithms for generating such a minimal spanning tree.

��!.� �&#�����-

A connected weighted graph with n vertices.
Step 1: Arrange the edges of G in the order of decreasing weights.
Step 2: Proceed sequentially, and delete each edge of G, that does not disconnect the graph G until
n – 1 edges remain.
Step 3: Exit.

Example 1: Consider the graph G given below:

Fig. 8.101
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Number of vertices in G = n = 6.
We apply the algorithm given above.
We order the edged by decreasing weights and delete the edges of G until n – 1 = 6 – 1 = 5 edges

remain.

Edges (v2, v3) (v1, v6) (v1, v3) (v2, v5) (v3, v5) (v2, v6)

delete yes yes yes no no yes

Edges (v1, v5) (v4, v6) (v2, v4)

delete no no no

The minimal spanning tree of G is shown in Fig. 8.102:

Fig. 8.102

The weight of the minimum spanning tree = 8 + 7 + 5 + 5 + 2 = 27.

��!.�! ?�+3C�&3��&#�����-

Input: A connected weighted graph G with n vertices.
Step 1: Arrange the edges of in order of increasing weights and select the edge with minimum weight.
Step 2: Proceed sequentially, add each edge which does not result in a cycle until n – 1, edges are
selected.
Step 3: Exit.

Example 1: Consider the graph in Fig. 8.101.
We have n = 6
We order the edges by increasing weights (v2, v4) is edge with minimum weight. Select the edge

(v2, v4) we successively add edges to (v2, v4), without forming cycles until 6 – 1 = 5 edges are selected.
This yields:

Edges (v2, v4) (v1, v5) (v4, v6) (v2, v6) (v3, v5) (v1, v3) (v1, v6) (v2, v5) (v2, v3)

Weight 2 5 5 6 7 8 8 8 10
Add? Yes Yes Yes No Yes No Yes No No
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Edges in the minimum spanning tree are
(v2, v4), (v1, v5), (v4, v6), (v3, v5), (v1, v6).

The resulting minimal (optimal) spanning tree is shown in Fig. 8.103.
We apply the steps of Kruskal’s algorithm to the graph of Fig. 8.101; as follows:
(v2, v4) is the edge with minimum weight, therefore we select the edge (v2, v4).
The next edge with minimum weight is (v1, v5), selection of (v1, v5) does not result in a cycle.

∴  edge (v1, v5) is selected.

Fig. 8.103

Fig. 8.104 (a)

Fig. 8.104 (b)

The edge to be considered, next is (v4, v6).
The next edge to be selected is (v4, v6).
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Fig. 8.104 (c)

Selection of the edge (v2, v6) for the spanning tree results in a cycle. Therefore (v2, v6) is not selected
we consider the edge (v3, v5) selection of edge (v3, v5) does not result in a cycle. Hence (v3, c5) is selected.

Fig. 8.104 (d)

Next we consider the edge (v1, v3) from the list. Selection of the edge (v1, v3) results in a cycle.
Therefore edge (v1, v3) is not selected. Consider the edge (v1, v6) selection of edge (v1, v6) does not result
in a cycle. Hence (v1, v6) is selected.

Number of edges selected is 5. We stop, and obtain the spanning trees as shown in Fig. 8.104 (e).

Fig. 8.104 (e)

The weight of the minimal spanning tree.
= 2 + 5 + 5 + 7 + 8
= 27
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Input: A connected weighted graph G with n vertices.

Step 1: Select an arbitrary vertex v1 and an edge e1 with minimum weight incident with vertex v1.

Step 2: Having selected the vertices v1, v2, ..., vi and e1, e2, ..., ei – 1; select an edge ei such that ei

connects a vertex of the set (v1, v2, ..., vi) and a vertex of V = (v1, v2, ..., vi) and of all such edges ei has the
minimum weight.

Step 3: Stop if n – 1, edges are selected, else go to step 2.

Example 1: Consider the graph shown in Fig. 8.105:

Fig. 8.105

Let e1 = (v1, v2), e2 = (v2, v3)
e3 = (v3, v4), e4 = (v4, v1)
e5 = (v2, v5) and e6 = (v4, v6).

Denote the edge of G.
We apply Prims algorithm to the graph as follows:
The edge e3 = (v3, v4) is an edge with minimum weight. Hence, we start with the vertex v3 and select

the edge e3 incident with v3.

Fig. 8.106 (a)

We next consider the edges connecting a vertex {v3, v4} with the vertex of the set V – {v3, v4}. We
observe that e6 the edge with minimum weight.

Fig. 8.106 (b)
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Consider the edges connecting the vertices of the set {v3, v4, v6} with the vertices of
V – {v3, v4, v6}. The edge e2 has the minimum weight. The edge e2 is selected.

Fig. 8.106 (c)

of the connecting the vertices of {v2, v3, v4, v6}; with the vertex set V – {v2, v3, v4, v6}, e4 has minimum
weight, therefore e4 is selected.

Fig. 8.106 (d )

e1, e5 are the edges remaining. e5 is the only edge connecting {v1, v2, v3, v4, v5, v6} and {v5} such that the
inclusion of e5 does not result in a cycle. Hence e5 is selected.

Since number of edges selected is 5 we stop.
The minimal spanning tree obtained is shown in Fig. 8.106 (e).

Fig. 8.106 (e)

Weight of the minimal spanning tree
= 2 + 4.8 + 5 + 6.3 + 12.5
= 30.6

��!� �		��
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Definition 8.74: A rooted tree is a tree with a designated vertex called the root of the tree.
Any tree may be made into a rooted tree by selecting one of the vertices as the root. A rooted is a

directed tree if there is a root from which there is a directed path to each vertex of the tree. The graphs in
Fig. 8.107 are rooted trees in which the root of each is at the top.
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Fig. 8.107 Rooted trees

The level of a vertex in a rooted tree is the length of the path (number of edges) to v from the root.
If T is a rooted tree with designated root v0 and v0 – v1 – v2 – ... –vn – 1 – vn is a simple path in T, then vn – 1

is called the parent of Vn and v0, v1, v2, ..., vn – 1 are called the ancestors of vn.

v1 is a child of v0, v2 is a child of v1, ....

If T is a rooted tree with designated vertex v0 and u and v are two vertices (nodes) in T, then

(i) u is called a leaf of T, if it has no children (i.e., leaves of T are vertices of T with degree 1).
(ii) y is a descendant of u, if u is an ancestor of v.

(iii) Is an internal vertex of T, if v is not a leaf of T.
(iv) The sub-graph of T consisting of v and all its descendants with v as the designated root is a

sub-tree of T rooted at v.

If T is a rooted tree then the maximum vertex level of T is called the depth of the tree. We usually
adhere to the universal convention of representing the root of the tree as the top vertex (apex) of the tree.
Rooted trees are useful in enumerating all the logical possibilities of a sequence of events where each
event can occur in finite number f ways. If edges leaving each vertex of a rooted tree T are labeled, then
T is called an ordered rooted tree. The vertices of an ordered to rooted can be labeled as follows: we
assign 0 to the root of the tree. We next assign 1, 2, 3, 4, ... to the vertices immediately following the root
of T according as the edges were ordered. The remaining vertices can be ordered as follows: If p is the
label of a vertex v of T then p1, p2, p3, ... are assigned to the vertices immediately following v according
as the edges were ordered. The tree in Fig. 8.108 is an ordered rooted tree.

r is the root of the tree in Fig. 8.108. The vertices of T are labeled with their addresses. The system
is known as universal address system for an ordered rooted tree.

Fig. 8.108 Ordered rooted tree
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Algebraic expressions involving addition, subtraction, multiplication and division can be represented as
ordered rooted trees called expression trees. The arithmetic expression 3 + 5 × 9 – 7 × 62 can be represented
as the tree shown in Fig. 8.109.

Fig. 8.109

The variables in the algebraic expression appear as the other vertices. In the polish prefix
representation, we place the binary operational symbol before the argument and avoid parentheses. The
expression (a – b)/((c × d) + e) can be expressed as /– ab + × cde.

Example: Write the following expression as a tree:
[(a × b) × c + (d + e) – (f – – (g × h))]

Solution: The arithmetic expression [(a × b) × c + (d + e) – (f – – (g × h))] can be represented as the
tree.

Fig. 8.110

��%1 �����<�����

So far we have discussed the tree, and its properties. Now we shall study about a special class of trees
known as binary trees. They are special class of rooted tree. Binary trees play an important role in
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decision-making. They are extensively used in the study of computer search methods, binary identification
problems and coding theory.

Definition 8.75: A tree in which there is exactly one vertex of degree two, and each of the remaining
vertices of degree one or three, is called a binary tree.

If T is a binary tree, the vertex of degree two which is distinct from all the other vertices of T serves
as a root of T. Thus every binary tree is a rooted tree. The vertices of degree one in a binary tree are
called external vertices and all the remaining vertices are called internal vertices. The number of internal
vertices in a binary tree is one less than the number of pendant vertices.

Fig. 8.111 Binary tree

The leaves of binary tree are vertices of degree one. Usually the roots in graph theory are portrayed,
with the root and the leaves at the bottom. The direction from the root to leaves is taken as the down
direction and the direction from the leaves to the root is taken as the up direction. The number of internal
vertices in a binary tree is one less than the number of external vertices (pendant vertices). If vi is vertex
of a binary tree. vi is said to be at a level li if vi is at a distance li from the root of the binary tree. Thus the
root a binary tree is at level 0.

Fig. 8.112 A 11-vertex 3-level binary tree

The maximum level occurring in a binary tree is called the height of the binary tree. A binary tree
with minimum height contains maximum number of vertices at each level. The root of a binary tree is at
level 0 and there can be only one vertex at 0 level. The maximum number of vertices at level is 21, at
level 2 is 22 and soon. By induction we can prove that the maximum number of vertices possible at level
k in a binary tree is 2k. We now state the following theorem on the minimum possible height of a binary
tree:

Theorem 8.24: The minimum height of a binary tree on n vertices is 2log ( 1) 1n + −⎡ ⎤⎢ ⎥  (where m⎡ ⎤⎢ ⎥  is

the smallest integer > m) and maximum possible height is 
1

.
2

n −

Proof: The root of T is at level 0. We know that every vertex of T at level k can have 2k. successors.
Therefore we have
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2 vertices at level 1
22 vertices at level 2
Hence the maximum number of vertices in the binary tree of height l is

1 + 2 + 22 + ... + 2l

but T has n vertices, therefore

1 + 2 + 22 + ... + 2l ≥ n

or
12 1

2 1

+ − ≥
−

l

n

or 2l+1 – 1 ≥ n

or 2l+1 ≥  n + 1

Hence   l ≥  log2 (n + 1) – 1

but l is an integer
The smallest possible value for 1 is

2log ( 1) 1n + −⎡ ⎤⎢ ⎥
The minimum possible height of a binary tree T is

2log ( 1) 1n + −⎡ ⎤⎢ ⎥
Now let denote the maximum possible height of T. We have the root of T at zero level, 2 vertices at

level, 2 vertices at level 2, ...
2 vertices at level l.
When T is of height l, we have atleast 1 + (2 + 2 + ...l times) vertices in T.

i.e., 1 + 2l vertices in T

Hence 1 + 2l ≤ n

⇒  2l ≤  n – 1

⇒ 1

2

n
l

−≤

but n is odd

1

2

n −  is an integer. Hence

The maximum possible value of l is 1
.

2

n −

Thus, we have

min l = [log2 (n + 1) – 1]

and max l = 1

2

n −
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A binary tree can also be defined as follows:

A binary tree is a directed tree, T = (V, E) together with an edge labelling f: E →  {0, 1}, such that
every vertex of T has at most one edge incident from it is labeled 0, and at most are edge incident from
it labeled with 1.

If T is a binary tree, then each edge (u, v) labelled with 0 is called a left edge. u is called the parent
of V and v is called the left child of u. Each edge (u, v) labelled with 1 is called a right edge in T. The
vertex u is called the parent of v and u is called the right child of u.

Fig. 8.113

��%� �	(4�
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Example 1: Show that the number of vertices in a binary tree is odd.
Solution: Let T be a binary tree with n vertices. T contains exactly one vertex of degree 2 and the
remaining vertices of T are of degree one or three. Therefore number of odd degree vertices in T is n –
1. But the number of odd degree vertices in a graph is even. Therefore n – 1 is even. Hence n is odd.

Example 2: T is a binary tree on n vertices and p is the number of pendant vertices in T. Show that the
number of vertices of degree 3 in T is n – p – 1.
Solution: T has p vertices of degree one and one vertex in T is of degree two. Hence the number of
remaining vertices (i.e., vertices of degree 3 ) is n – p – 1.

Example 3: T is a binary tree on n vertices. Show that the number of pendant vertices in T is 
1

.
2

n +

Solution: Let p denote the number of pendant vertices in T.
The number of edges in T is n – 1
The degree sum in T = 2 (n – 1)
Therefore  P × 1 + (n – p – 1) + 2 = 2 (n – 1)

or  P + 3n – 3p – 3 + 2 = 2n – 2
or n + 1 = 2p

Hence
1

2

n
P

+=

Example 4: Find the maximum possible height of a binary with 13 vertices and draw graph of the tree.
Solution: We have n = 13

Maximum possible height of the binary tree 
1 13 1

6
2 2

n − −= =
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Fig. 8.114 Binary tree of maximum height with 13 vertices

Example 5: Find the minimum height of the tree with 9 vertices.
Solution: We have n = 9

The minimum height of the binary tree

2 2log ( 1) 1 log (9 1) 1 3n= + − = + − =⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

��% �	*2(���������<�����

Definition 8.76: A binary for which the level order indices of the vertices form a complete interval 1,
2, ..., n of the integers is called a complete binary tree.

If T is a complete binary tree, then all its levels except possibly the last, will have maximum number
of possible vertices, and all the vertices at the last level appear as far left as possible. The tree shown in
Fig. 8.115 is a complete binary tree.

Fig. 8.115 A complete binary tree

If T is a complete binary tree with n vertices, then the vertices at any level l are given the label
numbers ranging from 2l to 2l + 1 – 1 or from 2l to n if n is less than 2l + 1 – 1.

��%! 7���7����(����
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Definition 8.77: A binary tree T in which the heights of left and right subtrees of every vertex differ
by at most one is called a height balanced binary tree.

Every complete as a height balanced binary tree. Height balanced trees are important in computer
science and are more general than complete binary tree. We state the following theorem without proof
on the number of vertices in a height balanced binary tree.
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Theorem 8.25: There are atleast 

3
1 1 5

2
25

h+⎡ ⎤+ −⎢ ⎥
⎣ ⎦

 vertices in any height balanced binary tree

with height h.

��%% ������

Definition 8.78: Let T be a directed tree of order k.
T is said to said to be a B-tree of order k, if

(i) all the leaves are at the same level;

(ii) every internal vertex, except possibility the root has atleast /2k⎡ ⎤⎢ ⎥  children (where x⎡ ⎤⎢ ⎥  means
the least integer > x);

(iii) The root is a leaf or has atleast two children; and
(iv) no vertex has more than k children.

Fig. 8.116 B-tree

If the height of B-tree of order k is h > 1, then the B-tree atleast 
12 /2 −⎡ ⎤⎢ ⎥

h
k  leaves.

��%) 
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Definition 8.79: Let Ti and Tj be two spanning trees of a graph G. The distance between Ti and Tj is
defined as the number of edges of group G, present in Ti but not in Tj.

Example: Consider the graph G as shown in the Fig. 8.117 below:

Fig. 8.117 Graph G and two spanning trees T1 and T2.

The distance between the spanning trees T1 and T2 is one.
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Definition 8.80: Let G be a graph and T be a spanning tree of G. An edge of G, that is not in T is called
a Chord of G.

��%. ���?���
���((��<

Definition 8.81: Let G be a graph, with a vertices ( . ., | | ).=i e V n  Let e be the number of edges in G,

and k be the number of components of G. Then the rank of G in defined as follows:
r = rank = n – k

( . ., | | )= −i e r V k

The nullity of G is defined as

nullity e n kμ= = − +

( . ., | | | | | | )μ = − −i e E V k

If k = 1, the graph G is connected. Then the rank of G is n – 1 and the nullity of G is e – n + 1

( . ., | | | | 1)− +i e E V

The nullity of a graph G is also referred to as its first Betti number.

�:��� � � � ���)

1. Define the terms
(i) Connected graphs (MKU, MCA, May 2002)

(ii) Tree
(iii) Rooted tree
give examples

2. Define
(a) Cut vertex
(b) Cut edge
(c) Cut set

and give examples
3. Show that every non-trivial has atleast one vertex of degree 1.
4. Prove that a tree with n vertices has exactly (n – 1) edges.
5. Define

(a) Spanning tree (MKU, MCA, May 2002)
(b) Binary tree
(c) Eccentricity
(d) Leaf
(e) Forest
(f) Centre of a tree
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(g) Radius of a tree
(h) Diameter of a tree

6. Show that the number of vertices of a binary tree is odd.
7. Show that the number of pendant vertices in a binary tree with n vertices is

1
.

2

n +

8. Define the term minimal spanning tree of a graph.
9. Define

(a) Complete binary tree
(b) Height balanced binary tree and

show that there are atleast

3
1 1 5

2
25

h+⎡ ⎤+ −⎢ ⎥
⎣ ⎦

vertices in a height balanced tree of height h.
10. How many non-isomorphic trees are there with the number of vertices equal to

(a) 2 (b) 3 (c)  4 (d) 5
11. Find the spanning trees of the graph G.

12. Find the minimal and maximal spanning trees of G.
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13. Prove that there is one and only one path between every pair of vertices in a tree.
14. If in a graph G, there is one and only are path between every pair of vertices then show that G is

a tree.
15. Show that any connected graph with n vertices and n – 1, edges is a tree.
16. If two adjacent vertices of a tree are connected by adding an edge, then show that the resulting

graph is a cycle.
17. State Kruskal’s algorithm for find the minimal spanning tree. (O.U., MCA, 1998)
18. Define term (i) Connected graph (ii) Spanning tree prove that every connected graph has one

spanning tree. (O.U., MCA, 1991)
19. Prove that every non-trivial tree contain atleast 2 vertices of degree 1. (O.U., MCA,

1991)
20. Define a binary tree and desire a formula for the maximum possible height of a binary tree with

n vertices.
21. How many different non-isomorphic trees of order 4 are possible. Draw them. (O.U., MCA, 1994)
22. Prove that if a connected graph G has only are spanning tree, them G itself is a tree.

(O.U., MCA, 1995)
23. Draw a balanced binary tree of height 4 with minimum number of vertices.

(O.U., MCA, 1996)
24. Show that a simple non-directed graph G is a tree if and only if it is connected and has no cycles.

(O.U., MCA, 1998)
25. Let H be a subgraph of a connected graph G. Show that H is a subgraph of some spanning tree T

if H contains no cycles. (O.U., MCA, 1999)
26. Determine a railway network of minimal cost for the cities in the Figure given below:

27. Find the minimal spanning tree for the following graph:
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28. Find the minimal spanning tree for the graph G.

29. Find a minimal spanning tree for the graph.

��%� 2(��������27�

In this section, we discuss about graphs which can be drawn on a plane such that no two edges of the
graph intersect. The points of intersection of edges in a graph are called cross-overs. The edges in a
graph G, which intersect are said to cross-over each other. A graph G is said to be embedded in a surface
S, when it can be drawn on S, such that no two edges intersect.

Definition 8.82: A graph G is said to be planar if it can be drawn on a plane without cross-overs.
From the definition it is clear that a graph is planar if it can be embedded in a plane. A graph which

cannot be drawn a plane without cross-over between its edges is called non-planar graph.

��%��� 2&���������

Definition 8.83: An embedding of a planar graph is called a plane graph.
A plane graph partitions the plane into several regions. These are called faces (also called windows

or meshes). Each region is characterised by the set of edges forming its boundary. Each plane graph
determines a region of infinite area called the exterior region of G. If G is a connected graph, then the
boundary of a region R is a closed path in which each cut edge is travelled twice. The boundary of a
region R is a cycle if the boundary of R contains no cut edges of G.

��%�� 
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Definition 8.84: Let G be a plane graph and f be a face of G. The degree of the face f is defined as the
number of edges in the boundary of f, with cut edges counted twice.
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Definition 8.85: A graph G is said to be critical planar if G is non-planar but any subgraph obtained
by removing a vertex of G is planar.

For n ≤  3, Kn, 3 is critical planar.

The graphs shown in Fig. 8.118 are planar

Fig. 8.118 Planar graphs

The graphs shown in Fig. 8.119 are non-planar

Fig. 8.119 Non-planar graphs

If G is a graph, then we denote the embedding of G on a surface S by S (G). The vertices, edges and

faces of S (G) constitute a map on the surface S. If S is the plane ∏  then the vertices edges, and faces of

S (G) constitute a planar map. It is denoted by ∏ (G). In a planar embedding of ∏ (G), all faces except
one are bounded. The unbound face is called the exterior face (infinite face or outer face). Region in a
map which have atleast one common edge are called adjacent regions.

��%��% 2�&>�� ��&������

Definition 8.86: A plane connected graph in which each region has degree equal to or grater than 3
and each vertex has degree equal to or greater than 3 is called a polyhedral graph.

A planar graph may have different planar representations. The number of regions resulting from
each embedding is always the same. If G is a planar graph, then the number of vertices, number of edges
and the number of regions in G are inter-connected. The number of regions in G can be computed by
Euler’s formula.

��%��) �+&��D3����-+&�

Theorem 9.26: If G is a connected plane graph then

|V| – |E| + |R| = 2

Where |V| denotes the number of vertices in G
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|E| denotes the number of edges and
|R| denotes the number of regions in G

Proof: We prove the theorem by mathematical induction on number K of regions determined by G.
We first prove the theorem for a tree (i.e., for K = 1). A tree determined only one region.

we have |E| = |V| – 1, |R| = 1 for a tree

∴ |V| – |E| + |R| = |V| – {|V| – 1} + 1 = 2

∴ The result holds for K = 1

Assume that the holds for K ≥  1. Let G be a connected plane graph determining (K + 1) regions.
Deleting an edge common to the boundary of two regions. We get a graph G1. If V1, E1, and R1 are

the number of vertices, the number of regions and the number of regions respectively of G1 then |V1| –
|E1| + |R1| = 2

Also we have
| | | |, | | | | – 1 and | | | | – 1′ ′ ′= = =V V E E R R

∴ | | – | | | | | | – {| | – 1} | | – 1′ ′ ′+ = +V E R V E R

1| | – | | 1 | | – 1′ ′= + +V E R

| | – | | | | 2′ ′ ′= + =V E R

By mathematical induction the result holds for all connected graphs.

Corollary: If G is a simple connected planar graph with |E| > 1, then

(i) |E| ≤  3 |V| – 6

(ii) There is a vertex v of G such that , deg (v) ≤  5.

Proof: of (i) G is a simple connected planar graph.
Therefore, each region of G is bounded by atleast three edges and each edge belongs exactly to two

regions.

i.e., 2 |E| ≥  3 |R|

or |R|
2

| |
3

E≤

or |V| + |R| ≤  + 
2

| |
3

E

by Euler’s formula
  |V| – |E| + |R| = 2

or  |V| + |R| = |E| +2
substituting in L.H.S. of (1) we get

|E| + 2 ≤  |V| + 
2

| |
3

E

or 3 |E| + 6 ≤  |V| + 2 |E|

or |E| ≤  |V| – 6
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Proof: of (ii) let each vertex of G have degree ≥  6

Then  ( )deg 2 | |
v V

v E
∈

=∑
i.e., 6 |V| ≤  2 |E|

or |V| ≤
2

| |
6

E

or |V| ≤
1

| |
3

E

but |R| ≤
2

| |
3

E

Therefore |V| + |R| ≤
1

| |
3

E  + 
2

| |
3

E

or  |V| + |R| ≤  |E|

by Euler’s formula |V| + |R| = |E| + 2

Hence |E| + 2 ≤  |E|

⇒  2 ≤  0, a contradiction

Each vertex of G cannot have a vertex degree ≥  6.

⇒  each vertex of G is of degree ≤  5

Example 1: Prove that K5 is non-planar.
Solution: Number of vertices in K5 = |V| = 5

Number of edges in K5 = |E| = 10

If G is planar then |E| ≤  3 |V| – 6

∴ ⇒  10 ≤  3.5 – 6

⇒  10 ≤  9 a contradiction

∴ K5 is non-planar

Example 2: Show that K3, 3 satisfies in equality |E| ≤  3 |V| – 6, but it is non-planar.

Solution: For the graph K3, 3 we have
|E| = 9, |V| = 6

and 3 |V| – 6 = 3.6 – 6 = 12

We have  |E| = 9 ≤  12 i.e., |E| ≤  3 |V| – 6

Hence K3, 3 satisfies the inequality |E| ≤  3 |V| – 6

If the graph is planar then we must have 2 |E| ≥  4 |R| substituting for |R|. From Euler’s formula,
we get

2 |E| ≥  4 [|E| – |V| + 2]

or  2.9 ≥  4 [9 – 6 + 2]
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or  18 ≥  20, a contradiction

Hence K3,3 in non-planar

Note: The graph K5 is called Kuratowski’s first graph and K3, 3 is called Kuratowski’s second graph
(see Fig. 8.120(a) and (b)).

Fig. 8.120 Kuratowski’s graphs

Example 3: Show that a complete graph of 4 vertices is planar.
Solution: K4 can be drawn as shown in Fig. 8.121:

Fig. 8.121

From the Fig. 8.119 it is clear that K4 be drawn without cross-overs.

Hence, K4 is planar.

Example 4: Show that the graphs K2, 2, K2, 3 and K2, 4 are planar.

Solution: The graphs of K2, 2, K2, 3 and K2, 4 are shown in Fig. 8.122(a), (b) and (c) respectively.

Fig. 8.122

The planar embeddings of K2, 2, K2, 3 and K2, 4 are shown in Fig. 8.123 in which can set that the edges

of the graphs can be drawn without crosso-vers.

a b

c d e

a

c

b

d

a

c
d e

f

b

(a) (b) (c)
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Fig. 8.123 Planer embeddings of K2, 2, K2, 3 and K2, 4

Example 5: Show that the graph G shown in Fig. 8.124 is planar:

Fig. 8.124

Solution: The edges of G shown in Fig. 8.124 can be drawn without cross-overs. The planar embedding
of G is shown in Fig. 8.125:

Fig. 8.125

Example 6: Prove that no polyhedral graph with exactly 30 edges and 11 regions exists.
Solution: We have |E| = 30, |R| = 11

From Euler’s formula

|V| – |E| + |R| = 2

⇒  |V| = |E| – |R| + 2 = 30 – 11 + 2 = 21

If the graph is polyhedral,

Each vertex has degree equal to or greater then 3 and we must have 3 |V| ≤  2 |E|.



GRAPH THEORY 309

i.e., 3.21 ≤  2.30

i.e., 63 ≤  60, a contradiction.

Hence there cannot be a polyhedral graph with exactly 30 edges and 11 regions.

Example 7: Find the minimum number of vertices necessary for a simple connected graph with 7
edges to be planar.

Solution: We have | | 7.=E

Substituting in | | 3 | | 6E V≤ −
we get

7 3 | | 6 3 | | 6 7V V≤ − ⇒ − ≥

or 3 | | 7 6≥ +V

or | | 13/4≥V

Therefore, the minimum number vertices necessary for a single graph with 7 edges to be planer is 5.

Example 8: Find the maximum number of edges possible in a simple connected planar graph with 4
vertices.

Solution: We | | 4V n= =

3 | | 6 3 4 6 6V − = ⋅ − =

Therefore | | 3 | | 6E V≤ −

or | | 6≤E

The maximum number of edges possible in a simple connected planar graph with 4 vertices is 6.

��%/ 7	*�	*	�27������27�

Definition 8.87: Two graphs are said to be homeomorphic if one graph can be obtained from the other
by the creation of edges in series or by the merger of edges in series.

A graph G is planar if and only if every graph that is homeomorphic to G is planar.
We now state the following theorem without proof:
Theorem 8 (Kuratowski): A graph is planar and only it has no sub-graph homeomorphic to K5

or K3, 3.

Fig. 8.126 Homeomorphic graphs
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Let G be a planar graph and F1, F2, ..., Fk denote the faces or regions of G. Place vertices V1, V2, ... Vk one
in each of the regions. If two regions Fi and Fj are adjacent draw an edge joining the vertices Vi and Vj

that intersects the common edge between Fi and Fj exactly once. If the number of edges between Fi and
Fj is more than one, then draw one edge between Vi and Vj for each of the common edges. If an edge e
lies entirely in one region say Fi draw a self-loop at the vertex Vi lying in Fi intersecting e exactly once.
We denote the new graph obtained by this procedure by G*. The graph G* is called a dual of G. We
make the following observation:

(i) G and G* have the same number of edges.
(ii) The number of vertices in G* is equal to the number of regions in G and the number of regions

in G* is equal to the number of vertices in G.
(iii) An edge forming a self-loop in G yields a pendant edge in G*.
(iv) A pendant edge in G yields a self-loop in G*.
(v) Edges that are in series in G produce parallel edges in G* and parallel edges in G produce

edge in series in G*.
(vi) G* is planar.

(vii) If G* is a dual of G than G is dual of G*.

Remarks: If G is a planar graph and G* is the dual of G, then the number of vertices in G is equal to the number of
vertices G*. G and G* have the same number of edges and same number regions.

Example: Find the dual of the graph G shown in Fig. 8.127.

Fig. 8.127

Solution: The dual of G is shown in Fig. 8.128 if the edges of G* are shown by dashed edges:

Fig. 8.128 Dual of a graph



GRAPH THEORY 311

The dual of a graph depends on the embedding of the graph in the plane and the same graph may
have different geometric duals for different embeddings. All duals of a planar graph are 2-isomorphic.
Now we state the following theorem (without proof) which gives a criterion for a graph to be a planar
graph.

Theorem 8.27: A graph is planar if and only if it has a dual.
Let G be a planar graph and G* denote the dual of G. If G and G* are isomorphic to each other then

G is called a self-dual.

Fig. 8.129 Self-dual graph

The tetrahedron is self-dual. The following graphs are self-dual:

Fig. 8.130 Self-duals

��)1� ��-6��������&�
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Definition 8.88: To planar graphs G and G* are said to be combinatorial duals of each other if there is
a one-to-one correspondence between the edges of G and G* such that if G1 is any subgraph of G and
G*1 is the corresponding subgraph G*, then

Rank of (G* – G*1) = rank of G* – nullity of G1.

The above definition in an abstract formulation of the concept of geometrical dual and was given by
Whitney. He proved that a graph G is planar if and only if it has a combinatorial.
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Definition 8.89: The minimum number of planar subgraphs whose union is the given graph G is
called the thickness of G and is denoted by O (G).

The thickness of a planar graph is one.

��)1�% ���33��#��+-6��

Definition 8.90: Let G be a graph. The minimum number of pairwise intersection of its edges when G
is drawn in the plane is called the crossing number of G.

The crossing number of each of the Kuratowskis’ graphs is one. The crossing number of a planar
graph is zero.

��)1�) 	+����2&����������

Definition 8.91: A planar graph is outer planar if it can be embedded in the plane so that all its vertices
lie on the boundary of a region of G.

The graphs shown in Fig. 8.131 is outer planar.

Fig. 8.131

��)1�, ��&'�
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Definition 8.92: Let G be a graph and G* be the dual of G. If G and G* are isomorphic to each other
then G is called a self-dual.

��)� �	(4�
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Example 1: Show that a graph G is self-dual if |E| = 2n – 2 where n is the number of vertices in G.

Solution: Let G* denote the dual of G. Since G and G* are isomorphic, we have

|E| = |E*|, |R*| = n, |V| = |V*| = n

Hence by Euler’s formula, we have

   |E*| = |V*| + |R*| – 2

or |E| = n + n – 2

or |E| = 2n – 2

Example 2: If f denotes the number of regions in a graphs G, then show that n ≥  2 + f / 2.
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Solution: We know that

3f ≤  2 |E|

i.e.,  |E|
3

2
f≥

By, Euler’s formula

|V| = |E| – |R| + 2 ≥  3 f / 2 – f + 2

or  n ≥ f / 2 + 2

We now state following theorems without proof:

Theorem 8.28: Two planar graphs G and G1 are duals of each other if there exists a one-to-one
correspondence between the edges of G and G1 such that circuits in G correspond to cut sets in G1.

Theorem 8.29: The graph K3, 3 cannot have a dual.

Theorem 8.30: The graph K5 cannot a dual.

�:��� � � � ���,

1. Draw a planar representation of the following graphs:

2. Show that K5 is non-planar.
3. Show that a complete bipartite graph Km, n is planar if and only if m or n is less than or equal to 2.

4. Show that a plane connected graphs with less than 30 edges has a vertex of degree ≤  4.
(O.U., MCA, 1997)

5. If the minimum degree of any vertex is 5 show that there are atleast 12 vertices of degree equal to 5.
6. Count the number of vertices, number of edges and number of regionof each of the following maps:
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7. Show that there is no map of five regions in the plane such that every pair of regions are adjacent.
8. Give an example for a self-dual graph other than K4. (MKU, MCA, May 2002)
9. Give an example of a plane connected graph such that |E| = 3 |V| – 6.

10. Show that K3, 3 satisfies the inequality |E| ≤  3 |V| – 6, but it is non-planar.

11. Count the number of vertices, the number of edges and the number of regions of each map and
verify Euler’s formula.

��) ��(�������27�

In this section, we shall study graphs known as Eulers graphs. Euler is called the father of graph theory.
He solved a long-standing. Problem called the Konigs Berg Bridge problem.

Konigs Berg Bridge problem: There were two Islands linked to each other and to the banks of
Pregal River in Konigs Berg by seven bridges as shown in Fig. 8.132.

Fig. 8.132

The problem was to begin at any one of the four land areas (A, B, C, D in Fig. 8.132) walk across
each bridge exactly once and return the starting point. Many attempts were made to solve this problem.
Euler proved that a solution to this problem does not exists.

Euler represented, each land area by a point and joined two such points by a line. If a bridge existed
connecting the land areas. Fig. 8.133 shows this representation.

Fig. 8.133 The graph of Konigs Berg Bridge problem
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Each point in the graph represents a land area and each line in the graph represents a bridge.
Euler generalised the problem and developed a criterion for a given graph to be traversable satisfying

the given conditions.

��)�� �+&���2���

Definition 8.93: Let G be a multigraph. An Euler path is G is a path that includes each edge of G
exactly once and intersects each vertex of G atleast once.

��)� ���B��3�6&�������

Definition 8.94: A graph G is said to be traversable, if it has a path.

Fig. 8.134 Traversable graph
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Definition 8.95: An Eulerian circuit in G is an Eulerian path in G whose end points are identical.

��)�% �+&�����������

Definition 8.96: A graph G is said to be Eulerian if it has an Eulerian circuit.

From the definition, it is clear that a trial in a graph is Eulerian if it contains all the edges of the
graphs G and if a graph G contains a closed Euleria trial then it Eulerian. In the graph shown in Fig. 8.135,
the sequence v1 – v2 – v3 – v4 – v2 – v5 – v1 is a closed Eulerian trial. It contains all the vertices and edge
of G.

Fig. 8.135

Note: An Euler graph need not connected. If G is connected Euler graph, then starting from any vertex say V0 of
G, entire graph G can be drawn without lifting the pen, ending at V0 and vice versa.

Aditya
Highlight

Aditya
Highlight

Aditya
Highlight
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The graph shown in Fig. 8.136 is Eulerian. It has an Eulerian circuit.

Fig. 8.136 Eulerian graph

Theorem 8.31: The following statements are equivalent for a connected multigraph G.
(1) G is Eulerian.
(2) Every point of G has even degree.
(3) The set of edges of G can be partitioned into cycles.

Proof:
(1) ⇒  (2) Let p be an Eulerian path in G. Each occurrence of a given vertex in P contributes two

to the degree of that vertex and since each of G appears exactly once in p, every vertex of G
must be of even degree.

(2) ⇒ G is connected and non-trivial, therefore degree of every vertex in G is atleast two and G
contains a cycle say Z1. The removal of the edges of Z1 results in a spanning subgraphs G1, in
which every vertex has even degree. If G1 has no edges, then all the edges of G form a cycle
and (3) holds otherwise the argument can be repeated until we obtain a totally disconnected
graph Gn.

G1, G2, G3, ... Gn contain the set of edges of G, which partition G into n cycles. Hence
proved.

(3) ⇒  (1). Let G be partitioned into cycles and Z1 be are of the cycles. If Z1 is the only cycle
graph, G is Eulerian otherwise, let Z2 be another cycle in G and V be a common vertex of Z1

and Z2. The walk beginning at V and consisting of cycles Z1 and Z2 in succession is a closed
trial containing all the edges of Z1 and Z2. Continuing this process we obtain a closed trial
which contains all the edges of G. Hence G is Eulerian.

Theorem 8.32: If a graph G has more than
(i) Two vertices of odd degree, then there can be no Euler path in G.

(ii) If G is connected graph and has exactly two vertices of odd degree, there is an Euler path in G.
Any Euler path in graph G must begin at vertex of odd degree and end at the other.

Proof:
(i) Let G be a graph having more than two vertices of odd degree and let v1, v2 and v3 be the

vertices of odd degree in G. If there is an Euler path in G, then it must leave (arrive) each of
the vertices. Let one of the vertices say v1, be the beginning of the Euler path in G and another
vertex say v2 be the end of the path. But this leaves the vertex v3 at one end of an untravelled
edge. Thus, there can be no Euler path in G.

(ii) Let u and V be two vertices of odd degree in G. By adding the edge {u, v} to G we can produce
a connected graph say G1, all of whose vertices are of even degree.
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Since ′G  is a connected graph and every vertex of ′G  is of even degree, we can find an Euler

circuit C in .′G  Deleting the edge {u, v} from C, we get an Euler path that begins at u (or v) ends at v
(or u).

If G is a graph in which there are 0 two vertices of odd degree then G has Euler path and G is
traversable. If all the vertices are of even degree, then G has an Euler circuit and G is traversable. The
graphs shown in Fig. 8.137 are Eulerian.

Fig. 8.137 Eulerian graphs

��&B� ��5�-�&�3

Example 1: Show that graph G (Fig. 8.138) is Eulerian and find an Eulerian circuit in G.

Fig. 8.138

Solution: Each vertex is of even degree in G (there 0 vertices of odd degree). Therefore, G is Eulerian.
A B C D E A C E B D A is an Eulerian circuit in G.

Example 2: Show that the graph G. Shown in Fig. 8.139 is not Eulerian.

Fig. 8.139
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Solution: There are four vertices of degree 5 in the graph, a, b, c, d are the vertices degree 5 in G.
Therefore, G is not Eulerian.

�:��� � � � ���.

1. Show that the graphs are Euler graphs:

2. Find a closed Eulerian trial in the following graph:

3. Show the graph G is Eulerian:

4. Show the graph given below is Eulerian:
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5. Find an Eulerian path in the graphs G:
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Fleury’s algorithm is useful in constructing an Eulerian trial in a connected multigraph G.
Algorithm: Fluery’s algorithm to construct a closed Eulerian in a connected even graph.
Input: A connected multigraph G in which every vertex is of even degree.
Output: A closed Eulerian trail in G.

Step 1: Select any vertex 0v V∈  and let W0 = V0.

Step 2: Suppose that the trail
W = v0 e0 v1 e1 ... ei – 1 vi has been chosen. Then choose an edge ei from E (G) – {e0 e1 ... ei – 1} such

that
(i) ei is incident with vi.

(ii) Unless there is no alternative, ei is not a cut edge of
Gi = G – { e0 e1 ... ei – 1}.

(iii) Stop, when step 2 can no longer be implemented.

��)! 7�*�(�	��������27�

In Section 9.49, we have seen that an Eulerian path in a connected graph traverses every edge of the
graph. Now we discuss about the graphs called the Hamiltonian graphs which contain a closed walk that
traverses every vertex of the graph exactly once except the starting vertex at which the walk terminates.
While studying non-commutative algebra. Sir William Rowan Hamilton has invented a game called
‘Icosian game’. The same in its simplest form asks to find a cycle containing all the vertices of the graph
of Dodecahedran.

Definition 8.97: A path in a graph G is called a Hamiltonian path if it contains every vertex of G.
Definition 8.98: A cycle in G is said to be a Hamiltonian cycle if it contains every vertex of G.
Definition 8.99: A graph is said to be a Hamiltonian graph if it contains Hamiltonian cycle i.e. A
graph G is Hamiltonian if there exist a cycle containing every vertex of G.

From the above definition, it is clear that a Hamiltonian path in graph G is always a subgraph of a
Hamiltonian cycle in G. Hamiltonian path in G may be obtained by deleting an edge from a Hamiltonian
cycle in G. Every graph which has a Hamiltonian cycle (circuit) contains a Hamiltonian path, but a
graph containing a Hamiltonian path may not have a Hamiltonian cycle and there are many graphs with
Hamiltonian paths that have no Hamiltonian cycle. The graphs shown in Fig. 8.140 are Hamiltonian.
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(a) (b)

Fig. 8.140 Hamiltonian graphs

A Hamiltonian cycle in a graph of n vertices consists of exactly n edges usually we consider only
simple graphs which do not include self-loops of parallel edges. A given graph may contain more than
are Hamiltonian cycle.

Rules for constructing Hamiltonian paths, and cycles in a graph G.
Rule 1: If G is a graph with n vertices, then a Hamiltonian cycle in G will contain exactly n edges.
Rule 2: There cannot be more than three are more edges incident with one vertex in a Hamiltonian
cycle in G. Every vertex v in a Hamiltonian cycle (circuit) of G will contain exactly 2 edges incident on
v. If v is a vertex in G then a Hamiltonian path in G must contain atleast one edge incident on v at most
2 edges incident on v.
Rule 3: A Hamiltonian path or cycle constructed in G must contain all the vertices of G.
Rule 4: Let V be a vertex of G. Once a Hamiltonian circuit (cycle) we are constructing has passed
through v, then all the other unused edges incident on v can be deleted.

Example 1: Consider the graph G in Fig. 8.141
{a, b}, {b, c}, {c, d}, {d, e}, {e, f}, {f, g} is a Hamiltonian path in G.

Fig. 8.141

The graph shown Fig. 8.141 has no Hamiltonian circuit in G.
Number Hamiltonian circuit in a graph.
A given graph G may contain more than are Hamiltonian circuit. In general the determination of

number of Hamiltonian cycles (circuits) in a graph is an unsolved problem. However, the number of
edge disjoint Hamiltonian circuits in a complete graph with n vertices where n is odd (and n ≥  3) is
given by the following theorem:
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Theorem 8.33: In a complete graph with n vertices there are (n – 1)/2 edge-disjoint Hamiltonian
cycles, if n is an odd number ≥  3.

Proof: Let G be a complete graph with n vertices where n is odd and n ≥  3. Then G has 
( 1)

2

n n −

edges. A Hamiltonian cycle in G contains n edges. Therefore, the number of edge-disjoint Hamiltonian

cycle in G cannot exceed (n – 1)/2. We show that there cycles in G as follows.
The subgraph of G, shown in Fig. 8.142 is a Hamiltonian cycle.

Fig. 8.142

Keeping the vertices fixed on a circle, rotate the polygonal pattern clockwise by

360 2 360 ( 3) 360
, ,

– 1 1 2 1

⋅ − ⋅
− −

n

n n n
degrees.

Observe that each rotation produces a Hamiltonian circuit that has no edge in common with any of
the previous ones. Thus, we have (n – 3)/2, new Hamiltonian cycles all edges disjoint from the one in
Fig. 8.141 and also edge disjoint among themselves. Therefore, the number of edge-disjoint Hamiltonian
cycles in G is

( 3) 1
1

2 2

n n− −+ =

Hence proved.

Example 1: If G is a complete graph with 7 vertices (i.e., kn), then the number of edge disjoint

Hamiltonian cycles is 
7 1

3.
2

− =

Example 2: Show that the graph G in Fig. 8.143 is not Hamiltonian.

Fig. 8.143
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Solution: G has 21 edges and 10 vertices. Therefore any Hamiltonian cycle in G should have 16 edges
and Hamiltonian path in G must contain exactly 15 edges. In the graph G we have

deg (l) = deg (h) = deg (j) = 5
i.e., there an three vertices of degree, therefore atleast three edges on l cannot be included in any
Hamiltonian path. The same is true for the vertices h and j. There are 13 vertices of degree 3 in three
consider the vertices b, d, f and n. Each of there vertices is of degree three. Atleast one of the three edges
incident in each of there vertices cannot be included in any Hamiltonian path. Thus atleast 3 + 3 + 3 + 4
= 13 edges cannot be included in any Hamiltonian path. The number of remaining edges is 27 – 13 = 14.
But any Hamiltonian path it is not possible to construct a Hamiltonian with the remaining 14 edges.
Thus G has no Hamiltonian path in G and G is not Hamiltonian.

Example 3: Show that are graph shown in Fig. 8.144 has no Hamiltonian cycle. But the graph has a
Hamiltonian path.
Solution: G has 9 vertices

∴ n = 9
number of edge in any Hamiltonian cycle in G is 9. There are 3 vertices of degree two in G. Therefore
all the edges incident on the vertices d, e and f must be included in any Hamiltonian cycle. The edges {a,
d}, {d, g}, {b, e}, {c, f}, {f, i} must be included in constructing a Hamiltonian cycle. The degree of b is
3 when the edges given above are included and we include the edge {a, b} in the Hamiltonian cycle, we
delete the edge {b, c}. Then we must include {a, c} in the Hamiltonian cycle. Thus the degree of a
would be 3. Hence no Hamiltonian cycle exists in G. However, the exists a Hamiltonian path in G the
edges.

{a, d}, {d, g}, {g, h}, {e, b}, {b, c}, {c, f}, {f, i} when included will give us a Hamiltonian path in
G. i.e., a – d – g – h – e – b – c – f – i is a Hamiltonian path in G. It is shown in the Fig. 8.145.

Fig. 8.144

Fig. 8.145 A Hamiltonian path in the graph of Fig. 8.143
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Definition 8.100: Let G be a plane Hamiltonian graph and C be a fixed Hamiltonian cycle in G. A
diagonal with respect to C is an edge of G that does not lie on G.

Theorem 8.34: Let G be a simple plane graph with n vertices and C be a Hamiltonian cycle in G. If ri

denotes the number of regions of G in the interior of C whose boundary contains exactly i edges and ri

denotes the number of regions of degree i in the exterior of C, then

1

3

( 2) ( ) 0
n

i i
i

i r r
=

− − =∑
Proof: G is a simple planar graph, therefore none of the edges of G intersect. We first consider the
interior of C. Suppose that exactly d diagonal occur in the interior of C. A diagonal splits the region
through which it passes into two parts. Each time a diagonal is inserted in the interior of C, the number
of regions in C is increased by 1. Hence

3 3

1 1
n n

i i
i i

r d d r
= =

= + ⇒ = −∑ ∑
If N denotes the sum of the degrees of all regions interior to C, then

3

n

i
i

N i r
=

= ∑
N counts each diagonal twice and each edge of C exactly once, therefore

3

2
n

i
i

N i r d n
=

= = +∑
Substituting for d we get

3 3

2 1
n n

i i
i i

i r r n
= =

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑

3

2 2
n

i
i

r n
=

= − +∑

Hence
3

( 2) 2
n

i
i

i r n
=

− = −∑ ...(1)

Similarly, by considering the regions external to C we get

3

( 2) 2
n

i
i

i r n
=

′− = −∑ ...(2)

Subtracting (2) from (1) we get

3

( 2) ( ) 0
n

i i
i

i r r
=

′− − =∑
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Example 1: Show that there are no Hamiltonian planar graphs with regions of degree 5, 8, 9 and 11
with exactly one region of degree 9.
Solution: From Grinberg’s theorem we have

5 5 8 8(5 – 3) ( – ) 0, (8 – 2) ( – ) 0′ ′= =r r r r

9 9 11 11(9 – 2) ( – ) 0, (11 – 2) ( – ) 0′ ′= =r r r r

Adding we get

5 5 8 8 9 9 11 112( – ) 6( – ) 7( – ) 9( – ) 0′ ′ ′ ′+ + + =r r r r r r r r

There is exactly one region of degree 9, therefore, we get

5 5 8 8 11 113( – ) 6( – ) 7( 1) 9( – ) 0′ ′ ′+ + ± + =r r r r r r

or   5 5 8 8 11 113( – ) 6( – ) 9( – ) 7′ ′ ′+ + = ±r r r r r r

or   5 5 8 8 11 113[( – ) 2( – ) 3( – )] 7′ ′ ′+ + = ±r r r r r r

i.e., 3 is divisor of 7±  a contradiction.

Hence there cannot be Hamiltonian planar graphs with regions of degree 5, 8, 9 and 11 with exactly
one region of degree 9.

Example 2: Show that the graph G in Fig. 8.146 is not Hamiltonian.

Fig. 8.146

Solution: Number of regions of degree 4 = 3

∴ 4 4 3′+ =r r

Number of regions of degree 6 = 6

∴ r6 + r6
1 = 6

applying Grinberg’s theorem

4 4 6 6(4 – 2) ( – ) (6 – 2) ( – ) 0′ ′+ =r r r r

or
4 4 6 62( – ) 4( – ) 0′ ′+ =r r r r
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or
4 4 6 6( – ) 2( – ) 0′ ′+ =r r r r

or 4 4 6 6( – ) – 2( – )′ ′=r r r r

Hence the difference between r4 and 
4′r  must be a multiple of 2 (i.e., even)

But 4 4( – ) 3′ =r r

The possibilities are 0, 3, and 1, 2. The difference between 0 and 3 is not even. Similarly, the
difference between 1 and 2 is also not even.

Hence there cannot be a Hamiltonian cycle in the graph.

�:��� � � � ����

1. Show that the following graphs are Hamiltonian:
(a)

(b)

(c)

2. Show that graph G is Eulerian but not Hamiltonian:
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3. Show that Peterson’s graphs is non-Hamiltonian.
4. In the graph given below find a Hamiltonian cycle or show that it does not exist:

(O.U., MCA, 1998)

5. Are the graphs given below in Figures (i) and (ii) are Hamiltonian. If yes find the Hamiltonian
circuits. (O.U., MCA, 1991)

6. Show that there are no planar Hamiltonian graphs of degree 4, 5 and 8 with only one region of
degree 4.

7. In the graph shown below, prove that any H-cycle can include exactly two of the edges {a, h},

{c, d}, {i, j}. Further, if H-cycle includes {d, e}, {e, j} the H-cycle cannot include (a, h}.

8. Define Hamiltonian circuit and a Hamiltonian path. (MKU, MCA, May 2002)
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9. Show that the graph G given below has a Hamiltonian cycle but no Euler circuit:

10. Show that the following graph is Hamiltonian:

��)% ���27��	(	�����

In this section, we describe the colouring of a graph and its chromatic number. Question related to
colouring of vertices, edges and regions are considered.

Definition 8.101: A colouring of a graph G is an assignment of colours to its vertices so that no two
adjacent vertices have the same colour.

Definition 8.102: A K-vertex colouring of a graph G is an assignment of K-colours to the vertices of
G such that no two adjacent vertices receive the same colour.

Every graph with n-vertices is n-colourable. The set of all points with any one colour is independent
and is called a colour class. If a graph is n-colourable, then the vertex set V (G) can be partitioned into
n-colour classes. The colouring a graph is called proper colouring.

The graph shown in Fig. 8.147 is a properly coloured graph:

Fig. 8.147

Colours are usually represented by positive integers. Thus n-colouring of a graph G is a function f:
V (G) → (1, 2, ..., n)
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Such that f (V1) ≠ f (V2) whenever  {V1, V2} E (G)
The vertex colouring of two different graphs are shown in the graphs of Fig. 8.146.

Fig. 8.148
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Definition 8.103: The Chromatic number of a graph G, is the minimum number of colours required to
colour the vertices of Gi. Such that no two adjacent vertices receive the same colour.

The chromatic number of a graph G is denoted by X (G). We observe the following:
1. The Chromatic number of an isolated vertex is one.

2. The Chromatic number of a graph having atleast one edge is atleast two.

3. The Chromatic number of a path Pn, (n ≥  2) is two.

4. The Chromatic number of a wheel graphs is 3 if it has odd number of vertices and u if it has
even number of vertices.

5. If G is graph consisting of simply are circuit, with n ≥  3, is 2 Chromatic if n is even and 3
Chromatic if n is odd.

We can also define the Chromatic number of a graph as follows.

Definition 8.104: The Chromatic number of a graph G is the least position integer K, such that G has
K-colouring.

Theorem 8.35: There exists a K-colouring of a graph G if and only V (G) can be partitioned into K
subsets V1, V2, ... Vk such that no two vertices in Vi (i = 1, 2, ..., k) are adjacent.
Proof: Let f: V (G) →  (1, 2, ... k) be a colouring of G and let Vi = {∈ f (v) = i, 1 ≤  i ≤ k}.

Therefore, Vi denotes the set of vertices coloured i. Then V = V V Vk1 2∪ ∪ ∪...  forms a portion of V,
such that no two vertices in Vi = (1 ≤  i ≤ k) are adjacent.

Conversely, let V = 1 2 ... kV V V∪ ∪ ∪  be a portion of V (G) such that no two vertices in

Vi = (1 ≤  i ≤ k) are adjacent. Then the function

f: V (G) →  (1, 2, ..., k) defined by

f (v) = i if iv V∈  is a K-colouring of G.

Theorem 8.36: If H is a subgraph of G, then X (H) ≤ X (G).
Proof: Let X (G) = K and f denote a K-colouring of G. Then f restricted to V (H) is a K-colouring of H.

Hence X (H) ≤ K ⇒ X (H) ≤ X (G).

Corollary: If G ≥ Kn; Then X (G) ≥ n; i.e., a graph G containing complete graph of K-vertices is
atleast K-Chromatic.
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Theorem 8.37: A graph G is 2-Chromatic if and only if G is bipartite.
Proof: Let G be 2-Chromatic. Then the vertex set V (G) can be partitioned into two-colour classes
which are in pendant sets. Hence the two-colour classes form a partition of G. Therefore G is bipartite.

Conversely, let G be a bipartite graph. The vertex set V (G); can be partitioned into two independent
set V1 and V2. We can use colour C1 to paint the vertices of V1 and use colour C2 to paint the vertices of
V2. Hence V is 2-Chromatic.

Note: If a graph G is bipartite; then it does not imply than X (G) = 2. For example 2K  is bipartite but 2( ) 1.X k =
If G contains an edge then G contains atleast one pair of vertices which are adjacent. Hence we require two colours
of the edge and X (G) ≥  2.

Theorem 8.38: Every tree with two or more vertices is 2-Chromatic.
Proof: Let T denote a given tree and v be any vertex in T. Assign colour 1 to the vertex v. Assign all
the p vertices adjacent to v with colour 2 and assign colour 1 to all vertices adjacent to the vertices of
colour 2. Continue this process till every vertex in T is coloured. Now we find that, all the vertices at odd
distances from v have colour 2 and the vertices.

Fig. 8.149

Which are at even distance from v have colour 1. Since T is connected and has atleast two vertices
it contains atleast are edge (and there is one and only one path between two vertices in T ) T is not 1-
colourable. Hence T can be property coloured with 2 colours. Therefore, chromatic number T is 2.

Theorem 8.39: It ( )GΔ  denoted Max {deg G (V): u V∈ }for any graphs G, then X (G) ≤ ( )GΔ  + 1.
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Definition 8.105: Assignment of colours to the edges of a graph G. So that no two adjacent edges
receive the same colour is called an edge colouring of G.

K-edge colouring of a graph G is an assignment of K-colours to the edges of G such that no two
edges of G receive the same colour.
Definition 8.106: A graph G is said to be K-edge colourable; if there exist K-edge colouring of G.

Definition 8.107: The minimum number K, such that a graph G has K-edge colouring is said to be the
edge-Chromatic number of G. The edge chromatic number of a graphs G is denoted by ( ).X G′  Thus

( )X G′  denotes the minimum number of colours required to colour the edges of the graph G. Such that
no two adjacent edges of G receive the same colour.
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Theorem 8.40: A graph G containing atleast one edge is 2-chromatic if and it contains no odd cycles.
Proof: Let G be a connected graph with cycles of only even lengths. Consider a spanning tree T of G.
We know that T can be properly coloured with two colours. Now add edges (of G which are not in T )
one by one. Since G has no cycle of odd length the end vertices of every edge being replaced are
differently coloured in T. Thus G is properly coloured with two colours i.e., G is 2-chromatic.

Conversely, let G be a 2-coloured graph with atleast one edge. If G has a cycle of odd length, we
would need atleast three colours just for that cycle. But G is 2-chromatic, hence G contains no odd
cycles.
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We shall now show that every planar graph can be properly coloured with five colours.

Theorem 8.41: Every planar graph is 5-colourable.
Proof: We shall prove the theorem by induction on the number n of vertices. Since any planar graph
with 1, 2, 3, 4 or 5 vertices can be properly coloured with five colours, we assume that vertices of every
planar graph with n – 1 vertices can be properly coloured with five colours, and then prove that any
planar graph G with n vertices requires five colours for proper colouring.

Let G be a planar graph with n vertices. Since G is planar, it must have atleast one vertex of degree
five or less. Let v denote the vertex.

Let ,G G v′ = −  then G′  has n – 1 vertices and G′  requires no more than 5 colours. Suppose that
the vertices of G′  have been properly coloured and now we add the vertex v and all the edges incident
of v to .G′  If the degree of is 1, 2, 3 or 4, we can assign a colour to v so that the vertices of G are properly
coloured. We now consider the case in which the degree of v is 5 and all the five colours are used for
colouring the vertices of G adjacent to v. Let v1, v2, v3, v4 and v5 denote the vertices of adjacent to v in G
coloured with C1, C2, C3, C4 and C5 respectively.

Let H1 denote the subgraph of G generated by the vertices coloured C1 and C3. If v1 and v2 belong to
the different components of H1 interchange the colours C1 and C3 in the component containing v1 and
assign ten colour C3 to the vertices v1 and v3. We get the proper colouring of G by assigning colour C1 to
the vertex v.

If v1 and v3 are in the same component of H, then there exists a v1 – v3 path in G all of whose points
are coloured alternatively with the colours C1 and C3. (see Fig. 8.146). Since G is planar a similar path
between the vertices v2 and v4 coloured alternatively with colours C2 and C4 cannot exist. Let H2 denote
the subgraph generated by the vertices coloured C3 and C4 i then v2 and v4 belong to different components
of K. We can interchange the colours C2 and C4 in the component containing v2. When the vertices v2

and v4 are assigned the colour C4, we can choose the colour C2 to paint the vertex v and obtain a proper
colouring of G. This completes the proof.
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So far we have discussed proper colouring of vertices and proper colouring of vertices of edges of a
graph. Now, briefly consider the proper colouring of regions in planar graphs such that no two adjacent
region receive the same colour.

The four-colour problem states that every plane map however complex, can be coloured with four
colours in such a way that two adjacent regions get different colours, fascinated mathematicians. This
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problem was solved by Appel and Hanken in 1976. However, this problem is infact equivalent to the
statement of conjecture.

Four-colour conjecture: Every planar graph is 4-colourable.

Example: The graph K4 is a planar graph and K4 is 4-colourable (Fig. 8.150)

Fig. 8.150
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We give an algorithm by Welch and Powell for a colouring of a graph G.
Algorithm: (Welch-Powell)
Input: A graph G.

Step 1: Order the vertices of G according to decreasing degrees.
Step 2: Assign the first colour to C1, to the first vertex and then in sequential order assign C1 to each
vertex which is not adjacent to a previous vertex which was assigned the colour C1.
Step 3: Repeat the Step 2, with a second-colour C2 and the subsequence of non-coloured vertices.
Step 4: Repeat Step 3, with a third-colour C3, then a fourth-colour C4 and so an until all the vertices
are coloured.
Step 5: Exit.

Note: Welch-Powell algorithm does not always yield a minimum colouring of a graph G.

Example: Use Welch-Powell algorithm to colour the graph G, and find the chromatic number of the
graph.

Fig. 8.151
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Solution: We have deg (v1) = d (v1) = 4,
d (v2) = 3, d (v3) = 3, d (v4) = 4, d (v5) = 3, d (v6) = 4, d (v7) = 2, d (v8) = 5

we first order, the vertices to decreasing degree to obtain the following sequence v8, v1, v4, v6, v2, v3, v5,
v7 . C1 denoted the first-colour, C2 denotes the second-colour, C3 denotes the third-colour ....

Which are used to paint the vertices of the graphs G.
We first use colour C1 to paint the vertices v8, v2 and v7 (since v1, v4, v6 are adjacent to v8, and each

of the vertices v3 and v5 is connected to either v8 or v2. We cannot paint colour C1 to v1, v3, v4, v5, v6 and
v7).

We use the colour C2 to paint the vertices v1 and v4 and the remaining vertices v6, v3 and v5 can be
painted with the third-colour.

All the vertices are properly coloured.
Hence X (G) = 3.
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Let G be a properly coloured graph. The vertex set of G can be partitioned into different subsets. The
proper colouring of G induces a partition of the vertices of G. Such that no vertices of the same subset
are adjacent. Such sets are called Independent sets.
Definition 8.108: A set of vertices in a graph G is said to be an independent set of vertices if no two
vertices in the set are adjacent.

Fig. 8.152

In the graphs of Fig. 8.152. {a, c, d} and {b, e} are independent sets.

Fig. 8.153

In the graph of Fig. 8.153 {a, c, e} is an independent set.

Note: A single vertex in any graph constitutes an independent set and every subset of an independent set is
independent.

Definition 8.109: Let G be any graph. A subset V ′  of the vertex set V (G) is called a maximally
independent set of G if



GRAPH THEORY 333

(i) V ′  is an independent set of G.

and (ii) If V ′′  is any other independent set of G, then V ′  is not a proper subset of G.
{V1, V3, V4} and {V2} are maximally independent sets of graph shown in Fig. 8.154.

Fig. 8.154

��)%�. ����-�����2�&>��-��&3

Birchoff and Lewis have introduced chromatic polynomials of graphs. Let G be a coloured graph. A
colouring of G from λ  colours is a colouring of graph G which uses λ  or fewer colours. If atleast one

of the vertices of G is assigned different colours, then two colourings of graph G from λ  colours are
said to be different. A graphs G with n vertices can be coloured in many different ways using a sufficiently
large number of colours. We use chromatic polynomials to find the number of ways of different proper
colouring of a graph on n vertices with a maximum of λ  colours.

Definition 8.110: The number of different colourings of a graph on n vertices that can be obtained
using λ  colours or fewer colours can be expressed as a polynomial of G.

The chromatic polynomial of G is denoted by ( ).n iP λ
Let G be a graph on n vertices. If ci denotes the different ways of properly colouring of G. Using

exactly i distinct colours, then these i colours can be chosen out of λ  colours in ( )iλ  distinct ways.

There are ( )i iC λ  distinct ways of properly colouring the graph G using exactly i colours out of λ
colours since i can be any positive integer from 1 to n the chromatic polynomial is

1

( )
n

i i
i

Cλ

=
∑

where each Ci has to evaluated individually for the given graph. If G is a graph with atleast one edge,
then G requires atleast two colours for proper colouring of G, therefore C1 = 0. If G has n vertices, then
can be properly coloured using in n! ways, therefore C1 = 0.

If G has n vertices; then can be properly coloured using n colours in n! ways. Therefore cn = n!

If G is a complete graph (Kn) on vertices, we have ei = 0 for i = 1, 2, 3, ..., n – 1 and cn = n! Therefore,

( )
1

( 1)( 2) ... ( 1)
( ) !

!

n

n i i
i

n
P C n

n
λ λ λ λ λλ

=

− − − += = ⋅∑

( 1) ( 2) ... ( 1)nλ λ λ λ= − − − +
If G = K4 (i.e., complete graph on 4 vertices)
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We have C1 = C2 = C3 = 0 and C4 = 4!
Hence the chromatic polynomial of G is

4
( 1)( 2)( 3)

( ) 4!
4!

P
λ λ λ λλ − − −= ⋅

( 1)( 2)( 3)λ λ λ λ= − − −

��&B� ��5�-�&�3

Example 1: Show that the chromatic polynomial of a graph G is

( 1) ( 2) ... ( 1)nλ λ λ λ− − − +
if and only if G is a complete graph on n vertices.

Solution: With λ  colours, the first vertex of a G can be coloured in λ  ways. A second vertex can be
coloured in ( 1)λ −  ways, the third vertex can be coloured in 3λ −  ways if and only if the third vertex

is adjacent to first-two vertices.... and the nth vertex can be coloured in 1nλ − +  ways if and only if

every vertex is adjacent to every other, that is if and only if G is complete.

Example 2: Find the chromatic polynomials of the graph shown in Fig. 8.155.

Fig. 8.155

Solution: G has a triangle therefore G requires minimum 3 colours for proper colouring.
We have C1 = 0, C2 = 0
When we have three colours the vertices of the triangle formed by 3 points for example say V1, V2,

V3 can be properly coloured in 3! ways. The vertex V4 can be assigned the colour of V2 and V5 can be
assigned of the vertex V3. Thus C3 = 3! = 6.

When we have 4 colours, we can take any four vertices say V1, V2, V3 and V4 of G and properly be
coloured with the 4 colours in 4! ways. The fifth vertex can be assigned the colour the vertex V2 or of V3.
Thus C4 = 2.4! = 48 and we have C5 = 5!

Hence, the chromatic polynomial of G is

5
( 1) ( 2) ( 1)( 2) ( 3)

( ) 3! 2 4!
3! 4!

P
λ λ λ λ λ λ λλ − − − − −= + ⋅ +

( 1) ( 2)( 3)( 4)
5!

5!

λ λ λ λ λ− − − −

( 1) ( 2) 2 ( 1)( 2)( 3)λ λ λ λ λ λ λ= − − + − − − +
( 1) ( 2)( 3) ( 4)λ λ λ λ λ− − − −
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[ ]( 1) ( 2) 1 2( 3) ( 3) ( 4)λ λ λ λ λ λ= − − + − + − −
2( 1) ( 2)[ 5 7]λ λ λ λ λ= − − − +

Theorem 8.42: Let u and v be two non-adjacent vertices of a graph G and ′G  be a graph obtained by

adding an edge between u and v. (i.e. ′G = G + u v). Let ′′G = G – u v. i.e., ′′G be the simple graph
obtained from G by fusing the vertices u and v together and replacing sets of parallel edges with single
edges. Then

1( ) of ( ) of ( ) ofλ λ λ−′ ′′= +n n nP G P G P G

Proof: The λ  colouring of G is of two types:

(i) λ  colouring if G assigning different colours to the vertices of u and v.

and (ii) λ  colouring assigning the same colour to u and v.
Hence the number of ways of properly colouring G such that u and v have different colours.

= Number of ways of properly colouring ′G  and the number of ways of properly colouring G such
that u and v have same colour.

= Number of ways of properly colouring .′′G

1( ) of ( ) of ( ) ofλ λ λ−′ ′′= +n n nP G P G P G

Theorem 8.43: Is often used in evaluating the chromatic polynomial of a graph. For example, Fig. 8.156
illustrates how the chromatic polynomials of a graph G is expressed a sum of chromatic polynomials of
5 complete graphs.

Fig. 8.156
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5 4 3( ) of 3 ( ) of ( ) ofn n nP K P K P Kλ λ λ= = +

5 5 5 4 4 3 3( ) of ( ) of 3 ( ) of ( ) ofP G P K P K P Kλ λ λ λ= + +

Example 3: Sketch two non-isomorphic graphs which have the same chromatic polynomial.
Solution: Consider the groups G, and G2 as shown in Fig. 8.157.

Fig. 8.157

G1 is a tree with v1 as to its root
G2 is a non-directed tree.

we have 1 2( ) 2 ( )X G X G= =
The graph G1 has a vertex whose degree is 3. There is no vertex of degree 3 in G2.
The degree sequence of G1 is (1, 1, 1, 3) and the degree sequence of G2 is (1, 1, 2, 2). Therefore, the

degree sequences of G1 and G2 are not the same. Hence G1 and G2 are 2-chromatic but not isomorphic.

�:��� � � � ���/

1. Define the terms:
(i) Vertex colouring of a graph.

(ii) Chromatic number of a graph.
(iii) K-critical graph.

2. Find the chromatic number of the following graphs:

(i ) (ii )

(iii ) (iv)



GRAPH THEORY 337

(v ) (vi )

(vii )

3. Write down all possible independent sets of the following graphs:
(i ) (ii )

(iii )

4. Show that the vertices of a planar graph with less than 30 edges is 4-colourable.
5. Show that a simple connected planar graph with 17 edges and 10 vertices cannot be 2-colourable.
6. Show that simple graph with 7 vertices each 4 is non-planar.
7. Show that a graph is dichromatic if and only if it has no odd circuits.
8. Find all maximal independent sets of the following graph:

9. Show that the regions of a planar graphs can be 2-coloured if each vertex has degree which is
even.
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10. Find the chromatic polynomials of the following graphs:
(i ) (ii ) (iii )

11. Find the chromatic numbers of the following graphs.
(a) (b )

12. Find the edge chromatic number for the graphs given below:
(a) (b )

��)) 
����27�

In this section, we consider digraphs (directed graphs), graphs in which edges have direction. Digraphs
are used to represent models of programmes. A city map showing only one-way street is an example of
digraph and there are many situations which require digraphs. The definition of a digraph was given
in 8.2.3.

Example 1: Let V = {a, b, c, d}, and

E = {(a, c), (a, d), (b, c), (d, b), (d, d)}

Then D = (V, E) is a digraph (see Fig. 8.158).

Fig. 8.158
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If (u, v) an edge (arc) joining u to v in a digraph G1 the vertex u is called the initial vertex (Tail) and
v is called the terminal vertex (Head). We also say that u is adjacent to v and v is adjacent from u. The out
degree of a vertex v in a directed graph G is the number of points (vertices) adjacent from it, and the
degree of v is the number of points adjacent to v.

Two edges in a directed graph D are said to be parallel if they have same initial and same terminal
vertices. An edge with same initial and terminal vertices is called self-loop. If v is an isolated vertex of
D then in-degree of v is zero and the out degree of v is also zero. If the degree of v is one, then is called
a pendant vertex in G. An alternating sequence of points and edge v0 e1 v1 e2 ..., en vn in which the
ei = (vi–1, vi) is called a walk (directed walk). The number of edge occurring in the walk is called the

length of the walk. If the initial and terminal vertices of the walk coincide then the walk is called a
closed walk. If v0, e1, v1, e2, ..., en, vn is a walk then v1, v2, ..., vn – 1 are called the internal vertices of the
walk (v0 – vn walk).

If all the vertices of a walk in a directed graph D are distinct then the walk is called a path (directed
path). A cycle is a non-trivial closed path write all vertices distinct (except the first and last). A directed
graph that has no self-loop or parallel edges is called a simple digraph (see Fig. 8.159)

Fig. 8.159

If there is a path from a vertex u to another vertex v in a digraph D, then v is said to be reachable
from u, and the distance d (u, v) from u to v is the length of any shortest such path. A digraph is said to
be strongly connected if and only if every pair of vertices of it is reachable from one another. If for every
pair of points in a digraph D, atleast one is reachable from the other then D is said to be unilaterally
connected.

A semi-path in a digraph D is defined as a path in the underlying graph G is D.
A digraph D is said to be weakly connected if its corresponding undirected graph G is connected but

D is not strongly connected. If D is weakly connected then every two points of D are joined by a
semi-path.

A digraph is that is not even weak is called a disconnected graph.

Example 2: The graph shown in Fig. 8.160 (a) is strongly connected, the graph shown in Fig. 8.160 (b)
is unilateral and the graph shown in Fig. 8.160 (c) is a simple digraph.

(a) (b) (c)

Fig. 8.160
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(a) Strongly connected graph.
(b) Unilaterally connected graph.
(c) Simple digraph.

��), ��(���	�����
�
����27�

Let R be a relation defined on a set A and let digraph D represent the relation R. Each ordered pair (u, v)
in R is represented by a directed edge drawn from u to v in D. If R is a reflexive relation the directed
graph D of R will have a self-loop at every vertex. Such a digraph of reflexive (binary) relation on a set
A is called a reflexive digraph. If R is a symmetric relation on a set A, then for every directed edge from
a vertex u to v, there is a directed edge from v to u in the digraph D of R. The directed graph D of a
symmetric relation R is called a symmetric digraph.

Fig. 8.161 Digraph of a symmetric relation

A digraph representing a transitive relation R on a set A is called a transitive digraph.

Fig. 8.162 Transitive digraph

A digraph representing an equivalence relation on a set A is called equivalence digraph.

Example 1: Given an example of a digraph which is strongly connected.
Solution: The graph shown figure is strongly connected.

Fig. 8.163
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Example 2: Find the shortest spanning path in graph shown in Fig. 8.164:

Fig. 8.164

Solution: A spanning path in a graph contains all the vertices of G.

v2 – v3 – v0 – v1 – v4

is a simple i.e., shortest spanning path in G.

Example 3: Construct the matrix corresponding to the digraph shown in Fig. 8.165

Fig. 8.165

Solution: Let M denote the matrix corresponding to the digraph G. The matrix M is given below:

Fig. 8.166

Example 4: Construct digraph corresponding to the matrix M. Where M is given as

Fig. 8.167
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Solution: The matrix M is a 4 × 4 matrix hence the digraph G has 4 vertices. Let v0, v1, v2 and v3 denote
the vertices of G. The digraph G can be drawn as shown in Fig. 8.168:

Fig. 8.168

��). ���	��������

Definition 8.111: Let G be a directed graph. G is said to be an arborescence if:

(i) G contains no circuit—neither directed nor semi-circuit; and
(ii) G has exactly one vertex v of zero in-degree.

The vertex v of zero degree in G is called the root of the arborescence.

Fig. 8.169

From the definition, it is clear that on arborescence is a directed tree in which there is exactly one
vertex of in-degree zero. If G is an arborescence then every vertex of T is reachable, from the root, and
the root is not accessible from any other vertex of G. If v is a vertex of out-degree zero, in G then v is
necessarily a pendant vertex. An arborescence is sometimes referred to as an out-tree.

Theorem 8.44: An arborescence is a tree in which every vertex other than the root has an in-degree of
exactly one.
Proof: Let G be an arborescence with n vertices. G can have at most n – 1, edges, because of condition
(i) If v1, v2, ..., vn denote the vertices of G, then the sum of in degree of all vertices in G, i.e.,

1 2( ) ( ) ( ) 1nd v d v d v n− − −+ + + ⋅ ≤ −�

exactly one of the terms on the left-hand side of the above equation is zero (by conditions (ii)) and the
remaining terms must all be positive integers, therefore each of the remaining terms must be 1. Now,
since there are exactly n – 1, vertices of in-degree one and one vertex of in-degree zero, G has exactly
n – 1 edges. Since G is without circuits, G must be connected. Hence G must be a tree, in which every
vertex other than the root has an in-degree of exactly one.
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We know that, digraph is just a relation on set and adjacency matrices can be used to represent relations
on sets. The methods of finding transitive closure of a given relation (digraph) was discussed in
Section 3.16 of Chapter 3. Through there are many methods to find the transitive closure of a relation
(digraph) Warshall’s method is considered to be the best-known methods describe the methods as follows:

Let A = {a1, a2, ... , an} and R be a relation on A. If v1, v2, ... , vn is a path in R, then the vertices v2, v3,

... , vm–1 are called internal vertices of the path. For 1 r n≤ ≤  we define a Boolean matrix, wr as follows:

wr has a 1 in position i, j if and only if there is a path from ai to aj in R whose internal vertices if any
are the members of the set {a1, a2, ... , ar}. Since all the vertices of the diagram are the elements of A, it
follows that wn has a 1 is position i, j if and only if some path in R connects ai with aj. If we define w0 to
be mr (matrix of R) then we will have a sequence w0, w1, ... , wn where w0 = mR and wn = wn.

Suppose wr = [pij] and wr–1 = [qij].
If pij = 1, then there must be a path from ai to aj whose interior vertices belong to the set { a1, a2, ...,

ar}. If ar is not an interior vertex of this path, then all the interior vertices must come from the set { a1, a2,
... , ar – 1} such that qij = 1.

Hence pij = 1 if and only if

(i) qij = 1 or
(ii) qir = 1 and qrj = 1

If wr – 1 has a 1 in position iij then by (i) so will the matrix wr and by (ii) a new 1 can be added in
position iij of wr if and only if rth column of wr – 1 has a 1 in position i. The following steps are involved
in computing wr from wr – 1.

Step 1: Transfer all 1’s in wr –1 to wr.

Step 2: List the locations s1, s2, ... in column r of wr–1 where the entry is 1 and the locations t1, t2, ..., in
row r of wr–1 where the entry is 1.

Step 3: Put 1’s in all the positions si, tj of wr (if there are 1’s in such positions).

Example: Let A = {1, 2, 3, 4} and R = {(1, 2), (2, 3), (3, 4), (2, 1)} be a relation on A. The transitive
closure of R may be computed as follows:

The matrix of the relation R is
0 1 0 0

1 0 1 0

0 0 0 1

0 0 0 0

RM

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

MR is 4 × 4 matrix.

Then 0

0 1 0 0

1 0 1 0

0 0 0 1

0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟= = ⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

nW M
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Consider the column 1 of w0. The second location (position) of the column 1 (c1) has we next
consider row 1 of w0. The second locations row 1 (R1) has 1.

Therefore, we put 1 in the position 2, 2 of w0, to form the matrix w1.
The matrix obtained can be written as follows:

1

0 1 0 0

1 1 1 0

0 0 0 1

0 0 0 0

W

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

in column 2 of w1, we find the locations 1 and 2 have 1’s. in row 2 the matrix w1 has 1’s in the position
1, 2 and 3. To obtain the matrix w2 we put 1’s in the position (1, 1), (1, 2), (1, 3), (2, 1) (2, 2) and (2, 3)
of w1. It can written as

2

1 1 1 0

1 1 1 0

0 0 0 1

0 0 0 0

W

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

The locations 1 and 2 of column 3 of w2 has 1’s and location 4 of row 3 of w2 has a 1. We put 1 in
the position (1, 4) and (2, 4) of w2 to form w3.

3

1 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

W

w3 has 1’s in the locations 1, 2, 3 of column 4 and no 1’s in row 4. Therefore no new 1’s are added to w3.
While forming w4.

4

1 1 1 1

1 1 1 1

0 0 0 1

0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

W

Fig. 8.170 Transitive closure of R
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1. Define the terms:
(a) Directed graph
(b) Simple digraph
(c) Walk in a digraph
(d ) A symmetric digraph
(e) Symmetric digraph
(f ) Strongly connected digraph.

Give examples.
2. Define the terms:

(i) In degree of a vertex.
(ii) Out degree of a vertex.

Show that in a digraph G, the sum of the degrees in equals the sum of the out degree.
3. Write the adjacency matrix of the graph G.

4. Draw the digraph G corresponding to the matrix:

0 1 1 0

0 0 0 0

0 1 1 1

0 2 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

5. Find the out degree of each vertex in the digraph given below:
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6. Find a simple path in the graph G.

7. Draw the digraph corresponding to the matrix M, where M

0 1 0 0

0 1 0 0

0 0 0 1

2 0 1 0

M

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

8. Construct the matrix corresponding to the digraph G (given below):

9. Let R be the relation whose digraph is given below. List all the paths of lengths 3 starting from
vertex a.
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9

Algebraic Structures

��� ����	
����	�

In this chapter, we shall deal with some important algebraic structures—groups, rings, internal domains
and fields. We begin with one operational structure (system).

�� �������	������	�

Definition 9.1: A binary operation * in a set A is a function from A × A to A.

Note: The word binary is used in the above definition because we are associating an element of the set A with a
pair of elements of A. We can also use symbols like 0, +, ×, etc.

Notation: If * is a binary operation (binary composition) in a Set A then than for the * image of the

ordered pair (a, b) ,∈ ×A A  we write a * b (or * (a, b)).

Example 1: Addition (+) is a binary operation in the set of natural number N. Set of integers Z and set
of real numbers R.

Example 2: Multiplication (×) is a binary operation in N, Z, Q, R and C.

Example 3: Union, intersection and difference are binary operations in P (A), the power set of A.

��� ����������	�������

We now discuss some general properties of binary operations.

Definition 9.2: Let A be any set. A binary operation * A × A → A is said to be commutative if for

every a, , .a b A∈
a * b = b * a

Example 1: Addition is commutative in the set of natural numbers.

Definition 9.3: Let A be a non-empty set. A binary operation *; A × A → A is said to be associative if

(a * b) * c = a * (b * c)  for every a, b, .∈c A

Example 2: The operations of addition and multiplication over the natural numbers are associative.
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Definition 9.4: Let * be a binary operation on a set A. If there exists an element le A∈  such that

el * a = a for every ,a A∈  then the element el is called the left identity with respect to *. Similarly, if
there exists an element re A∈  such that a * er = a for every ,a A∈  the element er is called the right
identity in A with respect to *.

Definition 9.5: Let * be a binary operation on a non-empty set A. If there exists an element e A∈
such that e * a = a * e = a for every ,a A∈  then the element e is called identity with respect to * in A.

Example 3: Zero is the identity element in the set integers with respect to the binary operation addition
(i.e., +).

Definition 9.6: Let * be a binary operation on a non-empty set A and e be the identity element in A

with respect the operation *. An element a A∈  is said to be invertible if there exists an element b A∈
such that

a * b = b * a = e

In which case a and b are inverses of each other. For the operation * if b is the inverses of a A∈
then we can write b = a–1.

����� ��������������� !

Definition 9.7: A binary operation denoted by * in a set A, is said to satisfy.

(i) Left cancellation law if for all a, b, ,c A∈

a * b = a * c ⇒  b = c

(ii) Right cancellation law if for all a, b, c A∈

b * a = c * a ⇒  b = c

Definition 9.8: Let * and o be two binary operations inset A; if for all a, b, .c A∈
(i) (boc) * a = (b * a) o (c * a)

then we say that * is left distributive over o.

(ii) a * (boc) = (a * b) o (a * c)

then * is right distributive over o.

(iii) and distributive * is both left distributive and right distributive over o.

Example: In P (A), the power set of A, union is distributive over intersection and intersection is
distributive of union of sets.

Theorem 9.1: The identity elements of a binary operation * in a set A, if it exists and is unique.

Proof: If possible, let e′  and e′′  be two identity elements in A with respect to the binary operation *e′
is an identity element in A

* *e e e e e′ ′′ ′′ ′ ′′⇒ = =

and e′′  is an identity element in A

*e e e e e′′ ′ ′ ′′ ′⇒ = =
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which together show that

e e′ ′′=

Theorem 9.2: If * is an associative binary operation in A, then the inverse of every invertible element
is unique.

Proof: Let ,a A∈  be an invertible element with respect to *. If possible let b and c be two distinct

inverses of the element a in A.
Let e be the identity elements in A with respect to *.
Then we have

b * a = a * b = e
and c * a = a * c = e

now (b *a) * c = b * (a * c) ( *�  is associative in A)

⇒ e * c = b * e

⇒ c = b

This completes the proof of the theorem.

Theorem 9.3: If * is an associative binary operation in a set A, such every element is invertible, then
* satisfies the left as well as the right cancellation laws i.e.,

a * b = a * c ⇒  b = c

b * a = c * a ⇒  b = c , ,a b c A∀ ∈

Proof: Let e be the identity element of A with respect to *. Every element in A is invertible a A⇒ ∈
is invertible.

Let a′  denote the inverse of a in A then

a * b = a * c

* ( * ) * ( * )a a b a a c′ ′⇒ =

( * ) * ( * ) * ( *a a b a a c′ ′⇒ = �  is associative)

* * (e b e c a′⇒ = �  is the inverse of a)

b c⇒ =
Similarly, we can prove that

b * a = c * a ⇒  b = c , ,a b c A∀ ∈

�"��� � � � ����

1. Show that division is a binary operation on R – {0} and C – {0}.
2. Show that addition is a binary operation in the set M of all m × n matrices.
3. Show that the least common multiple of two natural is a binary operation in the set of natural

numbers N.
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4. If * is a binary operation in R defined by a * a = a + b – ab , ,a b R∀ ∈  then

Show that the inverse of 1a ≠  is 1−
a

a .

5. Define a ‘binary operation’. Mention the various properties binary composition and give examples
of each.
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Definition 9.9: Let A be a non-empty set. A mapping f: An → A is called an n-ary operation on the set
A and n is called the order of the operation.

For n = 1, f: A → A is called a unary operation.

For n = 2, f: A2 → A is called a binary operation.

It an operation (or composition) on the elements of a set produces images which are also the elements
of the same set, the set is said to be closed under that operation and this property is called closure
property.

��% ���������������������&���������������'�(

A system consisting of a non-empty set S and one or more n-ary operations on the set S is called an
algebraic system. If A is a non-empty set and f1, f2, f3, … are n-ary operations on A, then (S, f1, f2, f3, …)
is an algebraic systems (or structure).

The operations on a set S, define a structure on the elements of S, therefore S is called an algebraic
structure. Our purpose in this chapter is to study the elementary aspects of some of the most fundamental
algebraic structures—groupoids, semi-groups, monoids, groups and rings. We begin with the following
definition of an algebraic structure.

Definition 9.10: If A is a set and * is a binary operation on A, then (A, *) is called an algebraic
structure.

Example 1: Let R be the set of real numbers, then (R, +) is an algebraic structure.

Example 2: Let Z be the set of integers. Addition (+) and multiplication (×), are binary operations on

Z. The system (Z, +) is an algebraic structure and ( , )⋅Z  is also an algebraic structure.

Example 3: If N denotes the set of natural numbers then (N, +) is an algebraic structure.

��%�� �)�*+��,

We have defined an algebraic structure. If * is a binary operation on a non-empty set A. Such that

*a b A∈  for all ,a b A∈  then we say that A is closed under the operation.

Example 1: If A = {0, 1}, then A is closed under multiplication.
We have 0 × 0 = 0, 0 × 1 = 0, 1 × 0 = 0, and 1 × 1 = 1
But A is not closed under the binary operation addition. Since 1 + 1 = 2 does not belong to A.
Now we define the following algebraic structure:
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Definition 9.11: A groupoid is an algebraic structure consisting of non-empty set A and a binary
operation *, which is such that A is closed under *.

Example 2: The set of real numbers is closed under addition, therefore (R, +) is a groupoid.

Example 3: If E denotes the set of even numbers then E is closed under addition. And (E, +) is a
groupoid.

Example 4: Let Z+ denotes the set of positive integers and * be a binary operation on Z+ defined as
follows

a * b = 3a + 4b ,a b Z +∀ ∈

Clearly (Z+, *) is a groupoid.
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Definition 9.12: Let S be a non-empty set and * be a binary operation on S. The algebraic (S, *) is
called a semi-group if the operation * is associative. In other words, the groupoid is a semi-group if

(a * b) * c = a * (b * c) for all , ,a b c S∈
Thus, a semi-group requires the following:

(i) A sets.

(ii) A binary operation * defined on the elements of S.

(iii) Closure, a * b whenever , .∈a b S

(iv) Associativity i (a * b) * c = a * (b * c) for all , , .∈a b c S

Example 1: Let N be the set of natural numbers. Then (N, +) and (N, *) are semi-groups.

Example 2: X be a non-empty set and P (X) denote the power set of X. Then ( ( ), )P x ∪  and ( ( ), )P x ∩
are semi-groups.

Example 3:  Let Z be the set of integers and Zm be the set equivalence classes generated by the
equivalence relation “congruent modulo M” for any positive integers m. Then +m be defined integers of
+ on Z as follows:

For any [i], [ j] mZ∈

[i], +m [ j] = [(i + j) mod m]

The algebraic system (Zm, + m) is a semi-group.
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Definition 9.13: Let (S, *) and (T, 0) be any two semi-groups. A mapping f: S → T such that for any

two elements ,a b S∈

f (a * b) = f (a) o f (b)
is called a semi-group homomorphism.
Definition 9.14: A homomorphism of a semi-group into itself is called a semi-group endomorphism.
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Definition 9.15: Let (S, *) and (T, 0) be any two semi-groups. A homomorphism f: S →  T is called a
semi-group isomorphism if f is one-to-one and onto.

If f: S →  T is an isomorphism then (S, *) and (T, 0) are said to be isomorphic.
Definition 9.16: An isomorphism of a semi-group onto itself is called a semi-group automorphism.

Theorem 9.4: Let (S, *) , (T, 0) and ( , )V Δ  be semi-grouops f: S → T, and T → V be semi-group

homomorphism. Then gof: S → V is a semi-groups homomorphism from (S, *) to ( , ).∨ Δ

Proof: Let ,a b S∈  then

(gof ) (a * b) = g [f (a * b)

= g [f (a) o f (b)]

= (g f (a)) Δ  (gf (b))

= (gof ) (a) Δ  (gof ) (b)

Hence gof : S → V is a semi-group homomorphism.

We state the following theorem without proof.

Theorem 9.5: The set of all endomorphisms of a semi-group is a semi-group under the operation of
(left) composition.

Theorem 9.6: The set of all semi-group automorphisms of a semi-group is a semi-group under the
operation of (left) composition.

Theorem 9.7: Let (S, *) be a semi-group and (S s, 0) be the semi-group of functions from S to S, then

there exists a homomorphism ∅ : S → S s under the operation of left composition.

Proof: Let a A∈  and let

∅ : (a) = fa where s
af S∈  and fa is defined by fa (b) = a * b for any .b S∈

fa * b (c) = (a * b) * c

= a * (b * c)

= fa (fb (c))

= ( )a bf o f  (c) for all c S∈

and *( * ) ( ) ( )∅ = = = ∅ ∅a b a ba b f f o f a o b  for all , .a b S∈

Thus S → Ss is a homomorphism form (S, *) into (S s, 0).
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Definition 9.17: A semi-group (M, *) with an identity element with respect to the binary operation *
is called a monoid. In other words, an algebraic system (M, *) is called a monoid if:
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(i) (a * b) * c = a * (b * c) , , .a b c M∀ ∈

(ii) There exists an element e M∈  such that e * a = a * e = a .a M∀ ∈

Example 1: Let Z be the set of integers (Z, +) is a monoid 0 is the identity element in Z with respect
to +.

Example 2: Let N be the set of natural numbers (N, X) is a monoid. 1 ei the identity element in N with
respect to the composition X.

Let (M, *) be a monoid. If the operation * is commutative then (M, *) is said to be commutative. If

, ,i ja a M∈  we have ai + j = ai * aj = aj * ai  for all , .∈i j M

A monoid (M, *) is said to be cyclic if there exists an element .a M∈  Such that every element of M
can be expressed as some power of a. If M is a cyclic monoid such that every element is some power of

,a M∈  then a is called the generator of M. A cyclic monoid is commutative and a cyclic monoid is
commutative and a cyclic monoid may have more than one generator.

Example 3: The algebraic system (N, +) is a cyclic monoid generated by 1.

Example 4: If M = {–1, 1, i, –i}, where 1,i = −  then (M, *) is a cyclic monoid: The elements i and –

i are its generators.
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Definition 9.18: Let (M, *) and (T, 0) be any two monoids em and et denote the identity elements of
(M, *) and (T, 0) respectively. A mapping

f: M → T

such that for any two elements ,a b M∈
f (a * b) = f (a) o f (b)

and f (em) = et

is called a monoid homomorphism.

Monoid homomorphism presents the associativity and identity. It also preserves commutative. If
a M∈  is invertible and 1a M− ∈  is the inverse of a in M, then f (a–1) is the inverse of f (a), i.e., f (a–1)

= [f (a)]–1.
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Definition 9.19: A group is an algebraic structure (G, *) in which the binary operation * on G satisfies
the following conditions:

G – 1 for all a, b, c, G∈

a * (b * c) = (a * b) * c (associativity)

G – 2 there exists an elements e G∈  such that for any a G∈
a * e= e * a = a (existence of identity)
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G –3 for every ,a G∈  there exists an element denoted by a–1 in G such that

a * a–1 = a–1 * a = e
a–1 is called the inverse of a in G.

Example 1: (Z, +) is a group
where Z denote the set of integers.

Example 2: (R, +) is a group
where R denote the set of real numbers.
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Definition 9.20: Let (G, *) be a group. If * is commutative that is

a * b = b * a for all ,a b G∈
then (G, *) is called an Abelian group.

Example: (Z, +) is an Abelian group.

����� 0�������)�*+

A group G is said to be a finite group if the set G is a finite set.

Example: G = {–1, 1} is a group with respect to the operation multiplication. Where G is a finite set
having 2 elements. Therefore G is a finite group.
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A group G, which is not finite is called an infinite group.
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Definition 9.21: The order of a finite group (G, *) is the number of distinct element in G. The order of
G is denoted by O (G) or by |G|.

Example: Let G = {–1, 1}
The set G is a group with respect to the binary operation multiplication and O (G) = 2.

��� �	�7�
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Example 1: Show that the set G = {1, –1, i, –i} where 1i = −  is an abelian group with respect to

multiplication as a binary operation.
Solution: Let us construct the composition table.

Table 9.1

� 1 –1 i –i

1 1 –1 i –i

–1 –1 1 –i i

–i i –i –1 1
–i –i i 1 –1
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From the above composition, it is clear that the algebraic structure ( , )G ⋅  is closed and satisfies the

following axioms:

Associativity: For any three elements a, b, c G∈ ( ) ( )a b c a b c⋅ ⋅ = ⋅ ⋅
Since

1 ( 1 ) 1i i i⋅ − ⋅ = ⋅ − = −

(1 1) 1i i i⋅ − ⋅ = − ⋅ = −

⇒ 1 ( 1 ) (1 1)i i⋅ − ⋅ = ⋅ −
Similarly with any other three elements of G the properties holds.

∴  Associative law holds in ( , )G ⋅

Existence of identity: 1 is the identity element ( , )G ⋅  such that 1 1⋅ = = ⋅a a a a G∀ ∈

Existence of inverse: 1 1 1 1 1⋅ = = ⋅ ⇒  1 is inverse of 1

( 1) ( 1) 1 ( 1) ( 1)− ⋅ − = = − ⋅ − ⇒  –1 is the inverse of ( –1)

( ) 1i i i i⋅ − = = − ⋅ ⇒  –i is the inverse of i in G.

1 ( )i i i i− ⋅ = = ⋅ − ⇒ i is the inverse of –i in G.

Hence inverse of every element in G exists.
Thus all the axioms of a group are satisfied.

Commutativity: a b b a⋅ = ⋅ ,a b G∀ ∈  hold in G

1 1 1 1 1, 1 1 1 1 1⋅ = = ⋅ − ⋅ = − = ⋅ −

1 1 ; 1i i i i i i i⋅ = = ⋅ ⋅ − = − ⋅ =  = 1 etc.

commutative law is satisfied

Hence ( , )G ⋅  is an abelian group.

Example 2: Prove that G = 2{1, , }ω ω  is a group with respect to multiplication where 21, ,ω ω  are cube

roots of unity.
Solution: We construct the composition table as follows:

Table 9.2

� 1 ω 2ω

1 1 ω 2ω

ω ω 2ω 3ω  =1

2ω 2ω 3ω  =1 4ω  =ω
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The algebraic system is ( , )G ⋅  where 3ω  = 1 and multiplication ‘’⋅  is the binary operation on G.

From the composition table; it is clear that ( , )G ⋅  is closed with respect to the operation multiplication

and the operation ‘’⋅  is associative.
1 is the identity element in G such that

1 1a a a⋅ = = ⋅ a G∀ ∈
Each element of G is invertible

1 1⋅  = 1 ⇒  1 is its own inverse.

2 3 21ω ω ω ω⋅ = = ⇒  is the inverse of ω  and ω  is the inverse of 2ω  in G.

∴ ( , )G ⋅  is a group and a b b a⋅ = ⋅ ,a b G∀ ∈  that is commutative law holds in G with respect
to multiplication.

∴ ( , )G ⋅  is an abelian group.

Example 3: Prove that the set Z of all integers with binary operation * defined by a * b = a + b + 1

,a b G∀ ∈  is an abelian group.

Solution: Sum of two integers is again an integer; therefore ,+ ∈ ∀ ∈a b Z a b Z

⇒ 1 ,+ + ⋅ ∈ ∀ ∈a b Z a b Z

⇒  Z is called with respect to *

Associative law for all a, b, ,a b G∈  we have (a * b) * c = a * (b * c) as

(a * b) * c = (a + b + 1) * c

= a + b + 1 + c + 1

= a + b + c + 2

also

a * (b * c) = a * (b + c + 1)

= a + b + c + 1 + 1

= a + b + c + 2

Hence (a * b) * c = a * (b * c) , .∈ ∈a b Z

Example 4: Let S be non-empty set and P (S) be the collection of all subsets of S. Let the binary
operation Δ  called the symmetric difference of sets be defined as

( ) ( ) , ( )A B A B B A A B P SΔ = − ∪ − ∀ ∈

then show that (P (S), )Δ  is an abelian group.

Solution: If A and B are any two subsets of S, then A BΔ  is also a subset of S, therefore (P (S), )Δ  is

closed with respect to .Δ

Associativity: , , ( )A B C P S∀ ∈

( ) ( )A B C A B CΔ Δ = Δ Δ  can easily be verified.
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Existence of identity

( )P S∅∈  such that

A A AΔ ∅ = = ∅ Δ

⇒ ∅  is the identity in (P (S), )Δ

Existence of inverse: ( )A P S∀ ∈

A AΔ = ∅ ⇒ A is the inverse of A.

Commutative law , ( )A B P S∀ ∈

( ) ( )A B A B B AΔ = − ∪ −

( ) ( )B A A B= − ∪ −

B A= Δ

Hence (P (S), )Δ  is an abelian group.

Example 5: Show that the set of four transformations f1, f2, f3 and f4 on the set of complex numbers be
defined by

1 2( ) , ( )f z z f z z= = −

3 4
1 1

( ) , ( )f z f z
z z

−= =

Forms a finite abelian group with respect to the binary operation as the composition of product of
two functions.

Solution: Let G = {f1, f2, f3, f4} and ‘’⋅  denote the composition as the composite of two functions.

We have

f1, f1 = f1, f1, f2, = f2, f1, = f2

f1, f3, = f3, f1 = f1, f4 = f4, f1 = f4

2 2 2 1( ) ( ) ( ) ( )f f z f z z z f z= − − = − = =

2 2 1f f f⇒ =

2 3 2 3 2 4
1 1

( ) ( ( )) ( )f f z f f z f f z
z z
⎛ ⎞= = = − =⎜ ⎟⎝ ⎠

2 3 4f f f⇒ =
Similarly, we can show that

f2 ⋅ f4 = f3, f3 ⋅  f2 = f4

f3 ⋅ f3 = f1,  f3 ⋅ f4 = f2

f4 ⋅ f2 = f3, f4 ⋅ f3 = f2 and f4 ⋅ f4 = f1
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we have the following table:

Table 9.3

� f1 f2 f3 f4

f1 f1 f2 f3 f4

f2 f2 f1 f4 f3

f3 f3 f4 f1 f2

f4 f4 f3 f2 f1

From the Table 9.3 , it is clear that all the entries are the elements of G and therefore closure
property holds good. The composite of functions is associative. f1 is the identity element of G with
respect to the given operation. The inverses of f1, f2, f3 and f4 are f1, f2, f3 and f4 respectively i.e., each
element in G is its own inverse.

Also, commutative law holds good in G. Therefore ( , )G ⋅  is an abelian group.
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We shall now define a composite known as “addition modulo m” where m is fixed integer.
If a and b are any two integers, and r is the least non-negative reminder obtained by dividing the

ordinary. Sum of a and b by m, then the addition modulo m of a and b is r symbolically.

a + m b = r, 0 ≤ r < m

Example: 7 +5 9 = 1

since 7 + 9 =16 = 5 3 1⋅ +
also –15 +5 3 = 2

since –15 + 3 = –12 = 5 2 ( 2)− ⋅ + −
The numbers 13 and –23 are identical under addition modulo 4, as their difference is divisible by 4.

We therefore write.
13 ≡  1 (mod 4)

which is read as 13 is congruent to 1 mod 4.
Also –23 ≡  1 (mod 4)
Which is read as –23 is congruent to 1 mod 4.

∴ In general, if the difference a – b is divisible by m we write.
a ≡  b (mod m)

i.e., “a is congruent to b mod m.”
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The multiplication modulo p, where p is a positive integer of any two integers a and b is defined as r,
where r is the least non-negative remainder when the product of a and b is divided by p. Symbolically
we write

a ×p b = r, 0 ≤ r < p

Example 1: Show that the set G = {0, 1, 2, 3, 4} is an abelian group with respect to addition modulo 5.
Solution: We form the composition table as follows:

Table 9.4

+5 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1

3 3 4 0 1 2
4 4 0 1 2 3

Since all the entries in the composition table are elements of G, the set G is closed with respect to
addition modulo 5.

Associativity: For any three element a, b, c G∈  (a + b) + c and a + (b + c) leave the same remainder

when divided by 5.
i.e., (a +5 b) +5 c = a +5 (b +5 c)

We have (1 +5 3) +5 4 = 3 = 1 +5 (3 +5 4) etc.

Existence of identity: Clearly 0∈G  is the identity element we have 0 +5 9 = 9 = 9 +5 0 .a G∀ ∈

Existence of inverse: Each element in G is invertible with respect to addition modulo 5.
0 is its own inverse
4 is the inverse of 1 and 1 is the inverse of 4
2 is the inverse of 3 and 3 is the inverse of 2 with respect to addition modulo 5 in G.

Commutativity: From the composition table it is clear that

a +5 b = b +5 a ,a b G∀ ∈

Hence (G, +5) is an abelian group.

Example 2: Show that the set G = {1, 2, 3, 4} is an abelian with respect to multiplication modulo 5.
Solution: The composition table for multiplication modulo 5 is
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Table 9.5

× 5 1 2 3 4

1 1 2 3 4
2 2 4 1 3

3 3 1 4 2
4 4 3 2 1

From the above table, it is clear that G is closed with respect to the operation × 5 and the binary
composition × 5 is associative 1 is the identity element.

Each element in G has a inverse.
1 is its own inverse
2 is the inverse of 3
3 is the inverse of 2
4 is the inverse of 4, with respect to the binary operation × 5. Commutative law holds good in

(G, × 5). Therefore (G, × 5) is an abelian group.
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In general, we can define a binary composition denoted by +m, in the set G = {0, 1, 2, …, m – 1}.
As follows:

for a b G, ∈
a +m b = remainder obtained by dividing a + b (the ordinary sum of a and b) by m.
(G, +m) is a commutative group of order m. The group (G, +m) is called additive group of integers

modulo m. The set G.

���%�� '*���+������5���)�*+��6�����8�)!

consider the set G0 = {1, 2, 3, …, p – 1}, where p is a prime.

Let us define a binary operation in G0 to be denoted by p⋅  (or ×p) and called multiplication modulo
p as follows.

For a, 0, ,a b G∈  we define

pa b⋅  = r, where r is the remainder obtained on dividing the ordinary product ab by p.

0( , )pG ⋅  is a commutative group of order p – 1.
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Consider the relation “Congruence modulo m” defined in 9.12. The relation congruence modulo ‘m’ is
an equivalence relation in the set of integers. The operation ‘Congruence modulo m’ Partitions Z into
disjoint equivalence classes called residue classes modulo m or congruence classes modulo m.

If ,a Z∈  then the residue class of a is denoted by or [ ]a a  where [ ] { : ,a a x x Z= = ∈  and x – a

is divisible by m}.

{0, 1, 2, …, m – 1} is called the set of residue modulo m.
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Definition 9.22: Let m N∈  and ,n Z∈  and { : ,r x x Z x r= ∈ ≡  (mod m).

Then the set

Zm = {0, 1, 2, ..., 1}m −  is called the complete set of residue classes modulo m where r  = {…, –2m

+ r, –m + r, r, m, m + r, 2m + r, …} and 0, 1, 2, ..., 1m −  are all distinct.

Example: If m = 6, then Zm = {0, 1, 2, 3, 4, 5}

Where

0  = {…, –12, –6, 0, 6, 12, …}

1  = {…, –11, –5, 1, 7, 13, …}

2  = {…, –10, –4, 2, 8, 14, …}

3  = {…, –9, –3, 3, 9, 15, …}

4  = {…, –8, –2, 4, 10, 16, …}

5  = {…, –7, –1, 5, 11, 17, …}

0, 1, 2, 3, 4, 5  are all disjoint.

Addition of residue classes we define addition of residue classes denoted by + as a b a b+ = +
, ,∀ ∈ ma b Z  where + on R.H.S. is ordinary addition. If r is the remainder when a + b is divided by m

then a b a b+ = +  = r.

The set {0, 1, 2, ..., 1}m −  is an abelian group of order m with respect to addition of residue classes.

If P is a prime, then set of non-zero residue classes modulo p forms a group of order (p – 1), with respect

to multiplication of residue classes where {0, 1, 2, ..., 1}= = −p p

{ : , and 1 1}r r Z r p= ∈ ≤ ≤ −

and a b ab⋅ =  for all , pa b Z∈

�"��� � � � ���

1. Define (i) group (ii) abelian group.
2. Show that the following algebraic structures are groups.

(a) The set of real numbers under multiplication.
(b) The set of rational numbers under addition.
(c) The set of non-zero real numbers under multiplication.

(d ) The set of complex numbers under addition.
(e) The set of non-zero complex numbers under multiplication.

(f ) The set R in which a * b = , .
2

a b
a b R∀ ∈
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3. Show that the set of all vectors in R2 is an infinite group with victor addition as the composition.

4. Prove that the set G = { 2 : , }a b a b Q+ ∈  is a group with respect to addition.

5. Show that the set of all victors in R3 with victor addition as binary composition is an infinite
abelian group.

6. Show that the set of non-signed matrices of order n by m (n is fixed) with elements are rational
numbers with matrix multiplication as binary composition is a group.

7. Prove that the matrices

1 0 0 1
,

0 1 1 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

form a multiplicative group
8. On the set of integers Z,  we introduce a binary operation * defined as follows. a * b = a + b + 1,

where + is ordinary addition. Show that (Z, *) is a group.
9. Show that the set G = {–1, 1}, is a finite abelian group of order 2, under multiplication.

10. Prove that the set {1, 2, 3, 4,5, 6} of order 6 is a finite abelian group of order 6 under multiplication
modulo 7.

11. Show that n * y = xy in a binary operation on the set of natural numbers. Is the operation
commutative and associative.
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Theorem 9.8: If (G, *) is a group, then the identity element in G is unique.
Proof: Let e1 and e2 be identity elements in G.

e1 is the identity element and 2e G∈

⇒ e1 * e2 = e2 = e2 * e  … (i)

e2 is the identity and 1e G∈

⇒ e2 * e1 = e1 = e1 * e2  … (ii)

from (i) and (ii), we get e1 = e2

Theorem 9.9: The inverse of each element in a group (G, *) is unique.

Proof: Let a G∈  and e be the identity element in G.

Let b G∈  be an inverse of a in G also let c G∈  be an inverse of a in G since b is the inverse of a,

we have
a * b = b * a = e

Also c is an inverse of a in G ⇒ a* c = c * a = e

Now b = b * e

= b * (a * c) (e is the identity)
= (b * a) * c
= e * c (by associative law)
= c
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Note: The identity element is its own inverse.

Theorem 9.10: In a group (G, ×)

1 1( )a a a G− − = ∀ ∈
(a–1 is the inverse of a in G)
Proof: G is a group

1a G a G−∴ ∈ ⇒ ∈  such that

a–1 * a = e = a * a–1

now 1 1 1( )a G a G− − −∈ ⇒ ∈  such that

(a–1) (a–1)–1 = e (a–1)–1 * (a–1)
consider a–1 * a = e

⇒  (a–1)–1 *(a–1 * a) = (a–1)–1 * e

⇒  {(a–1)–1 * a–1) * a = (a–1)–1

⇒ e * a = (a–1)–1

⇒ a = (a–1)–1

Therefore  (a–1)–1 = a a G∀ ∈

Theorem 9.11: If (G, *) is a group then (a * b)–1 = b–1 * a–1 for all ,a b G∈  (Reversal law).

Proof: Let ,a b G∈  and e be the identity element in G.

1a G a G−∈ ⇒ ∈  such that a * a–1 = a–1 * a = e

and 1b G b G−∈ ⇒ ∈  such that b–1 = b–1 * b = e

now , *a b G a b G∈ ⇒ ∈  and 1( )ab G− ∈

Consider (b–1 * a–1) * (a * b) = b–1 * (a–1 * a) * b (by associative law)
= b–1 * e * b (a–1 * a = e)
= b–1 * b (e is the identity)
= e (b–1 * b = e)

and (a * b) * (b–1 * a–1) = (b–1 * b–1) * a–1 (by associative law)
= a * e * a–1

= a * a–1 (e is the identity)
= e

Therefore (b–1 * a–1) (a * b) = (a * b) * (b–1 * a–1) = e

⇒ (a * b)–1 = b–1 * a–1 ∀ ∈a b G,  (by the definition of inverse)

Theorem 9.12: Cancellation laws hold good in G, i.e., for all a, b, , ,a b c G∈

a * b = a * c ⇒  b = c (left cancellation law)
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b * a = c * a ⇒  b = c (right cancellation law)

Proof: 1a G a G−∈ ⇒ ∈  such that

a * a–1 = a–1 * a = e, where e is the identity element in G.
Consider

a * b = a * c

⇒ a–1 * (a * b) = a–1 (a * c)

⇒  (a–1 * a) * b = (a–1 * a) * c (by associative law)

⇒ e * b = e * c (a–1 is the inverse of a in G)

⇒  b = c (e is the identity element in G)

now
b * a = c * a

⇒  (b * a) a–1 = (c * a) * a–1

⇒  b * (a * a–1) = c * (a * a–1) (by associative law)

⇒  b * e = c * e (a a–1 = e)

⇒  b = c (e is the identity element in G)

Hence cancellation laws hold good in G.

Theorem 9.13: If a and b are any two elements of group (G, *) then the equations.
a * x = b and y * a = b have unique solution in G.

Proof: Let ,a G∈  then 1a G− ∈

Such that a * a–1 = a–1 * a = e

Now 1 1, *a G b G a b G− −∈ ∈ ⇒ ∈  (closure property)

Consider
a * x = b

⇒ a–1 * (a * x) = a–1 * b

⇒  (a–1 * a) * n = a–1 * b

⇒ e * x = a–1 * b

⇒ x = a–1 * b

Hence x = a–1 * b is a solution in G of the equation a * x = b.

Now we shall show that, the solution is unique:
If possible let there be two solutions:
Say x1 * x2 of a * x = b in G, then

a * x1 = b and a * x2 = b

⇒ a * x1 = a * x2

⇒ x1 = x2 (by left cancellation law)

Therefore  a * x = b, has unique solution in G.
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Similarly, we can show that
y * a = b, has unique solution in G.

���1 ���������7���	���������0	������	��

We state the following theorem (without proof). Which helps us to think of the alternative postulates for
a group.

Theorem 9.14: If (G, *) is a semi-group such that
x * a = b  and  a * y = b

have a solution for ,a b G∈  then (G, *) is a group.

Theorem 9.15: If (G, *) is a finite semi-group

Such that , ,a b c G∀ ∈

a * b = a * c ⇒  b = c

and b * a = c * a ⇒  b = c

then (G, *) is a group.

Theorem 9.16: If (G, *) is a semi-group, such that

(i) There exists an element ,e G∈  such that

a * e = a a G∀ ∈

(ii) a G∈ ⇒  There exists an element, a1 ∈ G  such that

a * a1 = e
then (G, *) is a group.

Theorem 9.17: If (G, *) is a finite group of orders n, then for each ,a G∈  there exists a positive

integer m ≤ n such that am = e, e being the identity of G.

Proof: Let ,a G∈  then

a * a = a2 G∈

a2 * a = a * a * a = 3a G∈

an–1 * a = na G∈
∴ e, a, a2, a3, …, an are all elements of G.
These elements are (n + 1) in numbers, therefore they cannot all be distinct. If some ar = e then the

theorem is proved. In the other case, we must have

ar = as, 1 ≤ r ≤ s ≤ n

because all the elements are not distinct
now

ar = as

⇒ ar, a–r = as, a–r
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⇒ a0 = as–r

⇒ e = as–r

from our choice of r and

1 ≤ r ≤ s ≤ n

⇒  1 ≤ s – r ≤ n.

���� 	�
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Definition 9.23: Let (G, *) be a group and ,a G∈  then the least positive integers, n if it exists such

that an = e is called the order of .a G∈

The order of an element a G∈  is be denoted by O (a).

Example 1: G = {1, –1, i, –i}, is a group with respect to multiplication 1 is the identity in G.

11 = 12 = 13 = … = 1 ⇒ O (1) = 1

(–1)2 = (–1)4 = (–1)6 = … = 1 ⇒ O (–1) = 2

i4 = i8 = i12 = … = 1 ⇒ O (i) = 4

(–i)4 = (–i)8 = … = 1 ⇒ O (–i) = 4

Example 2: G = 2{1, , }ω ω  is a group . .w r  to multiplication in which we have O (1) = 1, O (ω ) =

3, O ( 2ω ) = 3

Example 3: In {Q, –{0}, x},
The order of 1 is 1 i.e., O (a) = 1  and  O (–1) = 2

Note: The identity of group has order 1 i.e., O (e) = 1.
We now prove certain properties of an element of a group.

Theorem 9.18: The order of every element of a finite group is finite.

Proof: Let ,a G∈  then there exists a positive integer m ≤  n, such that

am = e
This proves that, the order of a, cannot be more than; since m is finite, O (a) is finite.

Theorem 9.19: If (G, *), O (a) = n, and m is a positive integer then am = e, if and only if m is multiple

of n, i.e., m = nq for some .q N∈

Proof: Since O (a) = n
There cannot be another positive integer x < n such that ax = e
Thus, if am = e, then m = n
Let us assume

am = e
we can find integers, q and r such that

m = nq + r, 0 ≤ r < n
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we first prove that

am = e ⇒ m = nq, q N∈

⇒ e – t ⇒ e = anq * ar (∴ am = e)

⇒ e = (an)q * ar

⇒ e = e * a2

⇒ e = ar

⇒ r = 0 ( ∴ O (a) = n and 0 ≤ r ≤ n)

Thus, we get m = nq

Now, we prove that

m = nq ⇒ am = e

Consider

m = nq ⇒ am = an q

⇒ am = (an)q

⇒ am = eq

⇒ am = e

This completes the proof.

Theorem 9.20: If (G, *) is a group and then

O (ap) = O (a), a G∀ ∈  and p Z∀ ∈
i.e., the order of any integral power of any element of an group is less then or equal to the order of the
element.

Proof: Let O (a) = m and O (ap) = n, where P is an integers

Since O (a) = m, we have am = e and  (ap)m = apm = amp = (am)p = e

⇒ O (ap) ≤ m

⇒ O (ap) ≤ O (a)

This completes the proof of the theorem.

Theorem 9.21: If (G, *) is a group then O (a) = O (a–1)
i.e., the order of an element of a group is always equal to the order of its inverse.

Proof: By previous theorem

O (a–1) ≤ O (a)  … (1)

Also
a = (a–1)–1

again by same property

O (a) ≤ O (a–1)  … (2)

From (1) and (2)
O (a) = O (a–1).
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We now introduce the concept of a sub-group.

Definition 9.24: Let (G, *) be a group and H, be a non-empty subset of G. If (H, *) is itself is a group,
then (H, *) is called sub-group of (G, *).

Example 1: Let a = {1, –1, i, –i}  and  H = {1, –1}
G and H are groups with respect to the binary operation, multiplication.
H is a subset of G, therefore (H, X) is a sub-group (G, X).

Example 2: Consider (Z6, +6), the group of integers modulo 6.
H = {0, 2, 4} is a subset of Z6 and {H, +6} is a group.

∴ {H, +6} is a sub-group.

Theorem 9.22: If (G, *) is a group and H ≤ G, then (H, *) is a sub-group of (G, *) if and only if

(i) , * ;a b H a b H∈ ⇒ ∈

(ii) 1a H a H−∈ ⇒ ∈

Proof: If (H, *) is a sub-group of (G, *), then conditions (i) and (ii) are obviously satisfied.
We, therefore prove now that if conditions (i) and (ii) are satisfied then (H, *) is a sub-group of

(G, *).
To prove that (H, *) is a sub-group of (G, *) all that we are required to prove is : * is associative in

H and identity .e H∈
That * is associative in H follows from the fact that * is associative in G.
Also,

1a H a H−∈ ⇒ ∈  by (ii)

and e H∈  and 1a H− ∈ ⇒ a * a–1 = e H∈  by (i)

Hence, H is a sub-group of G.

Theorem 9.23: Let (G, *) be a group and ∅ ≠ H ⊆ G.

Then (H, *) is a sub-group of (G, *) if and only if a, b H∈ ⇒ 1* .− ∈a b H

Proof: If (H, *) is a sub-group and a, b H∈  then 1b H− ∈  and so 1*a b H− ∈  by closure axioms.

Conversely, suppose H is a non-empty subset of G which contains the element 1* ,− ∈a b H  whenever

,a b H∈  since .a H∈

Then ,a a H∈ ⇒ a * a–1 = e H∈  by the hypothesis. Again ,e a H∈ ⇒ e * a–1 = a–1 .H∈

Finally, ,a b H∈ ⇒ 1*a b H− ∈ ⇒ a * (b–1)–1 = * .a b H∈
The set H “inherits” the associative law as a subject of G, so that all the group axioms are satisfied,

and (H, *) is therefore a sub-group of (G, *).

Theorem 9.24: Let (G, *) be a finite group and .H G∅ ≠ ⊆  Then (H, *) is a sub-group (G, *) if and

only if ,a b H∈ ⇒ * .a b H∈
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Proof: If (H, *) is a sub-group and ,a b H∈  then *a b H∈  by closure axiom.

Conversely, suppose H is a non-empty subset of G and contains the element * .a b H∈

Whenever .a b H= ∈

If ,a H∈ a2, a3, a4, … all belong to H. Since H is finite, the elements a2, a3, a4, … cannot be all
different that is only finite numbers of elements can be different. Therefore, some elements repeat. Let

ai = ai, i > j > 0

Now ai = aj ⇒ ai * a–j = aj * a–j

⇒ ai – j = e

⇒ ai – j * a–1 = e * a–1

⇒ ai – j – 1 = a–1

But i – j – 1 ≥  0. Hence ai – j – 1 = 1 .a H− ∈  Here i > j ⇒ i – j > 0 and ai – j = .e H∈  The set “H”

“inherits” the associative law as a subset of G, so that all group axioms are satisfied and (H, *) is a
sub-group of (G, *).

Theorem 9.25: If (H1, *) and (H2, *) are both sub-groups of the group (G, *), then 1 2( , *)H H∩  is

also a sub-group.

Proof: The set 2, ,H H∩ ≠ ∅  since 1 2, .e H H∈ ∩  Suppose that 1 2, ,a b H H∈ ∩  then 1,a b H∈
and 2, ,a b H∈  since (H1, *) and (H2, *) are sub-groups.

1
1 1, *a b H a b H−∈ ⇒ ∈

and 1
2 2, *a b H a b H−∈ ⇒ ∈

That is 1
1 2*a b H H− ∈ ∩  which implies 1 2( )H H∩  is a sub-group of (G, *).

Theorem 9.26: If (G, *) is a group and (H, *) is a sub-group of (G, *) and (K, *) is a sub-group of
(G, *) then (HK, *) is a sub-group of (G, *) if and only if HK = KH

Where

HK = { * / , }h k h H k K∈ ∈   and  KH = { * / , }k h h H k K∈ ∈
Proof: Left as an exercise to the student.

Example 3: ({0, 2, 4} + 1) is a sub-group of (6, +) because, if H = {0, 2, 4} then
0 + 0 = 0
0 + 2 = 2
0 + 4 = 4
2 + 2 = 4
2 + 4 = 0
4 + 4 = 2

i.e., ,a b H∈ ⇒ .+ ∈a b H
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Example 4: Let Z = {0, 1, 2, 3, ...}+ + +  and let

H1 = {0, 2, 4, 6, ...}+ + +
and H2 = {0, 3, 6, 9, ...}+ + +

1 2 {0, 6, 12, ...}H H∩ = + +

Here (H1, +) and (H2, +) are sub-groups of (Z1, +) and 1 2( , )H H∩ +  is also a sub-group of

(Z1, +) ….

But 1 2( , )H H∪ +  is not a sub-group since

1 2 {0, 2, 3, 4, ...}H H∪ = + + +

and 1 22, 3 H H∈ ∪  but 1 22 3 5 H H+ = ∉ ∪

Hence 1 2H H∪  is not closed under +.

��� �������	0�����	��

Definition 9.25: Let (a, *) be a group, then centre of the group G is the set of those elements of G
which commute with every element of G. The centre of G is denoted by Z (G).

Thus Z (G) = { / * * }a G a x x a x G∈ = ∀ ∈

�� �	����

Let (H, *) be a sub-group (G, *) and a G∈

Then the sub-set:

* { * : }a H a h h H= ∈

is called a left coset of H in G, and the subset

H * G = { * : }h a h H∈

is called a right coset of H in G.

Note: In general a * H ≠ H * a, however if G is abelian then

a * H = H * a a G∀ ∈

Example 1: Let H = {1, –1} and G = {1, –1, i, –i}
there (H, *) is a sub-group (G, *)

The various left cosets and right cosets of H in G are given below:
Left cosets of H in G Right cosets of H in G
1 × H = {1, –1} = H H × 1 = {1, –1} = H
–1 × H = {–1, 1} = H H × –1 = {–1, 1} = H
i × H = {i, –i} H × i = {i, –i}
–i × H = {–i, i} H × –i = {–i, i}
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There are only two distinct left cosets of H in G and two distinct right cosets of H in G.
Also we have

G = H H i∪ ×
= H i H∪ ×
= ( )H H i∪ × −
= ( )H i H∪ − ×

If e is the identity element of G, then

e * H = { * : } { : }e h L H h h H H∈ = ∈ =

Similarly, H * e = H

Moreover, since ,∈e H  we have

a = a * *e a H∈   and * *a e a a H= ∈
i.e., every element of G belongs to some left (right) coset of H in G.

Example 2: Consider the group (Z, +)

Let {0, , 2 , 3 , ...}nH n n n= + + +
then the left cosets of H in Z are

, 1 , 2 , 3 , ..., ( 1)n n n n nH H H H n H+ + + − +

and 1 2 ... ( 1)= ∪ + + + + + − +n n n nZ H H H n H

Theorem 9.27: If (H, *) is a sub-group (G, *), then a * H = H if and only if .a H∈
Proof: Let a * H = H

Since e H∈  then a = a * e *a H∈

Hence a H∈

Conversely

Let a H∈

then *a H H⊆
(H, *) is a sub-group.

∴ 1, * .a H h H a h H−∈ ∈ ⇒ ∈

Now h H∈

⇒ h = a * (a–1 * h) ∈ a * H

∴ *h H h a H∈ ⇒ ∈

⇒ H ⊆ a * H

Hence a * H = H
We now state the following theorem without proof:
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Theorem 9.28: If (H, *) is a sub-group of (G, *), then a * H = b * H if and only if a–1 * b .H∈

Theorem 9.29: If (H, *) is a sub-group of (G, *), then any two left cosets of H in a are either identical
or disjoint.

Proof: Let a * H and b * H be two left cosets of H in G. If a * H and b * H have no common element,
then a * H and b * H are disjoint.

If * *a H b H∩ ≠ ∅
Let * *c a H b H∈ ∩
Then c = a * h1 and c = a * h2

For some h1, h2 H∈
It follows that

a * h1 = b * h2

⇒ a–1 * b = h1 * h2
–1

⇒ a–1 * b 1
1 2( * )H h h H−∈ ∴ ∈

⇒ a * H = b * H.

Theorem 9.30: There exists a one-to-one correspondence between the elements of sub-group H and
those of any coset of H in G.
Proof: Define a mapping

f: H → a * H

by f (h) = a * h for all h H∈

Let h1, h2 H∈  such that

f (h1) = f (h2)
now

f (h1) = f (h2)

⇒ a * h1 = a * h2

⇒ h1 = h2 (by left cancellation law)

∴ f is one-one.

Every element of a * H is of the form a * H for same .h H∈

∴ f is onto.
This completes the proof of the theorem.

Note: If (G, *) in a finite group, and (H, *) is a sub-group of G, then any two left cosets of H in G have the same
number of elements.

Theorem 9.31: If a * H and b * H are two distinct left cosets of H in G, then exists a one-to-one
correspondence between a * H and b * H.
Proof: Consider the mapping

f: a * H →  b * H
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defined by

f (a * h) = b * h where .h H∈

The mapping f is one-one, since

f (a * h1) = f ( a * h2) where h1, h2 H∈

⇒ b * h1 = b * h2

⇒ h1 = h2 (by left cancellation law).

Thus f is one-one
f is onto mapping, since

* *b h b H∈  is the f-image of

a * h *a H∈
Thus f as defined above is a objective mapping from a * H to b * H.
This completes the proof of the theorem.

Lagrange’s Theorem: The theorem stated above indicate that each element of the group G belongs to
one and only one left coset of H. Thus G can be partitioned by G into disjoint sets each of which has
exactly as many elements as H. When the theorems are interpreted in the context of finite groups only
we obtain the following theorem known as Lagrange’s theorem.

Theorem 9.32: (Lagrange’s Theorem)
The order of any sub-group of a finite group divides the order of the group.

Proof: Let (G, *) we a finite group of order h, and (H, *) be a sub-group of G of order m.
We can decompose the set G into a union of a finite number of distinct left cosets of H say K.
Let a1 H, a2 H, … ak H denote the k distinct left cosets of H in G such that

G = 1 2 3* * * ... * .ka H a H a H a H∪ ∪ ∪ ∪
Where all the K left coset appearing on the right hand side are disjoint.
Therefore,

O (G) = O (a1 * H) + O (a2 * H) + … O (qk * H)

⇒ n = m + m + … k terms

⇒ n = km

⇒ m/n

⇒ O (H) / O (G).

This completes the proof of the theorem.
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Definition 9.26: The number of distinct left (or right) cosets of H in G is called index of H in G.
The index of H in G is denoted by IG (H). Lagrange’s theorem proved above can also be stated as

follows:
If (G, *) is a finite group and (H, *) is a sub-group of G, then
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IG (H) = 
( )

( )

O G

O H

Lagrange’s theorem is of fundamental importance and is used to prove many other important results.

Theorem 9.33: The order of every element of a finite group is a divisor of the order of the group.

Proof: Let (G, *) be a finite group and a G∈  and let O (a) = m

Consider the set
H = {a, a2, a3, …am = e}

Obviously (H, +) is a sub-group of (G, *) and O (H) = m Lagrange’s theorem ensures that

O (H) / O (G) ⇒ m / O (G)

⇒ O (a) / O (G)

This completes the proof of the theorem,
We know that if H and K are two sub-groups of a group G, then HK is a sub-group of G if and only

if H * K = K * H.
If H and K are finite sub-groups of a group G, then we can find the O (H * K) by making use of

following theorem.

Theorem 9.34: Let (G, *) be a group (H, *) and (K, *) be two finite sub-groups of G such that
H * K = K * H then

O (H * K) = 
( ) * ( )

.
( )∩

O H O K

O H K
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1. Show that the system ({1, –1}, ×) is an abelian group.
2. Show that the set of complex numbers is a group under multiplication is a group.
3. Show that the set of even integers is a group under addition.
4. If Q denotes the set of rational numbers, then show that Q – {1} is a group with respect to the

operation * defined by a * b = a + b + ab.

5. Show that the set G = {6 : }n n Z∈  is a group with respect to multiplication.

6. Show that the pair {(0, 4, 8, 12), + 16} is a group.
7. Prove that a group (G, *) is commutative if and only if

(a * b)–1 = a–1 * b–1 , .a b G∀ ∈

8. Let (G, *) be a group since that (a * b2) = a2 + b2 for every , .a b G∈  Prove that G is commutative.

9. Given a2 = e for every element a of the group (G, *) show that G is commutative.

10. If (G, *) is a group of even order prove that it has an element a e≠  satisfying a2 = e.

11. In a group (Z, +) show that every element except o is of infinite order.
12. In any element, prove that the identity element is the only element whose order is 1.
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13. Find the order of all elements of a group (Z4, +4).
14. Give can example to show that the union of two groups may not be a sub-group.
15. If K is a sub-group of H and H is a sub-group of G, show that K is a sub-group of G.

16. If G is a group and 0 ,= ∀ ∈z a a G  then show that G is abelian.

��# ��	'	��/��'

Let (G, *) and ( , )G′ Δ  be two groups.

A objective mapping

f: G G′→
satisfying

f (a * b) = f (a) Δ  f (b), ,a b G∀ ∈

is called an isomorphism of G to .G′

If there exists an isomorphism between two groups (G, *) and ( , )G′ Δ  then G and ′G  are said to
isomorphic to each other.

If (G, *) is isomorphic to ( , ),′ ΔG  we use the symbol

(G, *) ≅ ( , )G′ Δ

for the statement G is isomorphic to .G′

Example 1: Consider the group (R, +) and (R+, ×) where R+ denoted the set of positive real numbers.
Consider the mapping.

fa: R → R+, a R+∈
defined by

fa (x) = an

the mapping fa is structure preserving:
we have

fa (x + y) = ax + y = ax × ay

⇒  fa is structure preserving

Also fa (x) = fa (y)

⇒ ax = ay

⇒ ax – y = 1

⇒  x – y = 0

⇒  x = y

⇒ fa is one-one.

From the definition

y R+∈ ⇒  There exists a real number

x such that y = ax
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∴ y R+∈ ⇒  y = ax for some .x k∈
⇒  y = fa (x)

⇒ fa is onto

∴ Thus (R, +) ≅  (R+, x)

Example 2: The groups (Z, +) and (nZ,  +), n Z∈  are isomorphic to each other.

��% ��	��������	0���	'	��/��'

We now that some properties of isomorphic groups. Let (G, *) and ( , )G′ Δ  be two groups such that

(G, *) ≅ ( , ).G′ Δ  Also let e, e′  be the identity elements of G and G′  respectively then.

(i) f (e) = e′

(ii) f (a–1) = [f (a)]–1 a G∀ ∈

(iii) O (a) = O [f (a)] a G∀ ∈

(iv) f –1: G G′ → is an isomorphism.

(v) The composite of two isomorphisms is an isomorphism.

We shall prove the following theorem, by introducing a relation in the set of all groups.

Theorem 9.35: The relation ‘ ’≅  in the set of all groups is an equivalence relation.

Proof: (a) ≅  is reflexive
If (G, *) is a group then

( , *) ( , *)′≅G G

since the identity mapping

: ′→GI G G

is an isomorphism from (G, *) to ( , *)′G

(b) ≅  is symmetric

Let (G, *) ≅ ( , )G′ Δ

Then ( , )G′ Δ ≅  (G, *)

Therefore ≅  is symmetric
(c) ≅  is transitive

Let (G, *) ≅ ( , )G′ Δ  and ( , )G′ Δ ≅ ( , )G′′ �

Then (G, *) ≅ ( , )G′′ �
Therefore ≅  is transitive.

∴ ≅  is reflexive, symmetric and transitive therefore ≅  is an equivalence relation in the set of all
groups.
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Let (G, *) be a group. If there exists an element a G∈  such that

G = {am: m is an integer}

i.e., (G, *) is cyclic, if there exists an element a G∈  such that every element of G is a power of a and a

is called the generator of the cyclic group.

If a is a generator of (G, *), then we write G = <a>.

Note: If (G, +) is a cyclic group then each element of G can be expressed in the form n a where n is an integer.

Example 1: Let Z denote the set of integers (Z, +) is an infinite cyclic group 1 and –1 are the generators
of the group (Z, +).

Example 2: G = {1, –1, i, –i}is a group with respect to the binary operation ‘×’. (G, ×) is a cyclic
group.

i is a generator of G.
Since (i)4 = 1

(i)3 = –i

i2 = –i
(i0 )1 = i

and G = {i4, i2, i, i3}
= < i >

Similarly (–i) is a generator
i, –i are the only generators of G .

If (G, *) is an infinite group generated by an element a, then we can write,
G = {…a–3, a–2, a–1, a0, a1, a2, a3,…}.

And if (G, *) is a finite cyclic group generated by a, then we can write,
G = {a, a2, a3, ..., an = e}

If (G, *) is a finite cyclic group of order n then
ai * aj = ai + j if i + j < n

= a0 if i + j = 0
= ai + j – n if i + j > n

where a is the generator of G.
We now state and prove the following theorems:

Theorem 9.36: Every cyclic group is abelian
Proof: Let (G, *) be a cyclic group

Generated by a

,x y G∈

⇒  x = am and y = an for some integers

m and n
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x * y = am * an

= am + n

= an + m

= an * am

= y * x
This completes the proof of the theorem.

Note: The converse of the theorem may not hold.

Theorem 9.37: Every group of prime order is cyclic.
Proof: Let O (G) = p where p is a prime number and

let a e G≠ ∈
consider the sub-group of G, generated by a

Let H = <a>

⇒ O (H) > 1

H is a sub-group of G
By Lagrange’s theorem

O (H ) / O (G) ⇒ O (H) / p

⇒ O (H) = 1 or p

⇒ O (H) = p since O (H) ≠  1

O (H) = O (G)

But H is cyclic ⇒  G is cyclic

Hence the theorem.

Theorem 9.38: Every infinite cyclic group is isomorphic to (Z, +).

Proof: Let (G, *) be an infinite cyclic group generator by .∅
Define a mapping

∅  : Z → G

by the rule

∅  (x)  = ax, n Z∈

∅  is one-one, since

ax = ay ⇒  x = y

The mapping ∅  is obviously onto.

Also, we have

∅  (x + y) = ax+y

= ax * ay

= ∅  (x) * ∅  (y)

⇒ ∅  is structure preserving
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∴∅  is an isomorphism

∅  (G, *) ≅  (I, +).

Theorem 9.39: Every finite cyclic group of order n is isomorphic to (Zn, +). We leave the proof to the
reader and state the following theorem without proof.

“Every proper sub-group of an infinite cyclic group is isomorphic to the group itself.”

Theorem 9.40: Every proper sub-group of finite cyclic group is a finite cyclic group.

Theorem 9.41: The only groups which do not possess proper sub-group are the prime order finite
sub-groups.

Example 3: (G, *) is a group order 60, find all the sub-groups of G.
Solution: We can write

60 = 1 × 2 × 2 × 3 × 5
= 1 × 22 ×  3 × 5

Therefore, the factors of 60 are:
1, 2, 3, 4, 5, 6,10, 12, 15, 20, 30, 60

Let a be a generator of (G, *) then the sub-groups of (G, *) are
{e}, <a>, <a2>, <a3>, <a4>, <a5>, <a6>, <a10>, <a12>, <a15>, <a20>, <a30>.

�"��� � � � ���#

1. Show that every group of order 2 is isomorphic to every other group of order 2.
2. Show that every group of order 3 is isomorphic to every other group of order 3.

3. Show that (I, +) is isomorphic to 5{ : },ma a Z∈ + m Z∈  is fixed.

4. Let G = Z6, then show that O (3)  = 2.

5. Let (G, *) be an infinite cyclic group then prove that G has exactly the generators.
6. If G = <a> is cyclic group of order n then show that O (a) = n.
7. Let G be a group, H be a sub-group of G such that [G: H] = 2 show that every left coset of H

in G is also.
8. Show that any two cyclic groups of the same order are isomorphic.
9. Prove that any non-cyclic group of order 4 is isomorphic to Klein 4 – groups.

10. If (G, *) is a group of order 4, then show that G is abelian.
11. Show that the additive group Z4 is isomorphic to the multiplicative group of non-zero elements

of Z5.
12. Find all sub-groups of a cyclic group of orders 10 and 12.
13. Let (Z12, +12) be the group of integers modulo 12 then show that the subset generated by 3.

<3> = {3n (mod12) = }n Z∈
= {0, 3, 6, 9}.
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14. Consider (G1 + 15) the group of integers modulo 15 and the sub-group H = {0, 3, 6, 9, 12} of
G. Find all left cosets of H in G.

��. �	�'������$��	���

Definition 9.27: A sub-group (H, *) of (G, *) is called a normal sub-group of G if for all ,∈h H ∈g G

and ghg–1 .H∈

If H is normal in G then we write .H G⊄

Example 1: Let (G, *) be a group, then ({e}, *) is a normal sub-group in G. It is called the trivial
normal sub-group.

Example 2: (G, *) is normal in (G, *). It is called the improper normal sub-graph of G.

��.�� ��4+����)�*+

Definition 9.28: A group (G, *) is called simple group if its only normal sub-groups are G and {e}.

Example 1: A group of prime order has no proper sub-groups.
Therefore, every group of prime order is simple.
We now give an equivalent definition for the sub-group to be normal.

Definition 9.29: A sub-group (H, *) of a group (G, *) is said to be normal sub-group of (G, *) is for

every ,s G∈ ghg–1 ⊆ H.

Theorem 9.42: Every sub-group of an abelian group is normal sub-group.
Proof: Let (G, *) be an abelian group and (H, *) be a sub-group of G.

Now ,s G h H∈ ∈

⇒ g * h * g–1 = h * g * g–1 ∴ (G is abelian and H ≤ G)

= h * e
= h

∴ g * h * g–1 = ,h H g G h H∈ ∀ ∈ ∈

(H, *) is normal in G.

Theorem 9.43: A sub-group (H, *) is normal in (G, *), if and only if gh = Hg for each .g G∈

Proof: Suppose (H, *) is normal in (G, *)

Therefore, each ,g G∈ g * h * g–1 ⊆ H i.e., g H ⊆  Hg.

By replacing g by g–1 we have g–1 * H

g * (g–1 * H) * gH = Hg, g G∀ ∈

(g * g–1) * H * g ⊆ g * H * (g–1 * g)

⇒ e * H * g ⊆ g * H * e

⇒  H * g ⊆ g * H

Thus Hg = gh
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Conversely assume that gH = Hg, g G∀ ∈

Then gh g–1 = H g G∀ ∈
Showing that (H, *) is normal in (G, *).

Example 2: Show that every sub-group of an abelian group is normal.
Solution: Let (G, *) be an abelian group and (H, *) be a sub-group of G.

Let g be any element of G and ∈h H

Then we have
g * h * g–1 = g * g–1 *h

= e * h

= h H∈

∴  Hence, H is normal in G.

��.� 9*��������)�*+

Let (H, *) be a normal sub-group of a group (G, *). The set of all cosets of H in G is known as the
quotient G/H;

G/H = {a * H: }a G∈

Here a * H = H * a a G∀ ∈

Now (a * H) * (b * H)

= (a * b * H) * H

= ((a * b) * H) * H

= (a * b) * H * H

= (a * b) * H.

i.e., product of two left cosets of H in G is again a left coset in G. Similarly, we can show that, the
product of two right cosets is again a right coset in G.

Theorem 9.44: If (H, *) is a normal sub-group of the group (G, *), then the system (G/H, *), forms a
group, known as quotient group of G be H (or factor group).
Proof: We observe the following in G/H.

(i) The operation * is associative in G/H for {(a * H) * (b * H)} * (c * H)
= [(a * b) * H) (c * H)
= ((a * b) * c) * H
= a * (b * c) * H
= (a * H) * (b * c) * H
= (a * H) * {(b * H) * (c * H)}

(ii) G/H has an identity element H= e * H for *.
For (a * H) * (e * H) = (a * e) * H = a * H

and (e * H) * (a * H) = (e * a) * H = a * H
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(iii) For each a * H there exists a–1 * 1 + such that
(a * H) * (a–1 * H) = (a * a–1) * H

= e * H
= (a–1 * a) * H
= (a–1 * H) * (a * H)

∴ a–1 * H is the inverse of a * H.

Corollary: If (G, *) is a finite group and (H, *) is a normal sub-group of (G, *), then
O (G/H) = O (G)/O (H)

Example: If H3 = {…, –6, –3, 0, 3, 6, …}
Then (H3, +) is a normal sub-group of (Z, +) of all integers. The cosets of H in Z are

H3 = {…, –6, –3, 0, 3, 6, 9, …}
1 + H3 = {…, –5, –2, 1, 4, 7, 10, …}
2 + H3 = {…, –4, –1, 2, 5, 8, …}

∴ G/H = {H3, 1 + H3, 2 + H3,}
Now

Table 9.6

+ H3 1 + H3 2 + H3

H3 H3 1 + H3 2 + H3

1 + H3 H3 2 + H3 H3

2 + H3 2 + H3 H3 1 + H3

It is clear from the Table 9.6, that (Z/H3, +) is a group.

��1 ���'�����	����	���

A permutation is a one-one mapping of a non-empty set onto itself.
When a set S is a finite, with n elements in it, we speaking a permutation of n symbols. It is not

necessary to limit our discussion with same definitions.

��1�� �:*�����)4*������!

Let S be a non-empty set. The permutation f and G defined on S, are said to be equal if f (a) = g (a) for

all .a S∈

Example 1: Let S = {1, 2, 3, 4}

and let
1 2 3 4 4 1 3 2

3 1 2 4 4 3 2 1
f g

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

we have f (1) = g (1) = 3
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f (2) = g (2) = 1
f (3) = g (3) = 2
f (4) = g (4) = 4

i.e., f (a) = g (a) ,a S∀ ∈  therefore

f = g

Let S = (a1, a2, …, an) be a finite set. The number of permutations on S contains is n!. The set of all

permutations on S is denoted by Sn. Where |Sn| = n! If nf S∈  then f is of the form

f = {(a, f (a), (a2), f (a2))}, …, (an, f (an))}

It can also be written as

31 2

31 2

...

( ) ( )( ) ( ) ...
n

n

a aa a
f

f a f af a f a

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

the images f (a1), f (a2),… ,f (an) are the elements of S arranged in some order. The order of symbols in
the first row of a permutation is immaterial but columns should not be affected and every permutation of
Sn may be written in n! ways.

Example 2: Let S = {1, 2, 3} and f =
1 2 3

2 3 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

We can write
1 2 3 2 3 1 3 1 2

2 3 1 3 1 2 1 2 3
f

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 3 2 2 1 3 3 2 1

2 1 3 3 2 1 1 3 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Hence, there are 3! = 6 ways of writing f.

��1� �,�����;���)4*������

Let S be a finite non-empty set. An identity permutation on S denoted by I is defined I(a) = a for all

.a S∈

Example 1: Let S = {a1, a2, …, an}

Then   
1 2

1 2

...

...
n

n

aa a
I

aa a

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 is the identity permutation on S.

Example 2: Let S = {1, 2, 3, 4}, then

1 2 3 4

1 2 3 4
f

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 is the identity permutation on S.
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��1�� �)�,*����6���)4*������!�&�)���4+�!�������6���)4*������!(

Let S = (a1, a2, …, an), and let

1 2

1 2

...

( )( ) ( ) ...
n

n

aa a
f

f af a f a

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

1 2

1 2

...

( )( ) ( ) ...
n

n

aa a
g

g ag a g a

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

be two arbitrary on S. We can find the composite of f and g as follows:

1 2 1 2

1 2 1 2

... ...

( ) ( )( ) ( ) ( ) ( )... ...

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

n n

n n

a aa a a a
fog o

f a g af a f a g a g a

1 2 1 2

1 2 1 2

... ...

( ( )) ( )( ( )) ( ( )) ( ) ( )... ...
n n

n n

a aa a a a
o

f g a g af g a f g a g a g a

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 2

1 2

...

( ( ))( ( )) ( ( )) ...
n

n

aa a

f g af g a f g a

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Clearly fog is a permutation and fog ∈ Sn.

Note: In general fog ≠ gof

Example: Let S = {1, 2, 3}

and
1 2 3 1 2 3

,
2 3 1 3 2 1

f g
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

be two permutations on S, we complete fog as follows:

1 2 3 1 2 3

2 3 1 3 2 1
fog o

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

3 2 1 1 2 3

1 3 2 3 2 1
o

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 2 3

1 3 2

⎛ ⎞= ⎜ ⎟
⎝ ⎠

��1�# ��5�)!���6�����)4*������

If f is a permutation on S = (a1, a2, …, an) such that

1 2

1 2

...

...
n

n

aa a
f

bb b

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

then there exists a permutation called the inverse f, denoted f –1 such that fof –1 = f –1of = I (the identity
permutation on S)
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where
1 21

1 2

...

...
n

n

bb b
f

aa a
− ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Theorem 9.45: If S a set of n symbols, then the set Sn of all permutations on S in a group with respect
to the operation product of two permutations.
Proof: We have already seen that the product (composite) of two permutations on n symbols is again
a permutation. The product of permutations is associative. The identity permutation I defined on S acts
as the identity element of the group. If f is a permutation on S, then f –1 is also a one-one mapping on S
onto itself. Hence f –1 is also a permutation in S such that

f o f–1= f–1o f = I
Thus Sn is a group.

Definition 9.30: The group Sn is called the symmetric group (or permutation group).

Note:
(i) The order of Sn is n!.

(ii) For n ≤  2, the group Sn is abelian and for n ≥  3, the group Sn is non-abelian.

If f is a permutation a finite set S we define f 2 = f o f, f 3 = f o f o f, … order of a permutation.
Let S be a finite non-empty set with n symbols and Sn denote the set of all permutations on S. And let

I denote the identity permutation on S. If ,nf S∈  then the least positive integer k such that f k = I is

called the order of f in Sn.

Example:

If
1 2 3 4 5 6 7 8

1 2 3 4 5 6 8 7
f

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Then 2 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
f f o f

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

= I

∴ order of f is 2.

��� ����������'�����	�

Let S = {a1, a2, …, an} be a finite set of n symbols. A permutation f defined or S is said to be cyclic
permutation if f is defined such that

f (a1) = a2, f (a2) = a3, …, f (an – 1) = an and f (an) = (a1)

Example: Let S = {1, 2, 3, 4}

Then
1 2 3 4

4 3 2 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is a cyclic permutation.

If S = {a1, a2, …, an} and f is a cyclic permutation on S, then we can write
f = (a1 a2 … an)
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A cyclic of length 2 is called a transposition.

Let S = {a1, a2, a3, …, an} f, g and h be cyclic permutations on S.

Then we have:

(i) (f o g)–1 = g–1 o f –1

(ii) (f o g o h)–1 = h–1 o g–1 o f –1

If Sn is a permutation group on n symbols, then of the n! permutation in Sn, 1/2 n! are even permutations
and 1/2 n! are odd permutations. The set of all even permutations of degree n form a group under the
composition of permutations. The group of even permutations is called alternating group.

We state the following theorem without proof.

Theorem 9.46: Every permutation may be expressed as the product of transpositions in many ways.

Note: If f is a cycle of length n, then f can be expressed as a product of (n – 1) transpositions. Even and odd
permutations.

Definition 9.31: A permutation f is said to be an even permutation if f can be expressed as the product
of even number of transpositions.

Definition 9.32: A permutation f is said to be an odd permutation if f is expressed as the product of
odd number of transpositions.

Note:
(i) An identity permutation is considered as an even permutation.

(ii) A transposition is always odd.

(iii) The product of two even permutations is even, and also the product of two odd permutations is even.

(iv) The product of an even and an odd permutation is odd. Similarly the product of an odd permutation and
an even permutations is odd.

Let S = {a1, a2, a3, …, ak, ak + 1, …, an}

If
2 1 21 3

3 1 22 4 1

... ...

... ...
k k nk

k k n

a a a aa a a
f

a a a aa a a
+ +

+ +

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

then f is S cyclic permutation. The length of f is k and degree of f is n. We can ignore the elements ak + 1,
ak + 2, …, an which are mapped onto themselves and write

f = (a1 a2 a3 … ak)

A cyclic permutation does not change by changing the places of its elements, provided their order is
not changed.

���� 
�!<������;���!

Definition 9.33: Let S = (a1, a2, …, an). If f and g are two cycles on S such that they have no common
elements, then f and g are said to be disjoint cycles.

Example: Let S = {1, 2, 3, 4, 5, 6}
If f = (1 4 5) and f = (2, 3, 6)

then f and g are disjoint cyclic permutations on S.
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Note: The product of two disjoint cycles is commutative.
Every permutation can be written as a product of disjoint cycles and transpositions.

For example: Consider the permutation

1 2 3 4 5 6 7

2 3 4 5 1 7 6
f

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

the above permutation f can be written as f = (1 2 3 4 5) (6 7). Which is a product of two cycles. We now
state, the following theorem:

Theorem 9.47: Every permutation of n symbols can be expressed a product of disjoint cycles.
Proof: Let f be an element of Sn.

Consider the cycle
(1 f (1) f 2 (1), …)

Since O (f ) is finite, f k = 1 for some k, i.e., f k (1) = 1 for some k
Choose smallest k > 0 such that f k (1) = 1.

Then the cycle (1 f (1) 2f  (1), …, f k – 1 (1)) and the permutation f will have the same effect on the

symbols
1 f (1) f 2 (1), …, f k – 1 (1)

If f, fixes all the remaining symbols then
f = (1 f (1) f 2 (1), …, f k – 1 (1))

and the theorem is otherwise, choose a symbol i, such that f (i) ≠ i and consider the cycle.
(i f (i) f 2 (i), …, f m – 1 (i)) where m is the least positive integer such that f m(i) = i.
If 1 f (1) f 2 (1), …, f k – 1 (1), i f (i), …, f m – 1 (i) do not exhaust all the symbols and there is stole

another symbol not fixed number of steps, the procedure must terminate as there are only a finite number
of symbols. Thus

f = (1 f (1) f 2 (1), …, f k – 1 (1)), (i) f (i), …, f m – 1 (i))
is a product of disjoint cycles.

Example 1: If A = {1, 2, 3, 4, 5, 6}
Compute (5 6 3) o (4 1 3 5)

Solution:

(4 1 3 5) = 
1 2 3 4 5 6

3 2 5 1 4 6

⎛ ⎞
⎜ ⎟
⎝ ⎠

and ( 5 6 3) = 
1 2 3 4 5 6

1 2 5 4 6 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

∴ (5 6 3) o (4 1 3 5) = 
1 2 3 4 5 6 1 2 3 4 5 6

1 2 5 4 6 3 3 2 5 1 4 6

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

o
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3 2 5 1 4 6 1 2 3 4 5 6

5 2 6 1 4 3 3 2 5 1 4 6
o

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 2 3 4 5 6

5 2 6 1 4 3

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Example 2: Let A = {1, 2, 3, 4, 5}
Find (1 3) o (2 4 5) o (2 3)

Solution: (1 3) o (2 4 5) o (2 3)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

3 2 1 4 5 1 4 3 5 2 1 3 2 4 5

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

o o

1 4 3 5 2 1 2 3 4 5 1 2 3 4 5

3 4 1 5 2 1 4 3 5 2 1 3 2 4 5
o o

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 2 3 4 5 1 2 3 4 5

3 4 1 5 2 1 3 2 4 5
o

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 3 2 4 5 1 2 3 4 5

3 1 4 5 2 1 3 2 4 5
o

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 2 3 4 5

3 1 4 5 2

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

= (1 3 4 5 2)
or (1 3) o (2 4 5) o (2 3)

= (1 3 2 4 5) o (2 3)

1 2 3 4 5 1 2 3 4 5

3 4 2 5 1 1 3 2 4 5
o

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 3 2 4 5 1 2 3 4 5

3 2 4 5 1 1 3 2 4 5
o

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 2 3 4 5

3 2 4 5 1

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= (1 3 4 5 2)

Example 3: Express f = (a1 a2 a3 … an) as a product of transpositions.
Solution: f = (a1 a2 a3 … an)
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= (a1 a2) o (a1 an – 1) o … o (a1 a3) o (a1 a2)

(i.e., a cycle of length can be expressed as a product of n – 1 transpositions.)

Example 4: Show that
1 2 3 4 5 6 7 8

7 3 1 8 5 6 2 4
f

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 is even.

Solution:
1 2 3 4 5 6 7 8

7 3 1 8 5 6 2 4
f

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

1 7 2 3 4 8 5 6

7 2 3 1 8 4 5 6

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 = (1 7 2 3) o (4 8) o (5) o (6)

= (1 3) o (1 2) o (1 7) o (4 8)

f is expressed as a product of 4 transpositions, therefore f is even.

Example 5: Show that 
1 2 3 4 5 6 7 8

1 4 3 6 5 8 7 2
f

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 is odd

Solution:
1 2 3 4 5 6 7 8

1 4 3 6 5 8 7 2
f

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

1 2 4 6 8 3 5 7

1 4 6 8 2 3 5 7

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= (1) o (2 4 6 8) o (3) o (5) o (7)

= (2 4 6 8)

= (2 8) o (2 6) o (2 4)

f is expressed as a product of 3 transpositions 3 is an odd number.

∴ f is odd.

���2 ��	���/	'	'	��/��'

The concept of group isomorphism was already introduced. A more general concept is that of group
homorphism with which we concern ourselves in this section.

Definition 9.34: Let (G, *) and ( , )G Δ  be any two groups. A mapping f: G G→  is called a

homomorphism of G to G  if.

f (a * b) = f (a) Δ  f (b) ,a b G∀ ∈

Example 1: Let G = R, G  = R – {0}
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( , )G ⋅  and ( , )G ⋅  are groups and G and G  are groups with respect to multiplication. Then the

mapping f: G ,G→  defined by f (a) = an ,a G∀ ∈  where n Z∈  fixed, is a homomorphism.

Since f (ab) = (ab)n = n na b⋅  = f (a) f (b).

Example 2: Let G = R, the set of real numbers and G  = R – {u)

(G, +) and ( , )G ⋅  are groups. Define a mapping f: G G→  by

f (a) = 2a a G∀ ∈

clearly f (a + b) = 2a + b = 2a 2b = ( ) ( )f a f b⋅

⇒  f is a homomorphism of G into G .

Definition 9.35: Let (G, *) and ( , )G Δ  be two groups. A mapping f: G G→  defined by

f (a *b) = f (a) Δ  f (b) is called isomorphism, if f is a one-one, onto mapping.

From the above definition, it is clear that, a one-one, onto homomorphism is an isomorphism. Thus

every isomorphism is necessarily a homomorphism, whereas the converse need not be true. If f: G G→
is onto homomorphism, then G  is called homomorphism image of G. Every quotient group of group is
a homomorphic image of the group.

Definition 9.36: Let (G, *) be a group. A mapping f: G G→  is called, endomorphism if

 f (a * b) = f (a) * f (b).

Definition 9.37: Let (G, *) be a group. A mapping f: G →  G defined by f (a * b) = f (a) * f (b) is
called an automorphism if f is a objective mapping.

���� =������	0���/	'	'	��/��'

Let G and G  be any two groups and f: G G→  be a homomorphism. Then Kernel of f denoted by Ker

f the set K = ( : ( ) ).a G f a e∈ =
Where e  is the identity of .G

Ker f is called the Kernel of the homomorphism f. Thus the Kernel of f is the set of all those elements
of the domain set which are mapped onto the identity of the range set.

Theorem 9.48: Let (G, *) and ( , )G ⋅  be two groups and f be a homomorphism then

(i) f (e) = ,e  where e is the identity of G and e  is the identity in .G

(ii) f (a–1) = [f (a)] –1 a G∀ ∈

(iii) f (an) = [f (a)]n a G∀ ∈  and n Z∈

Proof: (i) a G∈ ⇒  a = a * e
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⇒  f (a) = f (a * e)

= f (a) o f (e) (� f is a homomorphism)

Now f (a) G∈  and e  in the identity of G

⇒  f (a) o e  = f (a)

∴  f (a) o f (e) = f (a) = f (a) o e

⇒ ( ) ( )f a f e⋅  = f (a) o e

⇒  f (e) = e  (by left cancellation  law)

(ii) a ∈  G ⇒ a–1 a G∀ ∈

⇒ a * a–1 G∈

⇒ e G∈

∴ ⇒  f (a * a–1) = f (e)

⇒  f (a) o f (a–1) = f (e) = e

⇒  [f (a)]–1 = f (a–1) a G∀ ∈
(iii) Left as an exercise to the student.

Theorem 9.49: Let  f  be a homomorphism of (G, *) into ( , )G ⋅  with Kernel K, then K is a normal

sub-group of G.
Proof: We know that

f (e) = e e K⇒ ∈

Thus ker f = K is a non-empty.
Subset of G.
K is a sub-group of G

a, ,a b K∈ ⇒  f (a) = ,e  and f (b) = e

now f (a * b) = f (a) o f (b)

= e o e (∴  f is a homomorphism)

= e

∴ , *a K b K a b K∈ ∈ ⇒ ∈

Now 1a K a G a G−∈ ⇒ ∈ ⇒ ∈

Also f (a–1) = [f (a)]–1

1( )e −=

e=

⇒ 1a K a K− ∈ ∀ ∈
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Thus K is a sub-group of G.
We now prove that K is a normal sub-group G.

,K K a G∈ ∈
⇒  f (a * K * a–1)

= f (a * K) o f (a–1)

= f (a) o f (K) o f (a–1)

= f (a) o e o f (a–1)

= f (a) o f (a–1)

= f (a * a–1)

= f (e) = e
⇒ a * K * a–1 ,K K K a G∈ ∀ ∈ ∈

Hence, K is a normal sub-group of G.
Now we state the following theorem without proof.

Theorem 9.50: Let f be a homomorphism of (G, *) into ( , )G ⋅  with Kernel K, then G/K G≅

��� �	�7�
��"�'����

Example 1: Let G be (Z, +) i.e., the group of integers under addition and let f: G →G defined by

( )x∅  = 3x .x G∀ ∈  Prove that f is homomorphism, determine its Kernel.

Solution: We have ( )x∅ = 3x x G∀ ∈

,x y G∀ ∈ ⇒  x + y G∈ (∴  G is a group under addition)

Now f (x + y) = 3 (x + y)
= 3x + 3y

= f (x) + f (y)
Hence f is homomorphism.
Kernel of homomorphism consists of half of zero i.e., the integers whose double is zero.
Thus K = {0}

Example 2: Let ∅  G G→  defined by ∅ (a) = .e  Prove that a G∀ ∈  is homomorphism.

Solution: ,a b G∀ ∈ ⇒ b G∈ (∴ G is a group)

Now ∅  (a * b) = e

= * ( ) ( )e e a b= ∅ ⋅ ∅

Hence ∅  is homomorphism.

Example 3: Consider two groups G and G  where G = (Z, +) and G  = {Zm/m = 0, …, x}.
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Let ∅  = Z →  {Zm/m is an integer}. Defined by f (m) = 2m where .m Z∈  Prove that ∅  is

homomorphism.

Solution: We have ∅  (m) = 2m where .m Z∈

∴ ∅  (m + r) = 2m+r = 2m 2r = ∅  (m) ∅ (r)

Hence ∅  is homomorphism.

Example 4: Prove that the mapping ∅  is an automorphism. Where

(a) G, the group of integers under addition ∅  (x) = –x

(b) G, the group of positive reals under multiplication ∅  (x) = x2.

Solution:

(a) Let , ,x y G∈  then x + y G∈  (Since G is a group under addition)

Now ∅  (x + y) = – (x + y) = –x – y = ∅  (x) + ∅  (y).

∴∅  is homomorphism.

Now y G y G∈ ⇒ ∈  [Since G is a group under addition].

Now ∅ (–y) = –(–y) = y G∈

∴∅  is onto.

∅  (x) = ∅  (y) = – x = –y = x = y

∴∅  is one-one.

Hence ∅  is an automorphism.

(b) Let x, .y G∈  Then x * y G∈ (∴  G is a group under multiplication)

Now ∅  (x * y) = (x y)2 = x2 * y2 = ∅  (x) * ∅  (y).

∴∅  is homomorphism.

Now ,y G∈  there exists 1/ 2y G∈  such that

∅ ( y1 2/ ) = ( y1 2/ )2 = y

∴∅  is onto

∅  (x) = ∅  (y) = x2 = y2 ⇒  x = y

∴∅ is one-one.

Example 5: If for a group G, f: G →  G is given by f (x) = x2, x G∈  is a homomorphism, prove that

G is abelian.

Solution: a, b G ab G∈ ⇒ ∈
f: G →  G is a homomorphism

∴  f (a) = a2, f (b) = b2 and f (ab) = (ab)2
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Now f (ab) = (ab)2

⇒  f (a) = f (b) = (ab) (ab)

⇒ a2 b2 = (ab) (ab)

⇒  (aa) (bb) = (ab) (ab)

⇒ a (ab) b = a (ba) b

⇒  (ab) b = (ba) b

⇒ ab = ba (Cancellation law hold good in G)

⇒  G is abelian.

�"��� � � � ���%

1. Define:
(a) Sub-group
(b) Order of a group
(c) Finite group
(d) Order of an element.

2. Show that the set of all elements a of an abelian group G which satisfy a2 = e, forms a sub-groups
of G.

3. If G is a group and N (a) = n G∈  (ax = xa) for ,a G∈  then prove that N (a) is a sub-group of G.

4. If G = {1, –1, i, –i} is a group under multiplication then write all sub-groups of G.

5. Let (G, 0) be a group and .a G∈  If N (G) denotes the normalizer of a in G, then show that

(N (G), 0) is a sub-group of (G, 0).
6. Define a cyclic group and give examples.
7. Show that the group {a, a2, a3, = e, 0} is a cyclic group.
8. Let P be the collection of sub-groups of (G, *) prove that the intersection of sub-groups in P is a

sub-group of (G, *).
9. Find all the sub-groups of a cyclic group of order 60.

10. Find all the sub-groups of a cyclic group of order 10.
11. Show that every sub-group of a cyclic group is cyclic.
12. List all sub-groups of a cyclic group of order 12.
13. Show that the group ({0, 6}, +12) is a sub-group of (Z12, +12) of integers modulo 12.
14. Show that every cyclic group is commutative.
15. State and prove Lagrange’s theorem.
16. If (G, *) is a finite group of composite order then show that (G, *) has non-trivial sub-groups.
17. Show that every group of Prime order is cyclic.
18. Prove that every sub-group of an abelian group is normal.
19. Prove that every quotient group of an abelian group is abelian.



ALGEBRAIC STRUCTURES 395

20. If (G, *) is a finite group of order n, with generator a. Then show that am is also a generator of G
if and only if m < n, and (m, n) = 1.

21. If (H1, ) and (H2, ) are two normal sub-group of (G, ) then show that is also a normal sub-group
of G.

22. Show that the intersection of any collection of normal sub-groups itself a normal sub-group.
23. Prove that every sub-group of index 2 is a normal sub-group.
24. Prove that the symmetric group of two symbols (S2, 0) is commutative.
25. Determine whether the following permutations are odd or even:

(a)
a b c

c a b

⎛ ⎞
⎜ ⎟
⎝ ⎠

(b)
1 2 3 4 5 6 7

3 2 4 5 6 7 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

(c)
1 2 3 4 5 6 7 8 9

6 1 4 3 2 5 7 9 8

⎛ ⎞
⎜ ⎟
⎝ ⎠

(d)
1 2 3 4 5

3 2 4 1 5

⎛ ⎞
⎜ ⎟
⎝ ⎠

26. Express the following permutations as the product of transpositions.

(a)
1 2 3 4 5 6 7

5 7 6 2 1 3 4

⎛ ⎞
⎜ ⎟
⎝ ⎠

(b) (1 2 3) o (4 5) o (6 7 8)
27. G = (f1, f2, f3, f4) where

1 2

1 2 3 4 1 2 3 4
,

1 2 3 4 2 1 4 3
f f

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

3 4

1 2 3 4 1 2 3 4
,

3 4 1 2 4 3 2 1
f f

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Show that ( , )G ⋅  is an abelian group.

���� ���������������'�>��/��>	��������	������	��

In the previous section, we studied, some of the elementary aspects of groups, which are algebraic
systems with one suitably restricted binary operation. We now proceed to study rings, which are algebraic
systems with two binary operations. We will also study some particular types of rings, notably, integral
domains and fields. We use the symbols ‘+’ and ‘ ⋅ ’ for any two binary operation and refer to these as
‘addition’ and ‘multiplication’ respectively as against their usage in the concept of numbers. In this
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section, we use R to denotes an arbitrary set. (In this section, the symbol R will no longer denote the set
of real numbers, unless specified).

The identity elements (R, +) and (R, )⋅  are denoted by ‘0’ and ‘1’ respectively. The inverse of a with

respect to ‘+’ is denoted by –a. We now define ring as follows.

������ ���8

Definition 9.38: An algebraic system (R, +, )⋅  is called a ring if the binary operations ‘+’ and ‘ ⋅ ’ R
satisfy the following properties:

1. (R, +) is an abelian group.

2. (R, )⋅  is a semi-group.

3. The operation ‘ ⋅ ’ is distributive over +, that is for any a, b, c ,R∈
( )a b c a b a c⋅ + = ⋅ + ⋅ and

( )b c a b a c a+ ⋅ = ⋅ + ⋅

Example 1: The set of all matrices of the form 
0

0

a

b

⎛ ⎞
⎜ ⎟
⎝ ⎠

a and b being real numbers, with matrix

addition and matrix multiplication is a ring.

Example 2: The set of integers Z,  with respect to the operations + and × is a ring.

���# ��������������	0������

���#�� ��44*����5�����8��)��3���������8

A ring R is said to be a commutative ring or an abelian ring if it satisfies the commutative law, , ,a b R∀ ∈

.a b b a⋅ = ⋅

���#� ���8� ��?�����;

A ring R which contains the multiplicative identity (called unity) is called a ring with unity.

Thus if 1 R∈  such that 1 1a a a⋅ = = ⋅ ,a R∀ ∈  then the ring is called a ring with unity.

���#�� ���8� ��?�*������;

A ring R, which does not contain multiplicative identity is called a ring without unity.

���#�# 0��������,���6���������8

If the number of elements in the ring R. Is finite, then <R, +, ⋅ > is called a finite ring, otherwise. It is
called an infinite ring.

���#�% 	),�)��6����8

The number of elements in a finite ring R is called the order of ring R.
This is denoted by |R|.
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Definition 9.39: Let (R, +, )⋅  be a ring with unity. An element a R∈  is said to be invertible, if there

exists an element 1 ,a R− ∈  called the inverse of a such that
1 1 1a a a a− −⋅ = ⋅ =

���% ��	��������	0������

Theorem 9.51: If R is a ring then:

(i) 0 0 0a a⋅ = = ⋅ a R∀ ∈

(ii) a (–b) = (–a) b = –(ab) ,a b R∀ ∈

(iii) (–a) (–b) = ab, ,a b R∀ ∈
Proof:

(i) We know that

a + 0 = a a R∀ ∈

⇒ ( 0)a a a a⋅ + = ⋅

⇒ 0 0a a a a a⋅ + ⋅ = ⋅ +

⇒ 0 0a ⋅ =  (by left cancellation under addition)

Similarly, we can prove

0 0a⋅ =

(ii) b R b R∈ ⇒ − ∈  such that b + (–b) = 0

⇒ ( ( )) 0a b b a⋅ + − = ⋅

⇒ ( ) 0a b a b⋅ + ⋅ − =

⇒ ( ) ( )a b a b⋅ − = − ⋅

Similarly, we can prove

( ) ( )a b a b− ⋅ = − ⋅

(iii) We have

( ) ( ) ( )a b a b⋅ − + − ⋅ −

( ( )) ( )a a b= + − ⋅ −

0 ( )b= ⋅ −
= 0

(( ) )a b b= ⋅ − +
( )a b a b= ⋅ − + ⋅

By left cancellation law

( ) ( )a b a b− ⋅ − = ⋅
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Second method

( ) ( ) (( ) ) ( ( ))a b a b a b a b− ⋅ − = − − ⋅ = − − ⋅ =

Corollary 1: Let (R, +, )⋅  be a ring, then

( )a b c a b a c⋅ − = ⋅ − ⋅
( )b c a b a c a− ⋅ = ⋅ − ⋅  for all , ,a b c R∈

Proof: ( ) ( ( ))a b c a b c⋅ − = ⋅ + −
( )a b a c= ⋅ + ⋅ −

a b a c= ⋅ − ⋅
Hence ( )a b c a b a c⋅ − = ⋅ − ⋅
Similarly, we can prove that

( )b c a b a c a− ⋅ = ⋅ − ⋅

Corollary 2: If (R, +, )⋅  is a ring with unity then for all a R∈

(i) ( 1) a a− ⋅ = −

(ii) ( 1) ( 1) 1− ⋅ − =

Proof:

(i) ( 1) (1 )a a a− ⋅ = − ⋅ = −

(ii) R is a ring with unity element, then 1 a a⋅ = a R∀ ∈

We have  (1) ( 1) 1 ( 1)a a a a+ − ⋅ = ⋅ + − ⋅

(1 ( 1)) a= + − ⋅

0 a= ⋅
 = 0

⇒ a + (–1) a = 0

⇒ ( 1) a a− ⋅ = −

if a = –1, then ( ) ( ) ( )1 1 1− ⋅ − = − −

⇒ ( 1) ( 1) 1− ⋅ − =

Definition 9.40: Let (R, +, )⋅  be a ring. R is said to be with zero divisors if there exists two non-zero
elements, ,a b R∈  such that 0.a b⋅ =

Note: If 0, 0a b≠ ≠ ⇒ ab = 0 in R, a is called the left zero divisor and b is called the right zero divisor.

Definition 9.41: Let (R, + )⋅  be a ring. R is said to be without zero divisors if ab = 0 = ⇒  either a = 0

or b = 0 for all a, , .a b R∈
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Example: Let R denote the set of ordered pairs of real number i.e.
Let R = {(a, b): a, b are real} and addition and multiplication on R be defined as follows:

(a, b) + (c, d) = (a + c, b + d)
(a, b) (c, d) = (ac, bd)

Clearly (R, +, )⋅  is a commutative ring with unity (1, 1)
We observe that

(1, 0) (0, 1) = ( )1 0, 0 1⋅ ⋅  = (0, 0)

where (0, 0) is the additive identity in R also (1, 0) ≠  (0, 0), (0, 1) ≠  (0, 0)
Thus (1, 0) and (0, 1) are zero divisors of the ring R.

���- ���$�����

Definition 9.42: Let (R, +, )⋅  be a ring and S be a non-empty subset of R. If (S, +, )⋅  is a ring then
(S, +, )⋅  is called a sub-ring of R.

Example: Let E denote the set of even integers. (E, +, )⋅  is a sub-ring of (Z, +, )⋅ , where Z denotes the
set of integers.

Note: Every ring (R, +, )⋅  has two trivial sub-rings ({0}, +, )⋅  and (R, +, )⋅  where 0 is the additive identity of
(R, +, ).⋅

Definition 9.43: Let (S, +, )⋅  be a sub-ring of (R, +, )⋅  where R is a ring with identity element 1. If

1 ,S∈  then S is called a unitary sub-ring of R and the ring is said to be unitary over ring (S, +, ).⋅

���. �	�00����������
��"�	�����

Let (R, +, )⋅  is ring and .a R∈  If m is a positive integer then we can write.

ma = a + a + … + a (m times) and am = ...a a a⋅  (m times)

moreover, for all positive integers m and n, we have
am an = am+n and (am)n = amn

Definition 9.44: Let (R, +, )⋅  be a ring. If there exists a positive integer n such that na = 0 for all

,a R∈  then such a least positive integer n is called the characteristic of the ring R. If no such integer

exists, then (R, +, )⋅  is said to be characteristic zero.

Example 1: The ring (Z, +, )⋅  is characteristic zero.

Example 2: In the ring (Z6, +6, ×6) of integers, we have

a +6 a +6 a +6 a +6 a + 6 a = 0 6a Z∀ ∈
(Z6, +6, ×6) is of characteristic zero.

Definition 9.45: Let (R, +, )⋅  be a ring. An element a R∈  is said to be idempotent if a ⋅ a = a2 = a.

Example 3: In the ring (Z6, +6, ×6) the elements 0, 1, 3 and 4 are idempotent.
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Definition 9.46: Let (R, +, )⋅  be a ring. An element a R∈  is said to be nilpotent if there exists a

positive integer n such that an = 0

Example 4: Zero element of a ring is nilpotent.

Definition 9.47: Let (R, +, )⋅  be a ring and S be a non-empty subset of R. Then the system (S, +, )⋅  is

a subring of (R, +, )⋅  if and only if.

(i) a – b S∈  for all a, b S∈

(ii) a ⋅ b S∈  for all a, b S∈

Theorem 9.52: Let (S1, +, )⋅  and (S2, +, )⋅  be two sub-rings of a ring (R, +, ).⋅  Then 1 2( , , )S S∩ + ⋅  is

also a sub-ring of (R, +, ).⋅

Definition 9.48: Let (R, +, )⋅  be a ring. If a ⋅ a = a a R∀ ∈  then (R, +, )⋅  is said to be Boolean ring.

Example 5: Let S be non-empty set. Then (P (S), , )Δ ∩  is a ring where P (S), is the power set of S

P (S, , )Δ ∩  is a Boolean ring, since

A A A∩ =  = A for all ( )A P S∈

Theorem 9.53: If (R, +, )⋅  is a Boolean ring, then a + a = 0 .a R∀ ∈

Proof: a R a a R∈ ⇒ + ∈

since (R, +, )⋅  is Boolean ring,

then (a + b) + 0 = (a + a)

⇒  (a + a) + 0 = ( ) ( )a a a a+ ⋅ +

( ) ( )a a a a a a a a= ⋅ + ⋅ + ⋅ + ⋅
= (a + a) + (a + a)

by left cancellation we have a + a = 0.

Definition 9.49: A commutative ring (R, +, )⋅  with unity is an integral domain if it has no zero divisors.

Example 6: Ring of integers is an integral domain.

Definition 9.50: A ring (R, +, )⋅  is said to be a division ring (or Skew field) if its non-zero elements
form a group under multiplication.

Example 7: The ring of rational numbers ( , , )+ ⋅Q  is a division ring, since 1∈Q  and the non-zero

elements of Q are invertible.

Example 8: Show that a division ring has no zero divisors.

Solution : Let ( , , )+ ⋅R  be a division ring

Let , ∈a b R  and 0.≠a  Let ab = 0
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R is a division ring, therefore – 1∈ ⇒ ∈a R a R  such that – 1 – 1 1= =aa a a

Now ab = 0

– 1 – 1( ) 0⇒ =a ab a

– 1( ) 0⇒ =a a b

1 0⇒ =b

0⇒ =b

Thus , , 0∈ ≠a b R a  and 0 0= ⇒ =ab b

Similarly, we can show that , , 0∈ ≠a b R b  and 0 0= ⇒ =ab a

Hence , 0 0 or 0∈ = ⇒ = =ab R ab a b

Therefore a division ring has no zero divisors.
Definition 9.51: A commutative division ring is called a field.

Example 9: Let Q be the set of rational numbers and ‘+’ and ‘ ⋅ ’ be two binary operation, then
(Q, +, )⋅  is a ring.

Also Q is field.

Theorem 9.54: A finite integral domain is a field.

Definition 9.52: Let (D, +, )⋅  be an integral domain. D is said to be of characteristic p, if p is the

smallest positive integer such that pa = 0 a D∀ ∈

Example 10: The characteristic of the ring of integers ( , , )+ ⋅Z  is zero

Example 11: R = {0, 1, 2, 3, 4, 5, 6} is a ring under addition and multiplication modulo 7.
Since 7 is the least positive integer so that

7a = 0 for all ,∈a R  the characteristic of R is 7.

Example 12: If R is a non-zero ring so that 2 ,= ∀ ∈a a a R  prove that the characteristic of R is 2.

Solution: Since 2 = ∀ ∈a a a R

We have (a + a)2 = (a + a)
i.e. (a + a) (a + a) = (a + a)

( ) ( )⇒ + + + = +a a a a a a a a

( ) ( )⇒ + + + = +aa aa aa aa a a

2 2 2 2( ) ( )⇒ + + + = +a a a a a a

( ) ( ) ( ) 0⇒ + + + = + +a a a a a a
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0⇒ + =a a

2 0⇒ =a

2 is the least positive integer so that

2 0= ∀ ∈a a R

Hence, the characteristic of R is 2.

Theorem 9.55: The characteristic of an integral domain is either a prime or zero.

Theorem 9.56: The characteristic of a field is either a prime or zero.

Definition 9.53: A mapping f from a ring R into the ring R′  is said to be homomorphism if

(i) f (a + b) = f (a) + f (b)

(ii) f (ab) = f (a) f (b)

for all ,a b R∈ .

Theorem 9.57: If f is a homomorphism of R into ,R′  then

(i) f (0) = 0′  (0 is the additive identity of ).R′

(ii) f (–a) = –f (a) for every a R∈

Definition 9.54: Let (R, +, )⋅  be a ring. A non-empty subset S of R is said to be an ideal of R if.

(i) S is a sub-group of R under addition.

(ii) For every s S∈  and ,r R∈  both sr and rs are in S.

Example 13: In any ring (R, +, ),⋅  the trivial sub-rings (R, +, )⋅  and ({0}, +, )⋅  are both ideals.

Example 14: ({0, 3, 6, 9}, +12, ×12) is an ideal of the ring (Z12, +12, ×12).

Definition 9.55: The center of a ring R is the set of all elements ∈a R  such that

xa = ax for all ∈x R

If R is a commutative ring then the center of R is trivially, the ring R  itself . The center of any ring
R is a subring of R.

�"��� � � � ���-

1. Define:
(a) Ring
(b) Commutative ring
(c) Ring with unity

(d ) Integral domain
(e) Field

give examples
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2. Show that the system (E, +, )⋅  of even integers is a ring under ordinary addition and multiplication.

3. Define sub-ring and give an example.

4. Show that a ring (R, +, )⋅  is without zero divisors if and only if cancellation law holds for
multiplication.

5. If (R, +, )⋅  is a ring and a, b R∈  show that equation a + n = b has unique solution in R.

6. If R is a ring commutative with characteristic 2. Show that (a + b)2 = a2 + b2 , .a b R∀ ∈
7. If R is a Boolean ring, then show that a + a = 0 .a R∀ ∈
8. Show that every Boolean ring is commutative.

9. Show that a finite integral domain is a field.

10. If D = {a + 5: , }b a b Z∈ , show that (D, +, )⋅  is an integral domain.
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10

Finite State Machines

���� ����	
����	�

In this chapter, we study finite state machines. A finite state machine is a mathematical system with
discrete inputs and outputs. Each internal configuration of the system is called a state. A table lamp is a
finite state machine. A switching circuit is a finite state machine. In computer science, we find many
examples of finite state systems.

Finite state machines have many applications. A finite state machine can be used to model a physical
system and is similar to finite state automation. Lexical scanners, parity check machines, shift registers,
vending machines, etc., are some examples of finite state machines. A device that receives a set of input
signals and produces corresponding output signals is called an information—processing machine.

Fig. 10.1 Information—Processing machine

Machines can be divided into two classes.
(a) Machines with memory.
(b) Machines without memory.

A vending machine is a machine with memory. Table lamp and adder are examples of machines
that have no memory. A summary of post events of the machine is represented by a state and a machine
may have a certain number of states corresponding to a certain number of distinct classes of past history.
A machine with finite number of states is called a finite state machine.

Definition 10.1: A finite state machine is a system M = (S, I, O, , )δ λ  where the sets S, I and O are
alphabets that represent the state, input and output symbols of the machine respectively. δ  is a mapping
of S × I into S, which denotes the next state function and λ  is a mapping of S × I into O, which denotes
the output function. The alphabets I and O are not necessarily disjoint but ,I S O S∩ = ∩ = ∅  we
shall denote the alphabets by
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S = {s0, s1, s2, …, sm}
I = {a0, a1, a2, …, an}

O = {o0, o1, o2, …, or}
And we shall assume that the finite state machine is in an initial state S0.
The function δ : S × I → S, is also referred to as the transition function. At any state, a finite state

machine produces an output letter according to the output function .λ  The figure shown in Fig 10.2 is
an abstract representation of a finite state machine.

Fig. 10.2

The input tape is divided into squares and input symbols are stored on the input tape. The output
symbols are stored in output tape. The machine reads a sequence of symbols that are stored on an input
tape and stores sequence of output symbols on an output tape. The input and output tapes are allowed to
move only in one direction.

Example 1: Let S = {s0, s1, s2}
I = {a, b}

O = {p, q, r}
Initial state s0

Next state function δ : S × I → S, be defined by

δ  (s0, a) = s1, δ  (s1, a) = s2, δ  (s2, a) = s0,

δ  (s0, b) = s1, δ  (s1, b) = s2, δ  (s2, b) = s1,

output function λ : S × I → O, be defined by

λ  (s0, a) = p, λ  (s1, a) = p, λ  (s2, a) = r,

λ  (s0, b) = q, λ  (s1, b) = r, λ  (sq, b) = q,

then M = (S, I, O, , )δ λ  defines a finite state machine, with three internal states two input symbols and

three output symbols.

��� ��������	�������

A finite state machine M can be represented by a table, called the transition table (or state table) in which
the functions δ  and λ  can be described.
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Example 1: Let S = {s0, s1}, I = {a, b}, O = {0, 1}
Initial state is s0.

Next state function δ : S × I → S, be defined by

δ  (s0, a) = s1, δ  (s1, a) = s0,

δ  (s0, b) = s1, δ  (s1, b) = s1,

output function λ : S × I → O, be defined by

λ  (s0, a) = 1, λ  (s1, a) = 0,

λ  (s0, b) = 1, λ  (s1, b) = 1,

then M = (S, I, O , )δ λ  is a finite state machine with s0 as the initial state.

The state table of M is given in Table 10.1.

Table 10.1

I δ λ

S a b a b

S0 S1 S1 1 1

S1 S0 S1 0 1

���� ��������	��
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Definition 10.2: The state diagram of a finite state machine M is a directed graph, in which there is a
node for each state symbol in S, and each node is labelled by the state symbol with which it is associated.
Furthermore for each ordered pair (si, sj) there exists such that 3-tuples (si, qp, sj) and (si, ap, ok) there is
a branch originating at si and terminating at sj where each such branch is labelled by ap/ok (or ap, ok).

Thus, the transition diagram of a finite state machine is digraph. The vertices are the states, the
initial state is indicated by an arrow (as shown in Fig. 10.1) for example: If we are in state s0 and
inputting ap causes output o and moves to state s1. We draw a directed line (edge) from vertex s0 to s1

and label it ap/o. The transition diagram of the finite state machine M given by Table 10.1 is shown in
Fig. 10.3.

Fig. 10.3 A Transition diagram
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Example: Draw the transition diagram of the finite State machine describe the Table 10.2.

Table 10.2

I δ λ

S a b a b

S0 S1 S1 x y

S1 S0 S1 x y

S2 S0 S1 x y

Solution: The graphical representation i.e., transition diagram of the finite state machine is pictured in
Fig. 10.4.

Fig. 10.4

���� ����������������������������������
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A finite state machine is always associated with a initial state. It consists of

1. A finite set of states.

2. A finite set I of input symbols.

3. A finite set O of output symbols.

4. A next state function δ  from S × I into S.

5. An output function S × I into O.

6. An initial state 0 .S S∈
Thus, we can define a finite state machine M as a 6-tuple

M = (S, I, O, , ,δ λ S0)

Example 1: Draw the transition diagram state diagram of the finite state machine M = (S, I, O, , ,δ λ S0)

given in the Table 10.3.
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Table 10.3

I δ λ

S a b c a b c

S0 S0 S1 S2 0 1 0

S1 S0 S1 S0 1 1 1

S2 S2 S1 S0 1 0 0

Solution: We have S = {s0, s1, s2}
I = {a, b, c}

O = {0, 1}
S0 is the initial state
The state diagram can be drawn as shown in Fig. 10.5.

Fig. 10.5

Example 2: Find the sets S, I and O, the initial state, and transition table defining the next state and
output function for the finite state machine given in Fig. 10.6.
Solution: We have S = {s0, s1, s2, s3}

I = {a, b}
O = {0, 1}

S0 is the initial state

δ  : S × I → S is the next function defined by

δ  (s0, a) = s1, δ  (s1, a) = s0, δ  (s2, a) = s3, δ  (s3, a) = s1,

δ  (s0, b) = s2, δ  (s1, b) = s2, δ  (s2, b) = s0, δ  (s3, b) = s3

output function

λ  : S × I λ O is defined by

λ  (s0, a) = 0, λ  (s1, a) = 1, λ  (s2, a) = 0, λ  (s3, a) = 0,

λ  (s0, b) = 0, λ  (s1, b) = 0, λ  (s2, b) = 1, λ  (s3, b) = 0
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The state table is given in Table 10.4.

Fig. 10.6

Table 10.4

I δ λ

S a b a b

S0 S1 S2 0 0

S1 S0 S2 1 0

S2 S3 S0 0 1

S3 S1 S3 0 0

Example 3: Binary adder:
A serial adder operates in a sequential manner to perform an indicated operation. The block diagram of
an adder in given in Fig. 10.7.

The sequence of bits for x, y and z are represented by
xn–1 xn–2 …x1 x0

yn–1 yn–2 …y1 y0

and zn–1 zn–2 …z1 z0 respectively.
Where x and y denote the inputs and z denotes the output. The number of bits in n.

Fig. 10.7 Serial binary adder

The least significant digits x1 y0 of the inputs arrive simultaneously at the input terminals at time fo.
If M = (S, I, O, , ,δ λ S0) is a finite state machine, a string γ  over I is called an input string and

corresponding there exists a string ∈P O  called the output string.
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A finite state machine transforms words into words. If I* and O* denote the sets of words on
the input and output alphabets I and O respectively. We can describe an operation of the machine by the
function

g: I* → O*
Where the domain and range of g are infinite sets.

Consider the sequence a = a0, a1, a2, … an … of the input symbols, we can define a function δn  as
follows

δn : S × In → S, such that

Sn = δn  (s0, a0, a1, …an – 1)

= δ  (sn – 1 (s0, a0, a1, …an – 1), an – 1)

for the output symbols O0, O1, O2, …. We define the function for the output sequence as follows.

λn : S × In → S, such that

On – 1 = λn  (s0, a0, a1, …an – 1)

���� ������������	�����������������������

Finite state machines which produce, the same output sequence, when they are given the same input
sequence are said to be equivalent. The internal structures of two equivalent machines may differ.

Definition 10.3: Let α  = a0, a1, …an–1 be any input sequence containing n symbols and let β  be any
output symbol. Then mapping δ  and λ  can be extended as follows.

(i) ( , ) ( ( , ) )δ α β δ δ α β=i is s

(ii) ( , ) ( ( , ) )λ α β λ δ α β=i is s

(iii) δ  (si, a0, a1, …an–1) = λ  (si, a0) λ  (si, a0, a1) … λ  (si, a0, a1, …an–1)

We now introduce the notion of equivalent states.

Definition 10.4: Let M = (S, I, O, , )δ λ  be a finite state machine. Two states , ∈i js s S  are said to be
equivalent, written si ≡ sj and only if λ  (si, a) = λ (sj, a) for every word *.∈a I

The relation ≡  is an equivalence relation.

Definition 10.5: Let M = (S, I, O, , )δ λ  be a finite state machine. Then for some positive integer k, si

is said to be k-equivalent to sj, if ( , ) ( , )λ λ≡ ⇔ =
k

i j i js s s a s a  for all |a| ≤ k.

From the above definition it is clear that two states si and sj are equivalent if they have the same
output and if, for every input letter, their successors are (k –1) equivalent only if si ≡ sj, but not the
converse. If si and sj are k-equivalent and if sj and sh are k-equivalent, then si and sh are also k-equivalent.
The k-equivalence relation is also an equivalence relation and corresponding we can find a partition Pk,
which is a k-partition in the set of states S whose k-equivalence is defined as follows.

[ ] :
⎧ ⎫= ≡⎨ ⎬
⎩ ⎭

k

i j i jk
s s s s    and [ ]

∈
= ∪k ks s

P s
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Let ( , , , , )δ λ=M S I O  and M = (S, I, O, δ , λ ) be two finite state machines.

If (i) M and M  have the same input and output alphabet, and

(ii) There exists a function f: S → S  such that for every positive integer r,

( , ) ( ( ), )rr s a f s aδ δ=

and ( , ) ( ( ), )λ λ= ∀ ∈rr s a f s a a I

then we say that M  covers M.

Note: If M  covers M; then M covers .M

Lemma 10.1: The relation covering is reflexive and transitive.

Proof: Consider the finite state machine M = (S, I, O, ,δ I) and the identity mapping f: S → S.

We have , , , ,S S I I O O δ δ λ λ= = = = =
and ( , , , , )M S I O δ λ=

By definition M  and M have the same input and output alphabet, also we have

rδ  (s, a) = rδ  (f (s), a) = rδ  (f (s), a) a I∀ ∈

M∴  covers M i.e., M covers M, thus the relation covering is reflexive.

To prove that the relation covering is transitive, we suppose that M  covers M  and M  covers M
where ( , , , , ),M S I O δ λ= ( , , , , )M S I O δ λ=  and M = (S, I, O, , ).δ λ

Now M  covers M ,I I O O⇒ = = … (i)

and there exists a mapping β  such that ( , ) ( ( ), )r rs a f s aδ δ= ... (ii)

since M  covers N, we have

,I I O O= = … (iii)

and there exists a mapping f : S → S  such that

rδ  (s, a) = rδ  (f (s), a) … (iv)
from (i) and (ii)

I I I= =  and O O O= =  … (v)
consider the mapping

:f o f s s∅ = →
Now rδ  (s, a) = rδ  (f (s), a) (by (iv))

=
rδ ( f  (f (s), a)) (by (ii))

=
rδ (∅  (s), a) ( )f o f∅ =

∴ rδ  (s, a) = 
rδ (∅  (s), a)  … (vi)

from (v) and (vi)
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M  covers M.
Hence the relation covering is transitive.

Theorem 10.1: Let M be a finite state machine and S be any state in M. if a and b are any words, then

(i) δ  (s, ab) = δ (δ  (s, a), b)

(ii) λ  (s, ab) = λ (δ  (s, a), b)

Proof: We prove the theorem by induction on the length of b.

Let b = α

Then ( , ) ( ( , ), )δ α δ δ α=s a s a

Let us assume that the equation is true for any length n i.e.,

( , ) ( ( , ), )δ δ δ=s ab s a b

We prove that it is true for (n + 10) symbols also we can write ( , ) ( ( , ), ).δ α δ δ α=s ab s ab  The

right hand side of the above identity can be written as

( ( , ) ) ( ( ( , ), ), )δ δ α δ δ δ α=s ab s a b  (by induction)

Taking ( , )δ=s s a  we can write the right side of the equation as:

( ( ( , ), ), ) ( ( , ) )δ δ δ α δ δ α=s a b s b

( , )δ α= s b

( ( , ), )δ δ α= s a b

Hence the equation is true when length of b is n + 1. This completes proof of (i) similarly we can
prove that

( , ) ( ( , ), )λ λ δ=ab s a b

we shall now state the following theorem without proof.

Theorem 10.2: Let M = (S, I, O, , )δ λ  be a finite state machine and , .∈i jS S S  If Si ≡ Sj, then for any

input sequence a.

( , ) ( , )δ δ=i jS a S a

Theorem 10.3: Let P denote the partition generated by the equivalence relation ≡  and corresponding

to the k-equivalence relation ,≡
k

 let pk denote the k-partition on the set of states S. If for some positive

integer k, Pk +1 = Pk, then Pk = P and conversely.

Theorem 10.4: Let S S Si j, ∈  then 
1+

≡
k

i jS S  if and only if ≡
k

i jS S  and for all ,∈a I

( , ) ( , ).δ δ≡
k

i jS a S a

We now define equivalent machines.
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Definition 10.6: Two finite state machines M = (S, I, O, , )δ λ  and ( , , , , )δ λ=M S I O  are said to be

equivalent, if and only if for all ,∈iS S  there exists an ∈jS S  such that ,≡i jS S  and for all ,∈jS S

there exists an ∈iS S  such that Si ≡ Sj.

If M and M  are equivalent we write M .≡ M

Example 1: The finite state machines given in the two tables. Table 10.5 (a) and Table 10.5 (b) are
equivalent.

Table 10.5 Equivalent Machines

(a)

I δ λ

S 0 1 0 1

S0 S5 S3 0 1

S1 S1 S4 0 0

S2 S1 S3 0 0

S3 S1 S2 0 0

S4 S5 S2 0 1

S5 S4 S1 0 1

(b)

I δ λ

S 0 1 0 1

S0 S5 S3 0 1

S1 S1 S4 0 0

S2 S1 S3 0 0

S3 S1 S2 0 0

Definition 10.7: A finite state machine M = (S, I, O, , )δ λ  is said to be reduced if any only if Si ≡ Sj

⇒ Sj ≡ Si for all states , .∈i jS S S

Let the set of states S be partitioned in a set of equivalence classes [s], such that [ ].= ∪P s  Let f be

a function defined on P such that f [s] = ,S  where S  is an arbitrary fixed element of [s].

Clearly [s] = [ ].s

We construct a reduced finite state machine ( , , , , )δ λ=M S I O  by taking

{ : ( and ([ ])) },λ= ∈ =S s s s S f s s =O o   and .=I o

The function δ  and λ  are defined as follows:

( , ) [ ( , )]δ δ=s a f s a

and ( , ) ( , )λ λ=s a s a  where ∈s s  and also ∈s S
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Definition 10.8: Let M = (S, I, O, , )δ λ  and ( , , , , )δ λ=M S I O  be two finite state machines. Let f

be a mapping from s into S  defined such that

f (δ (s, a) = δ (f (s), a)

λ  (s, a) = λ  (f (s), a), for all ∈a I  then f is called a finite state homomorphism.

Example: Let M = (S, I, O, , )δ λ  and ( , , , , )δ λ=M S I O  be two finite state machines. Where

S = (a, b, c) and S  = {1, 2}. A mapping f : S → S  defined by f (a) = 1, f (b) = 2, f (c) = 2, is a

homomorphism from M to .M

Definition 10.9: Let M = (S, I, O, , )δ λ  and ( , , , , )δ λ=M S I O  denote two finite state machines and

f : S → S  be a homomorphism. If f is one-one and into (a bijection), then M is said to be isomorphic to .M

�"#$%&��'()*#%+

Example 1: Let M = (S, I, O, , )δ λ  be finite state machine with transition table appearing in Table 10.6.

Find the set S, I, O and initial state S0. Draw the state diagram. If α  = a a b a b a a b b a b is an input
word. Find the corresponding sequence of state and the output word.

Table 10.6

I δ λ

S a b a b

S0 S1 S2 x y

S1 S3 S1 y z

S2 S1 S0 z x

S3 S0 S2 z x

Solution: We have S = {s0, s1, s2, s3}
I = {a, b}

O = {x, y, z}
and s0 the initial state.

The transition diagram of M can be drawn as shown in Fig. 10.8.

Let β  denote the sequence of states and r denote the output word, corresponding to α  = a a b a b

a a b b a b.
S0 is the initial state.



FINITE STATE MACHINES 415

Starting with S0, we move state to state by the arrows which are labelled and obtain the following
sequence:

/ / // / / / / / / /

0 1 3 2 1 1 3 0 2 0 1 1→ → → → → → → → → → →
a y a y b ya x b x a z b z a z b x a x b z

S S S S S S S S S S S S

β∴  = s0, s1, s3, s2, s1, s1, s3, s0, s2, s0, s1, s1 is the sequence of states and r = x y x z z y z y x x z is the

corresponding output word.

Fig. 10.8

Example 2: Let I = {a, b}, O = {0, 1} and S = {s0, s1}. Define the functions δ : S × I → S, and

λ : S × I → O by the rules given in Table 10.7 representing the finite state machine M = (S, I, O, , )δ λ

Table 10.7

I δ λ

S a b a b

S0 S0 S1 0 1

S1 S1 S1 1 0

We can interpret Table 10.7 as follows:

δ  (s0, a) = s0, δ  (s1, a) = s1,

δ  (s0, b) = s1, δ  (s1, b) = s1

and λ  (s0, a) = 0, λ  (s0, b) = 1,

λ  (s0, b) = 1, λ  (s0, b) = 0

S0

A x/

b z/

A z/

a z/

b x/

b x/ b y/ a y/

S1

S2 S3
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1. Draw the state diagram for the finite state machine given by the Table on page 410.

I Input Output

S 0 1 0 1

S1 S2 S2 0 1
S2 S2 S3 1 1

S3 S5 S5 0 1
S4 S4 S1 1 1
S5 S5 S4 1 1

2. Draw the state diagram for the following finite state machine:

I Input Output

δ λ

S 0 1 0 1

a b c 0 0

b b c 0 0
c b c 0 1

3. A finite state machine is given by the following table. Draw its state diagram:

States Input Output

δ λ

S 0 1 0 1

a b c 0 1
b a c 0 1

c c a 1 0

4. Draw finite state diagram for the finite state machine given by the following table:

States Input Output

0 1 2

A A B C

B B C A

C C A B
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5. A finite machine is given by the following table:
(i) Draw the transition diagram

(ii) Find the sequence of states (q)
(iii) Find the output word (r) for the input word p = a b a a b.

6. Show that there is no finite state machine which can do binary multiplication.
7. Draw a transition diagram for the finite state machine.

M = (S, I, O, , ),δ λ  where

I = (a, b), O = (0, 1), S = (s0, s1).

I δ λ

S a b a b

S0 S1 S1 1 1
S1 S0 S1 0 1

8.

I δ λ

S a b c a b c

S0 S0 S1 S2 0 1 0
S1 S1 S1 S0 1 1 1
S2 S2 S1 S0 1 0 0

9. Find the sets S, I and O. Also find the initial state. Find the next state function. ( )δ  and the
output function ( )λ  for each of the finite state machine.

(a)
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(b)

(c)

(d)

(e)

(f )
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10. Let M = (S, I, O, , )δ λ  be the finite state machine appearing in the table given below:

I δ λ

S a b a b

S0 S2 S1 y z

S1 S2 S3 x y

S2 S2 S1 y z

S3 S3 S0 z x

Find S, I and O…. Draw the state diagram also find the output word r if the input word is α  = a a
b b a b b a a b.

���- �	�������������.��������

Formal languages one used to model natural languages and to communicate with computers. We begin
with basic definitions.

���-�� �#*/(0%1

Definition 10.10: A finite non-empty set of symbols that can be used to construct words is called an
alphabet. It is denoted by A.

Each element of A is called a letter.

���-� 2"3&

Definition 10.11: A word (String) from an alphabet A is a finite sequence elements of A (i.e., letters
of A)

Example 1: w = a a b b a c is a word from the alphabet A = (a, b, c)

Example 2: a1 a2 a3 a4 a2 a2 is string (word) on the alphabet (a1, a2, a3, a4)

Example 3: 2 7 3 0 1 7 8 is a string on the alphabet (0, 1, 2, 3, …, 9)

An empty word is an empty sequence from the alphabet A. It is denoted by .λ

If a1 a2 a3 … an is a string then the length of the string is n. If 1 ,≤ ≤ ≤i j n  the string ai+1 ai+2 … aj

is called a segment of the string a1 a2 a3 … an length of a word.

Definition 10.12: The length of a word α  is defined as the number of letters in its sequence of letters.

It is denoted by ( ).αl

���-�� �405"3&

Definition 10.13: A word α  is called a subword of the word w if 0 1α α α=w λ  itself is a subword

of w.

If 0α λ=  (the empty word), then α  is called an initial segment of the word w.
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Example: If w = a b c, then , , , , , , ,λ a b c ab ac bc abc  and are subwords of w.

���-�� �"67(1%6(18"6

Let a1 a2 a3 … ap and b1 b2 b3 … bq be strings. Then their concatenation is the string a1 a2 a3 … ap b1 b2

b3 … bq. It is of length p q× .

The Concatenation is also called the join or product of strings.

Example 1: The Concatenation of 3215 and 7281 is 32157281.

Example 2: The concatenation of ‘place’ and ‘ment’ is ‘placement’.

If α  and β  are strings, the concatenation of α  and β  is .α β  In general, it is not communicative

i.e., .α β β α≠

Example 3: If α = a a bb a c  and β = c ab b c a  then α β = a a b b a c c a bb c a  and
β α = c abbc a a abba c .

If A is an alphabet, then the finite set of all strings on A is denoted by A*.

�"3)(#��(694(9%

Definition 10.14: Let A be an alphabet A formal language L over A is a subset of A*, the set of all
strings over A.

Example: Let A = (a, b) then L = (am bm : m > 0) is a language over A. It consists of all words
beginning with one or more a’s followed by the same number of b’s.

Definition 10.15: It L1 and L2 are language over an alphabet A, then the language L1 L2 over A is set of
all words over A formed by concatenating words in L1 with in L2.

∴ 1 2 1 2{ : , }α β α β= ∈ ∈L L w where L L

Example 1: If L1 = (a, ab, a2), L2 = (b, b2, aba) then L1 L2 = (ab, ab2, a2ba, ab2, ab3, ababa, a2b, a2b2,
a3ba)

Let L be a language over A. We can write 0 1{ },λ= =L L L  and Ln +1 = Ln L (for n > 0)

Example 2: If L (a, bc) then L3 = (aaa, aabc, abca, bcaa, bcbcbc, bcbca, bcabc, abcbc).

���-�� �3())(3

Definition 10.16: A phase-structure grammar G (or simply a grammar) is (N, T, P, S) where

(i) N is a finite non-empty set whose elements are called variables (or non-terminals).

(ii) T is a finite non-empty set whose elements are called terminals where .∩ = ∅N T

(iii) A finite set P whose elements are .α β→  When α  and β  are strings on N U T (where α  has

atleast are symbol form N). The elements of P are called productions or production rules.

(iv) S is a special variable (non-terminal) called the start symbol. It is an element of N.
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Example: Let N = (S, A)
T = (a, b)

{ , , , }.P S b S S a A A b A A b= → → → →

Then G = (N, T, P, S) is a grammar.
Language generated by a grammar.

Definition 10.17: If G is a grammar, then the set of all strings over T (set of terminals) derivable from
S (start symbol). It is denoted by L (G).

The elements of L (G) are called sentences.

If α β→  is a production and ( )*,α ∈a b N U T  we say that βa b  is directly from αa b  and write.

α β⇒a b a b  or α β⇒
G

a b a b  or α β⇒
G

Example: Consider the grammar G (N, T, P, S), where N = (S, A), T = (a, b),

( , , , ).P S b S S a A A b A A b= → → → →
The string ab A bb can be derivable directly from a A bb by using the production .→A b A  It is

written as ⇒a Abb a b Abb

Definition 10.18: If α  and β  are strings on N U T then we say that α  derive β  if ,
G

α β
∗

⇒  where 
∗

⇒
G

denotes the reflexive-transitive closure of the relation ⇒
G

 in (N U T)*

Example 1: Consider the grammar G = (N, T, P, S), where N = (S, A, a, b) T = (a, b), and

( , , )= → → →P S a A S b A a a  with S as the start symbol.

Solution: L (G) can be derived as follows:
We start with S.

⇒S a A

⇒ a a a

we can also use →S b  to derive b

∴ ( ) { , }=L G b a a a

Example 2: Show that the language ( ) { : 1}= ≥n n nL G a b c n  can be generated by G = (N, T, P, S)

where N = (S, B, C), T = (a, b, c)

( , , , , , , )= → → → → → → →P S a s B c S a Bc cb Bc a B ab b B bb bc bc cc cc and S is the starting

symbol.
Solution: We derive the string abc as follows.

⇒S a B c

⇒ a b c

⇒ a b c
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And the string a2 b2 c2 can be derived from S as follows.

⇒S a S b c

⇒ a a Bc Bc

⇒ a a B Bcc

⇒ a ab B cc

⇒ a a b bc c

⇒ a a b bc c

⇒ a a b bc c

For n = 1 and n = 2, we have proved that an bn cn can be derived from S, which shows that

( ) { : 1}= ≥n n nL G a b c n  is generated by G.

Example 3: Consider the grammar G = (N, T, P, S), where N = (A, B, S), T = (a, b),

{ , , , }= → → → →P S a B B b B b A A a B  and S is the starting symbol.

Solution: We prove by giving example. We derive ab, (n = 1) and (ab)2, (n = 2)

⇒S a B

⇒ ab

∴ 1( )⇒S ab

and ⇒S a B

⇒ ab A

⇒ ab a B

⇒ ab ab

( ) ( )⇒ ab ab

∴  L (G) can be generated by G.

���-�� �:*%+�";��3())(3+

Definition 10.19: A grammar G which has no restriction on its production is called type zero grammar.
It is denoted by the symbol T0.

Definition 10.20: A grammar G is said to be of Type 1, every production α β→  has the property that

( ) ( ).α β≤l l  It is denoted by T1.

Definition 10.21: A grammar G is said to be of Type 2, if every production is of the form ,A β→

where .β ∈N

It is denoted by T2 and is called contex-free grammar.

Definition 10.22: A grammar G is said to be of the Type 3, if ( ) ( ),α β α≤ ∈l l N  and β  was the

form a b or a where ∈a T  and .∈B N  It is denoted by T3 and is called regular grammar.
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Derivations can be displayed as trees. The pictures representing derivations are called derivation tree (or
generation trees). It is also called a parse tree. The vertices of a derivation tree are labeled with terminal
or variable symbols of the grammar. If an interior vertex v is labeled A and the children are labeled
v1, v2, …, vp from the left then 1 2 ...→ pA v v v  must be a production.

Figure 10.9 given below is a Parse Tree.

Fig. 10.9 Parse Tree

Example: Draw a derivation tree for the string a2 b2 c in the grammar.
G = (N, T, P, S) where
N = ( v0, v1), T = (a, b, c), S = v0

0 0 1 1 1{ / , / }= → →P v a v bv v b v c

Solution: For the derivation a2 b2 c

0 0 0 1⇒ ⇒ ⇒v a v a a v a a b v

1⇒ a a b b v

⇒ a abbc

The corresponding derivation is as shown in figure below (Fig. 10.10)

Fig. 10.10 Derivation tree

���< ����������	����

A mathematical model of system, with discrete inputs and outputs is called finite automation. It can
transform, energy, material and information and is used for performing certain functions without the
direct participation of a human being automatic packing machine is an example of a finite automatic.
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Definition 10.23: A finite automation 0( , , , , )δ=A S I S F  is a finite-state machine in which

(i) S is a finite set of states.
(ii) I is a finite set of inputs called input alphabet.

(iii) δ  is a function which maps S × I into S and is usually called transition function.

(iv) 0 ∈S S  is the initial state.

(v) ⊆F S  is set of final states.

Note: The finite automation defined above is also called discrete finite automation (DFA).

The state diagram of a finite automation (FA) is a directed graph in which the nodes (vertices)
correspond to the states of finite automation. The directed edge of the graph indicate the transition of a
state. The edges in the diagram are labeled with input/output.

The initial state in the transition diagram is indicated by the arrow labeled ‘start’ and final state is
indicated by a ‘double circle’.

The block diagram of a finite automation is shown in Fig. 10.11.

Fig. 10.11 Block diagram of a finite automation

The various components of a finite automation (FA) are explained as follows:

(i) Input Tape: It is divided into square, each square containing a single symbol from the input
alphabet I. The end squares of the input tape contain end-markers ⊄  at the left end and $ at the
right end to show that the tape is of finite length.

(ii) Reading Head: The reading head examines only one square (one symbol) at a time and can
move one square either to the left or to the right.

(iii) Finite Control: It is some states from S, reading a sequence of symbols from I written on a
tape.

Properties of Transition Functions

1. The state of a system can be changed only by an input symbol.

2. ( , , ) ( ( , ), )δ α δ δ δ=s a s a  and ( , , ) ( ( , ), )δ α δ δ α=s a s a  for all strings α  and input

symbols a.
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Acceptability by a Finite Automation

A string α  is said be accepted by a finite automation 0( , , , , )δ=A S I S F  if 0( , )δ α β=S  for some

.β ∈ F  The language accepted by A is the set 0{ : ( , ) }.α δ α ∈S F  It is denoted by L (A).

A language is a regular set if it is the set accepted by some finite automation.
Example 1: Draw the transition diagram of the finite state machine defined by the table given below:

Table 10.8

I δ λ

S a b a b

S0 S1 S0 1 0

S1 S2 S0 1 0
S2 S2 S0 1 0

The finite state machine has S1 and S2 as the accepting starts. The lost output is 1. Hence, it is finite
automation. The transition diagram of the automation can be drawn as shown in Fig. 10.12 (note that
output symbols are omitted in the diagram).

Fig. 10.12 Transition diagram

Example 2: Consider the transition diagram of Fig. 10.13. Construct the state table and give the entire
sequence of states for the input string 110101.

Solution: The finite automation (FA) shown in Fig. 10.13 is 0( , , , , )δ=A S I S F

Where S = (S0, S1, S2, S3)
I = (0, 1)

F = (S0)

and δ  is defined by

1 3( , 0) ,δ =q q 1 0( , 1)δ =q q

2 0( , 0) ,δ =q q 2 3( , 1)δ =q q

3 1( , 0) ,δ =q q 3 2( , 1)δ =q q
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Fig. 10.13

The transition table can be constructed as shown in table:

Table 10.9

States Inputs

0 1

S0 S2 S1

S1 S3 S0

S2 S0 S3

S3 S1 S2

Consider the string 110101
We have

0 0 1 0( , 11) ( ( , 1), 1) ( , 1)δ δ δ δ= = =S S S S

0 2( , 0)δ =S S

0 0 0 2( , 110) ( ( , 11), 0) ( , 0)δ δ δ δ⇒ = = =S S S S

0 0( , 1101) ( ( , 110), 1)δ δ δ⇒ =S S

2( , 1)δ= S

3= S

0 0( , 11010) ( ( , 1101), 0)δ δ δ⇒ =S S

3( , 0)δ= S

1= S
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0 0( , 110101) ( ( , 11010), 1)δ δ δ⇒ =S S

1( , 1)δ= S

0= S

The entire sequence of states is

1 1 0 1 0 1
0 1 0 2 3 1 0→ → → → → →S S S S S S S

Thus ten string 110101 is in A.

Example 3: Consider the finite automation 0( , , , , )δ=A S I S F

where S = (S0, S1, S2)
I = (a, b)
F = (S0, S1)

and 0 0( , ) ,δ =S a S 1 0( , ) ,δ =S a S 2 2( , )δ =S a S

0 1( , ) ,δ =S b S 1 2( , ) ,δ =S b S 2 2( , )δ =S b S

Show that the word α = ababb a  is not accepted by A.

Solution:

0 0( , )δ =S a S

0 0( , ) ( ( , ), )δ δ δ⇒ =S a b S a b

0 1( , )δ= =S b S

0 0( , ) ( ( , ), )δ δ δ⇒ =S a b a S a b a

1( , )δ= S a

0= S

0 0( , ) ( ( , ), )δ δ δ⇒ =S ab a b S ab a b

0( , )δ= S b

1= S

0 0( , ) ( ( , ), )δ δ δ⇒ =S a b a b b S a b a b b

1( , )δ= S b

2= S

0 0( , ) ( ( , ), )δ δ δ⇒ =S a b a bb a S a b a bb a a

2( , )δ= S a

2= S

The find state (accepting state) is not in F.
The word α  is not accepted by A.
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Example 4: Draw the transition diagram to represent the finite automation 0( , , , , ),A S I S Fδ=  where

S = (S0, S1, S2, S3), I = (a, b), F = (S0), and F is defined by

0 2( , ) ,δ =S a S 3 1( , ) ,δ =S a S

1 3( , ) ,δ =S a S 0 1( , ) ,δ =S b S 2 3( , )δ =S b S

( )2 0, ,δ =S a S 1 0( , ) ,δ =S b S 3 2( , )δ =S b S

Solution: The transition diagram representing the finite automation is a shown in Fig. 10.14.

Fig. 10.14

�,��� � � � ����

1. Define finite automation.
2. Design a finite automation that accepts precisely those strings over (a, b) that contain an odd

number of a’s.
3. Draw the transition diagram of the finite automation of the figure given below as a transition

diagram of finite state machine.
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4. Find the finite state automation A with the input symbols a, b, c and output symbols x, y, z and
state diagram is given below:

����� �	�=
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A non-deterministic finite automation (NDFA) is a 5-tuple 1 1 1 1
0( , , , , )δ=A S I S F  where

(i) S is a finite set of states.

(ii) I is a finite set of inputs.

(iii) 1δ  is a transition function mapping from S × I into 2s (i.e., P (S), power set of S).

(iv) 1
0 ∈S S  is the initial state.

(v) 1 ⊆F S  is the set of find states.

Note: The out come for a non-deterministic finite automation is a subset of S.

Example 1: Consider the NDFA shown in table below with S2 and S3 as the find states. Draw the state
diagram for the NDFA.

Table 10.10

States Inputs

0 1

S0 (S0, S3) (S0, S1)

S1 ∅ (S2)

S2 (S2) (S2)

S3 (S4) ∅

S4 (S4) (S4)
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Solution: The transition diagram for the NDFA is given below:

Fig. 10.15 The transition diagram for a NDFA

Equivalence of DFA and NDFA

Let 0( , , , , )δ=A S I S F  denote a DFA and

1 1 1
0( , , , , )δ=A S I S F  denote a NDFA.

By defining 1 ( , ) { ( , )},δ α δ α=S S  we can make DFA, and the NDFA equivalent finite state

machines that is, for every NDFA we can construct an equivalent DFA.

Example 2: Construct a DFA equivalent to 1
0 1 2 3 3({ , , , }, {0, 1}, { }),A S S S S S=  where the transition

function is given by the table below.
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Table 10.11

States Inputs

a b

S0 S0, S1 S0

S1 S2 S1

S2 S3 S3

S3 S2

Solution: We have S = (S0, S1, S2, S3)
The DFA equivalent to A1 is given in table below:

Table 10.12

States Inputs

a b

(S0) (S0, S1) (S0)
(S0, S1) (S0, S1, S2) (S0, S1)

(S0, S1, S2) (S0, S1, S2, S3) (S0, S1, S3)
(S0, S1, S3) (S0, S1, S2) (S0, S1, S2)
(S0, S1, S2, S3) (S0, S1, S2, S3) (S0, S1, S2, S3)

Example 3: Construct a deterministic automation equivalent to:

0 1 0 0({ , }, {0, 1}, , , { })δ=A S S S S

where the transition function δ  is given by the table below:

Table 10.13

States Inputs

0 1

S0 S0 S1

S1 S1 S0, S1

Solution: Let S = (S0, S1) then 0 1 0 12 ( ) { , { }, { }, { , }}= = ∅s P S S S S S  for the DFA equivalent to A1 we

have (S0) as the initial state and (S0), (S0, S1) as the final states.

The equivalent can be constructed as shown in Table 10.14.
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Table 10.14

States Inputs

a b

∅ ∅ ∅
(S0) (S0) (S1)
(S1) (S1) (S0, S1)

(S0, S1) (S0, S1) (S0, S1)

Example 4: Construct a DFA from the NDFA 1 1 1
0 1 2 0({ , , }, { , }, , , ),A S S S a b S Fδ=  where F = (S1)

and the transition function is given by the following table:

Table 10.15

Inputs

′δ a b

S0 (S1, S2) φ

S1 φ (S2)

S2 φ (S2)

Solution: We have S = {S0, S1, S2}

∴ 0 1 2 0 2 1 2 0 1 2( ) 2 { { }, { }, { }, { , }, { , }, { , , }}φ= =SP S S S S S S S S S S S
1
0 0{ }=S S

F1 = {(S1), (S0, S1), (S1, S2), (S0, S1, S2)}

The equivalent transition function is defined as follows:

Table 10.16

1δ a b

φ φ φ
(S0) (S, S2) φ
(S1) φ (S2)

(S2) φ (S2)

(S0, S1) (S1, S0) (S2)

(S0, S2) (S1, S2) (S2)

(S1, S2) φ (S2)

(S0, S1, S2) (S1, S2) (S2)
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In this section, we discuss, two different models namely, (1) The Moore machine, and (2) The Mealy
machine the Moore machine is restricted model and is associated with the state and in the case of Mealy
machine, the output is associated with the transition. The machines are defined as follows.

������� �""3%��(7/86%

A Moore machine is a six tuple 0( , , , , , ),S I Sδ λΔ  where

(i) S is the finite set of states.
(ii) I is the input alphabet.

(iii) Δ  is the output alphabet.

(iv) δ  is the transition function from I × S into S.

(v) λ  is the output function mapping S into .Δ
(vi) S0 is the initial state.

If 1 2 3 ... , 0α α α α ≥n n  denotes an input, then the output of the machine is given by

0 1 2( ) ( ) ( ) ... ( ),nS S S Sλ λ λ λ  where S0, S1, S2, … Sn is the sequence of states such that

–1( , )δ α =i i iS S  for 1 ≤ ≤i n

For a Moore machine if the input string is of length n, the output string is of the length n + 1.

Example: The table given below is a Moore machine:

Table 10.17

Present state Next state Output

δ λ

0 1

S0 S3 S1 0

S1 S1 S2 1

S2 S2 S3 0

S3 S3 S2 0

If α  is the input string, then the transition states is given by

0 1 1 2 3→ → → →S S S S S

The output string is 01100 and the output is 0( ) 0λ =S

������ �%(#:��(7/86%

A Mealy machine is a six-tuple 1
0( , , , , , ),S I Sδ λΔ  where
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(i) S is a finite set of states.

(ii) I is the input alphabet.

(iii) Δ  is the output alphabet.

(iv) δ  is the transition function I × S into S.

(v) 1λ  is the output function mapping S into .Δ

(vi) S0 is the initial state.

For a Mealy machine if the input string is of length n, the output string is also of the length n. The
table given below is an example of Mealy machine:

Table 10.18

Next State

Present 0α = 1α =
state State Output State Output

S0 S3 0 S1 1

S1 S1 1 S2 0
S2 S2 0 S3 0
S3 S3 0 S0 0

We can construct a Mealy machine which is equivalent to the Moore machine

(i) By defining 1 ( , ) ( ( , ))λ α λ δ α=S S  for all states S and input symbols .α

(ii) By taking the transition function the same as that of the Moore machine.
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