ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

Chapter 6: Field-Effect Transistors

BOYLESTAD

FETs vs. BJTs

Similarities:

- Amplifiers
- Switching devices
- Impedance matching circuits

Differences:

- FETs are voltage controlled devices. BJTs are current controlled devices.
- FETs have a higher input impedance. BJTs have higher gains.
- FETs are less sensitive to temperature variations and are more easily integrated on ICs.
- FETs are generally more static sensitive than BJTs.

•JFET: Junction FET

•MOSFET: Metal–Oxide–Semiconductor FET

D-MOSFET: Depletion MOSFET **E-MOSFET:** Enhancement MOSFET

JFET Construction

There are two types of JFETs

•*n*-channel •*p*-channel

The n-channel is more widely used.

There are three terminals:

•Drain (D) and Source (S) are connected to the *n*-channel •Gate (G) is connected to the *p*-type material

JFET Operation: The Basic Idea

JFET operation can be compared to a water spigot.

The source of water pressure is the accumulation of electrons at the negative pole of the drain-source voltage.

The drain of water is the electron deficiency (or holes) at the positive pole of the applied voltage.

The control of flow of water is the gate voltage that controls the width of the n-channel and, therefore, the flow of charges from source to drain.

www.getmyuni.com

JFET Operating Characteristics

There are three basic operating conditions for a JFET:

- $V_{GS} = 0$, V_{DS} increasing to some positive value
- $V_{GS} < 0$, V_{DS} at some positive value
- Voltage-controlled resistor

"JFET Operating Characteristics: $V_{GS} = 0 V$

Three things happen when V_{GS} = 0 and V_{DS} is increased from 0 to a more positive voltage

- The depletion region between p-gate and n-channel increases as electrons from n-channel combine with holes from p-gate.
- Increasing the depletion region, decreases the size of the n-channel which increases the resistance of the n-channel.
- Even though the n-channel resistance is increasing, the current (I_D) from source to drain through the nchannel is increasing. This is because V_{DS} is increasing.

JFET Operating Characteristics: Pinch Off

If $V_{GS} = 0$ and V_{DS} is further increased to a more positive voltage, then the depletion zone gets so large that it **pinches off** the n-channel.

This suggests that the current in the nchannel (I_D) would drop to 0A, but it does just the opposite-as V_{DS} increases, so does I_D .

JFET Operating Characteristics: Saturation

www.getmyuni.com

JFET Operating Characteristics

As V_{GS} becomes more negative, the depletion region increases.

www.getmyuni.com

JFET Operating Characteristics

- As V_{GS} becomes more negative:
- The JFET experiences pinch-off at a lower voltage (V_P) .
- I_D decreases (I_D < I_{DSS}) even though V_{DS} is increased.
- Eventually I_D reaches 0 A. V_{GS} at this point is called V_p or $V_{GS(off)}$..

Also note that at high levels of V_{DS} the JFET reaches a breakdown situation. I_D increases uncontrollably if $V_{DS} > V_{DSmax}$.

JFET Operating Characteristics: Voltage-Controlled Resistor

The region to the left of the pinch-off point is called the ohmic region.

The JFET can be used as a variable resistor, where V_{GS} controls the drain-source resistance (r_d) . As V_{GS} becomes more negative, the resistance (r_d) increases.

$$r_{d} = \frac{r_{o}}{\left(1 - \frac{V_{GS}}{V_{P}}\right)^{2}}$$

p-Channel JFETS

The *p*-channel JFET behaves the same as the *n*-channel JFET, except the voltage polarities and current directions are reversed.

p-Channel JFET Characteristics

As V_{GS} increases more positively

- The depletion zone increases
- I_D decreases $(I_D < I_{DSS})$
- Eventually $I_D = 0 A$

Also note that at high levels of V_{DS} the JFET reaches a breakdown situation: I_D increases uncontrollably if $V_{DS} > V_{DSmax}$.

www.getmyuni.com

N-Channel JFET Symbol

JFET Transfer Characteristics

The transfer characteristic of input-to-output is not as straightforward in a JFET as it is in a BJT.

In a BJT, β indicates the relationship between I_B (input) and I_C (output).

In a JFET, the relationship of V_{GS} (input) and I_D (output) is a little more complicated:

$$\mathbf{I}_{\mathbf{D}} = \mathbf{I}_{\mathbf{DSS}} \left(1 - \frac{\mathbf{V}_{\mathbf{GS}}}{\mathbf{V}_{\mathbf{P}}} \right)^2$$

JFET Transfer Curve

Plotting the JFET Transfer Curve

Using I_{DSS} and Vp ($V_{GS(off)}$) values found in a specification sheet, the transfer curve can be plotted according to these three steps:

Step I

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

Solving for $V_{GS} = 0V$ $I_D = I_{DSS}$

Stop 1

Step 2

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$
Solving for $V_{GS} = V_p (V_{GS(off)})$ $I_D = 0A$

Step 3

Solving for
$$V_{GS} = 0V$$
 to V_p $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$

JFET Specifications Sheet

Electrical Characteristics

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit

OFF CHARACTERISTICS

Gate-Source Breakdown Voltage ($I_G = -10 \ \mu \text{Adc}, V_{DS} = 0$)	V _{(BR)GSS}	-25	-	-	Vde
Gate Reverse Current $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0)$ $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = 100^{\circ}\text{C})$	1 _{GSS}	-		-1.0 -200	nAdc
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	V _{GS(off)}	-0.5	-	-6.0	Vdc
Gate Source Voltage ($V_{DS} = 15 \text{ Vdc}, I_D = 100 \ \mu \text{Adc}$) 2N5457	V _{GS}	-	-2.5		Vde

ON CHARACTERISTICS

Zero-Gate-Voltage Drain Current* (V _{DS} = 15 Vdc, V _{GS} = 0) 2N5457	IDSS	1.0	3.0	5.0	mAdc
--	------	-----	-----	-----	------

SMALL-SIGNAL CHARACTERISTICS

Forward Transfer Admittance Common Source* (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz) 2N5457	Dist	1000	-	5000	µmhos
Output Admittance Common Source* (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	lYod	-	10	50	µmhos
Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	Ciss	-	4.5	7.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{rss}		1.5	3.0	pF

*Pulse Test: Pulse Width \$ 630 ms; Duty Cycle \$10%

JFET Specifications Sheet

Maximum Ratings

MAXIMUM RATINGS	218 J. C. 19	401 N - 17 D - 17	
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Reverse Gate-Source Voltage	VGSR	-25	Vdc
Gate Current	IG	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW mW/°C
Junction Temperature Range	Tj	125	.с
Storage Channel Temperature Range	Tsig	-65 to +150	.C

Refer to 2N4220 for graphs.

more...

www.getmyuni.com

Case and Terminal Identification

2N2844 CASE 22-03, STYLE 12 TO-18 (TO-206AA) ^{3 Drain} (Case) ² Gate 1 Source JFETs

GENERAL PURPOSE P-CHANNEL

Testing JFETs

• Curve Tracer

A curve tracer displays the I_D versus V_{DS} graph for various levels of $V_{GS}.$

• Specialized FET Testers

These testers show I_{DSS} for the JFET under test.

MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful.

There are two types of MOSFETs:

- Depletion-Type
- Enhancement-Type

Depletion-Type MOSFET Construction

The Drain (D) and Source (S) connect to the to *n*-doped regions. These *n*doped regions are connected via an *n*channel. This *n*-channel is connected to the Gate (G) via a thin insulating layer of SiO₂.

The *n*-doped material lies on a *p*-doped substrate that may have an additional terminal connection called Substrate (SS).

Basic MOSFET Operation

A depletion-type MOSFET can operate in two modes:

- Depletion mode
- Enhancement mode

D-Type MOSFET in Depletion Mode

Depletion Mode

The characteristics are similar to a JFET.

- When $V_{GS} = 0$ V, $I_D = I_{DSS}$
- When $V_{GS} < 0$ V, $I_D < I_{DSS}$
- The formula used to plot the transfer curve still applies:

$$\mathbf{I}_{\mathbf{D}} = \mathbf{I}_{\mathbf{DSS}} \left(1 - \frac{\mathbf{V}_{\mathbf{GS}}}{\mathbf{V}_{\mathbf{P}}} \right)^2$$

D-Type MOSFET in Enhancement Mode

Enhancement Mode

- $V_{GS} > 0 V$
- I_D increases above I_{DSS}
- The formula used to plot the transfer curve still applies:

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

Note that $\mathbf{V}_{\mathbf{GS}}$ is now a positive polarity

www.getmyuni.com

p-Channel D-Type MOSFET

www.getmyuni.com

D-Type MOSFET Symbols

Specification Sheet

Maximum Ratings

				2N3797
				CASE 22-03, STYLE 2 TO-18 (TO-206AA)
MAXIMUM RATINGS Bating	Symbol	Value	Unit	Gate Gate
Drain-Source Voltage 2N3797	V _{DS}	20	Vdc	3/1 2
Gate-Source Voltage	VGS	±10	Vdc	1 Source
Drain Current	ID	20	mAdc	MOSFETs
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C	LOW POWER AUDIO
Junction Temperature Range	Tj	+175	'C	N-CHANNEL - DEPLETION
Storage Channel Temperature Range	Tug	-65 to +200	'C	

more...

Specification Sheet

Electrical Characteristics

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain Source Breakdown Voltage (V _{GS} = -7.0 V, I _D = 5.0 µA)	2N3797	V _{(BR)DSX}	20	25		Vdc
Gate Reverse Current (1) $(V_{CS} = -10 \text{ V}, V_{DS} = 0)$ $(V_{CS} = -10 \text{ V}, V_{DS} = 0, T_A = 150^{\circ}\text{C})$		lass	-	-	1.0 200	pAdc
Gate Source Cutoff Voltage ($I_D = 2.0 \ \mu A, V_{DS} = 10 \ V$)	2N3797	V _{GS(off)}	-	-5.0	-7.0	Vdc
Drain-Gate Reverse Current (1) (V _{DG} = 10 V, I _S = 0)		IDCO	-	-	1.0	pAdc
ON CHARACTERISTICS			_		-	
Zero-Gate-Voltage Drain Current $(V_{DS} = 10 \text{ V}, V_{GS} = 0)$	2N3797	I _{DSS}	2.0	2.9	6.0	mAdc
On-State Drain Current ($V_{DS} = 10$ V, $V_{GS} = +3.5$ V)	2N3797	I _{D(ot)}	9.0	14	18	mAdc
SMALL-SIGNAL CHARACTERISTICS						
Forward Transfer Admittance (V _{DS} = 10 V, V _{CS} = 0, f = 1.0 kHz)	2N3797	Y _{fs}	1500	2300	3000	µmho
$(V_{\rm DS}$ = 10 V, $V_{\rm GS}$ = 0, f = 1.0 MHz)	2N3797		1500	-	-	
Output Admittance $(I_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0, f = 1.0 \text{ kHz})$	2N3797	Yosl	_	27	60	µmho
Input Capacitance $(V_{DS}=10~V,~V_{GS}=0,~f=1.0~MHz)$	2N3797	Cim	-	6.0	8.0	pF
Reverse Transfer Capacitance (V _{DS} = 10 V, V _{GS} = 0, f = 1.0 MHz)		Cna	-	0.5	0.8	pF
FUNCTIONAL CHARACTERISTICS						
Noise Figure (Vrss = 10 V, Vrss = 0, f = 1.0 kHz, Rs = 3 megohms)		NF	-	3.8	-	dB

 This value of current includes both the FET leakage current as well as the leakage current associated with the test socket and fixture when measured under best attainable conditions,

E-Type MOSFET Construction

- The Drain (D) and Source (S) connect to the to *n*-doped regions. These *n*doped regions are connected via an *n*channel
- The Gate (G) connects to the *p*-doped substrate via a thin insulating layer of SiO₂
- There is no channel
- The *n*-doped material lies on a *p*-doped substrate that may have an additional terminal connection called the Substrate (SS)

Basic Operation of the E-Type MOSFET

The enhancement-type MOSFET operates only in the enhancement mode.

- V_{GS} is always positive
- As V_{GS} increases, I_D increases
- As V_{GS} is kept constant and V_{DS} is increased, then I_D saturates (I_{DSS}) and the saturation level, V_{DSsat} is reached

WWW.getmyuni.com - Type MOSFET Transfer Curve

k, a constant, can be determined by using values at a specific point and the formula:

$$k = \frac{I_{D(ON)}}{\left(V_{GS(ON)} - VT\right)^2}$$

V_{DSsat} can be calculated by:

$$\mathbf{V_{Dsat}} = \mathbf{V_{GS}} - \mathbf{V_{T}}$$

www.getmyuni.com

p-Channel E-Type MOSFETs

The *p*-channel enhancement-type MOSFET is similar to the *n*channel, except that the voltage polarities and current directions are reversed.

MOSFET Symbols

Specification Sheet

Maximum Ratings

MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
Drain-Source Voltage	VDS	25	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage*	V _{GS}	30	Vdc
Drain Current	ID	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.7	mW mW/'C
Junction Temperature Range	Tj	175	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

more...

Electrical Characteristics

	Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERIST	ICS				
Drain-Source Breakdown ($I_D = 10 \ \mu A$, $V_{GS} = 0$	Voltage))	V _{(BR)DSX}	25	-	Vdc
Zero-Gate-Voltage Drain $(V_{DS} = 10 \text{ V}, V_{GS} = 0)$	Current) $T_A = 25^{\circ}C$ $T_A = 150^{\circ}C$	L _{DSS}	-	10 10	nAdc µAdc
Gate Reverse Current (V _{GS} = ± 15 Vdc, V _D	₅ = 0)	I _{GSS}	-	± 10	pAdc
ON CHARACTERISTIC	CS .				
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 10	μA)	V _{GS(Th)}	1.0	5	Vdc
Drain-Source On-Voltage (1 _D = 2.0 mA, V _{GS} = 1	10V)	V _{DS(on)}	-	1.0	v
On-State Drain Current (V _{GS} = 10 V, V _{DS} = 1	0 V)	I _{D(on)}	3.0	-	mAdc
SMALL-SIGNAL CHAI	RACTERISTICS				
Forward Transfer Admitta ($V_{DS} = 10 \text{ V}, I_D = 2.0$	mce mA , $f = 1.0 \text{ kHz}$)	y _{fs}	1000	-	µmho
Input Capacitance (V _{DS} = 10 V, V _{GS} = 0	f = 140 kHz	Ciss	100	5.0	pF
Reverse Transfer Capacita (V _{DS} = 0, V _{GS} = 0, f =	ince . : 140 kHz)	Cns	1	1.3	pF
Drain-Substrate Capacitan (V _{D(SUB)} = 10 V, f =	ice 140 kHz)	C _{d(sub)}	-	5.0	pF
Drain-Source Resistance ($V_{GS} = 10 \text{ V}, I_D = 0, I$	f = 1.0 kHz)	fds(on)	-	300	ohms
SWITCHING CHARAC	TERISTICS			2.55.5	
Turn-On Delay (Fig. 5)		t _{di}	-	45	ns
Rise Time (Fig. 6)	$I_D = 2.0 \text{ mAde}, V_{DS} = 10 \text{ Vde},$	t _e	(-1)	65	ns
Turn-Off Delay (Fig. 7)	(v _{GS} = 10 vdc) (See Figure 9: Times Circuit Determined)	L _{d2}	-	60	ns
Fall Time (Fig. 8)	(see i Bare), times entent retermined)	tr	-	100	ns

Handling MOSFETs

MOSFETs are very sensitive to static electricity. Because of the very thin SiO_2 layer between the external terminals and the layers of the device, any small electrical discharge can create an unwanted conduction.

Protection

- Always transport in a static sensitive bag
- Always wear a static strap when handling MOSFETS
- •
- Apply voltage limiting devices between the gate and source, such as back-to-back Zeners to limit any transient voltage.

VMOS Devices

VMOS (vertical MOSFET) increases the surface area of the device.

Advantages

- VMOS devices handle higher currents by providing more surface area to dissipate the heat.
- VMOS devices also have faster switching times.

CMOS Devices

CMOS (complementary MOSFET) uses a *p*-channel and *n*-channel MOSFET; often on the same substrate as shown here.

Advantages

- Useful in logic circuit designs
- Higher input impedance
- Faster switching speeds
- Lower operating power levels

Summary Table

