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Preface

Data Structure is a core module in the curriculem of almost every computer science programme. This
subject makes the stodents leam the ant of analyzing algonthms as well as distinguishing between the
specification of & data structure and its realization within an available programming language. It involves
identifying the problem, analyzing different algorithms to solve the problem and choosing most appropriate
data structure to represent the data.

The value of an implementation ultimately relies on its resource utilization : time and space, and this
requires capability of analyzing different factors. The coverage of this book is in line with the syllabus of
Data Structure course being taught in the BE/B. Tech. (Computer Science), BCA and MCA programmes
of vanous universities.

The goal of this book is to help you understand different concepts of data structures. It specifically
covers the entire syllabus of “Data Structures Through “C" Language” course as prescribed by DOEACC
foris "A’ and ‘B° Level Programmes. It contains additional topics that be useful for the students of BES
B.Tech. (Computer Science), BCA and MCA programmes of vanious universities.

Chapter 1 gives an introduction to the core topics of data structures. It unleashes the concepts of
abstract data types (ADTs), data types, data structures and other useful tools that can be used to solve
problems.

Chapter 2 provides an introduction to software engineering and also explores the principles of good
program design, the approaches to algonithm design and the analysis of the algorithms,

Chapter 3 discusses one of the linear data structure — Arrays. The storage representation of arrays
and various operations possible on arrays have also been explained in this chapter.

Chapter 4 gives an introdoction 1o Linked List, which is again a linear data structure like array, but
uses dynamic memory allocation rather than static memory allocation as in the case of arrays.

Chapter 5 presenis the two most importiant applications of arrays and linked lists—Polynomials and
Sparse Matrix.

Chapter 6 discusses one of the most important data structures—Stack. The representation of stacks
through arrays and linked lists have also been explored in this chapier.

Chapter 7 deals with Quenes. Various kind of queves—Circular gueucs, Dequeues, Prionty queues—
have been discussed. The chapter also presents the application of gquenes.

Chapter 8 explores one of the most important non-linear data structures i.e., Trees. The ways to
represent binary trees through arrays and linked lists and the various operations and iis traversal has also
been discussed in this chapter.

Chapter 9 provides a detailed desenption of AVL trees. The other kinds of trees—Forests, Orchards
and Expression trees—are also discussed in this chapter.
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Chapter 10 explores the Multiway trees. The searching, insertion and deletion operations on a B-tree
have also been discussed in this chapter.

Chapter 11 focuses on various searching and sorting methods. The implementation of varous sorting
methods—Bubble sort, Selection sort, Quick sort, Insertion sort, Merge sor, Radix sort, Heap sort—
also form part of this chapter.

Chapter 12 discusses Graphs in detail. Varions basic terms and applications of graphs have been
explored in this chapter.

Chapter 13is all about Hashing—a technigue which provides a conceptually different mechanism o
search a table for a given key value.

Chapter 14 gives an introduction to Strings. The representation of strings through amrays and linked
lists and various string operations have been covered in this chapier.

Chapter 15 includes some of the techniques and algorithms that could be used to provide various
levels of storage management and control.

Appendix A explains various mathematical concepts—Matrices, Polynomials. Logarithms, Factorials,
elc.

Appendix B at the end of this book is a collection of question papers from July 2002 to July 2004
which will be useful for the students in preparation of the DOEACC exams.

We look forward to receiving feedback and suggestions from the users of this book. It will help us
improve the future editions of this book.

ISRD Group



Syllabus

OB)ECTIVE OF THE COURSE

The ohjective of the course is to introduce the fundamentals of Data Structures, Abstract concepts and

how these concepls are useful in problem solving. After completion of this course student will be able
o

Understand and use the process of abstraction using a programming language such as “C",
Analyze step by step and develop algorithms to solve real problems.

Implement various data struciures viz. Stacks, Queues, Linked Lists, Trees and Graphs.
Understand various searching and sorting techniques,

® ® % #

Given below is the outline of the course that an instructor can use for effective delivery of the course.
The suggested time distnbution for various topics are specifically in line with the syllabus prescribed for
the subject by DOEACC forits "A” and “B° Level programmes.

Outline of Course

5o Toyic Minimuem Howrs

i. Basic Concepis of data representation LIE]
i Introduction 1o Algorithm Design and Data Struciure 6
L Arrays 5
4. Stacks and Quewes 08
5. Linked lisis 08
. Trees 0
i Searching. sorting and complexity 1]
B Graphs 10

Leciures = il

Practicals/Tutorials = il

Total = 120

Detailed Syllabus
1. Basic concepts of data representation 03 Hrs.

Abstract data types: Fundamental and derived data types. Representation, primitive data
structures.
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2. Iniroduction to Algorithm Design and Data Structures 06 Hrs.

Design and analysis of algorithm: Algorithm definition, comparison of algorithms. Top-down and
bottom up approaches to Algorithm design. Analysis of Algorithm; Frequency count, Complexity
measures in terms of time and space. Structured approach to programming.

3. Arrays 05 Hrs.

Representation of arrays: single and multidimensional arrays. Address calculation using column
and row major ordering. Various operations on Arrays. Vectors, Application of arrays: Matrix
multiplication, Sparse polynomial representation and addition.

4. Stacks and Queues 08 Hrs.

Representation of stacks and queues using arrays and linked-list. Circular queues, priority Queues
and D-Queue. Applications of stacks: Conversion from infix 1o postfix and prefix expressions,
Evaluation of postfix expression using stacks.

5. Linked Lists 08 Hrs.

Singly linked list; operations on list. Linked stacks and queuves. Polynominal representation and
manipulation using linked lists. Circular linked lists, Doubly linked lists. Generalized list structure,
aparse Matrix representation using generalized list structure.

6. Trees 10 Hrs.

Binary tree traversal methods: Preorder, In-order, Post-ordered traversal. Recursive and non-
recursive Algorithm for above mentioned Traversal methods. Representation of trees and its
applciations: Binary tree representation of a tree. Conversion of forest into tree. Threaded binary
trees; Lexical binary trees. Decision and game trees. Binary search tree.: Height balanced (AVL)
tree, B-trees.

7. Searching, Sorting and complexity 10 Hrs.

Searching: Sequential and binary searches, indexed search, Hashing Schemes. Sorting: Insertion,
selection, bubble, Quick, merge, radix, Shell. Heap sort. comparison of time complexity.

8. Graphs 10 Hrs.

Ciraph representation: Adjacency matrix, Adjacency lists, Adjacency Multicasts. Traversal schemes:
Depth first search, Breadth first search. Spanning tree: Definition, Minimal spanning tree algorithm.
Shortest path algorithms (Prime’s and Kruskal's).

The syallbus given above (specifically for DOEACC "A’ and "B° Level programmes) has been covered
in the first twelve chapters of the book. The last three chapters i.e., Chapter 13, 14 and 15 on Hashing,
String Processing and Storage Management have been added to cover additional topics prescribed by
other universities. The instructors can accordingly schedule these topics and cover the additional material
given in the last three chaplers according to the svllabus requirements of the concerned university/
institute.



CHAPTER

Introduction to
Data Structures

Key Fﬂmr:“ Tht advancement in the study of data
i Em;';m"mzm Theory of Data Structures structures for analyzing algorithms has con-
. ala Kepresentaton tinued. The study of data structures has two

Abstract Data Types ohjectives. The first is to identify and create
* Data Types useful mathematical entities and operations o
£ Primitive Data Types

determine what classes of problems can be
solved by using these entities and operations.
The second 18 to determine the representation
of these abstract entities and to implement the
abstract operations on these concrete repre-
sentalions.

This chapter introduces the core concepts
of data structures. It explores the concepts of abstract data types (ADTs), data types, data structures
and other useful wools that can be used o analyze and solve problems.

T

Data Structure and Structured Type

Atomic Type

& Difference between Abstract Data Types,
Data Types and Data Structures

< Refinement Stages

b E

INTRODUCTION TO THE THEORY OF DATA STRUCTURES

The study of computer science encompasses the study of organization and flow of data in a computer.
Data structure is the branch of computer science that unleashes the knowledge of how the data should
be organized, how the flow of data should be controlled and how a data structure should be designed
and implemented to reduce the complexity and increase the efficiency of the algorithm.

A course in data structures offers an excellent opportunity to introduce the concepts associated with
object oriented programming. For example, the concept of classes in object-oriented programming
language (like C++) is based on the key concept of Abstract Data Type (ADT). An ADT exhibits many
of the concepts enshrined in the theory of data structures.

The theory of structures not only introduces you to the data structures, but also helps vou to understand
and use the concept of abstraction, analyse problems step by step and develop algorithms to solve real
world problems. It enables you to design and implement various data structures, for example, the
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stacks, queues, linked lists, trees and graphs. Effective use of principles of data structures increases
efficiency of algorithms 1o solve problems like searching, sorting, populating and handling voluminons
data.

Need of a Data Structure

A data structure helps you to understand the relationship of one data element with the other and organize
il within the memory. Sometimes the orgamzation might be simple and can be very clearly visioned, for
cxample. list of names of months in a year. We can see that names of months have a linear relationship
hetween them and thus can be stored in a sequential location or 1n a tvpe of data structure in winch each
month points o the next month of the vear and i is itself pointed by its preceding month. This principle
is overruled in case of first and last month’s names. Similarly, think of a set of daa that represents
location of historical places in a country (Fig. 1.1). For each listoncal place the location 15 given by
country name followed by state name followed by

city name, and then followed by the historical place ndia
name. 'We can sce that such data form a hierarchical /]\
relationship between them and must be represented UP biaharashira
i the memory using a hierarchical type of data Vs Delhi N
structure. Agra \\. Mumibai

The above two examples clearly identify the o Red For .
usefulness of a data strecture. A data stracture Taj Mahal Qutub minar Gateway of India
helps vou to analyze the data, store it and organize Fig. 1.1
it in a logical or mathematical manner. v
DATA REPRESENTATION ?UBH
Various methods are used to represent data in computers. l
Hierarchical lavers of data structure are used to make the

A BYTE

use of data structure easy and efficient. The basic unit of

data representation is a bit. The value of a bil asserts one (Combination of eight bits)

of the two mutaally exclusive possibilitics—Dor 1. Vanouos ' ! ' , ] ' ' .
combinations of two values of a bit are used to represent 0 0 ] ¢c 0 I ! 0
data in a different manner in different systems. Eight bats L
together form one byite which represents a character ACHARACTER
and one or more than one characters are used w form a {represented by a byte)
string. A siring can thus be seen as @ data structure that | I I l
emerges through several lavers of data strectures as shown O O
in Fig. 1.2,
The representation of a string can be made casier (1.c. 1
working with the strings without bothering about the A STRING
NULL (M) character at the end of the string ) by wrapping (represented by a group of charcters)
it into another data structure which takes care of such l
intricacies and supports a set of operations that allows us I
to perform various string related operations like storing S T R 1 N G
and fetching a string, joining two strings, finding the length Fig. 1.2 Data Representation

of strings, eic.
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The use of the concrete data structure during design creates lot of difficulties and reguires much
more efforts, such a problem can be avoided by using abstract data type in the design process. But
before moving to the discussion of concepts of Abstract Data Types (ADTs), let us discuss how the
primitive or basic data types of any language (i.e. integer, character, ¢tc.) are intermally represented in
the memaory.

Integer Representation

An integer 15 the basic data tvpe which is commonly used for storing negative as well as non-negative
integer numbers, The non-negative data is represented using binary number system. In this, each bit
position represents the power of 2. The rightmost bit position represents 2% which is 1, the next represents
2! which is 2, then 2* which is 4 and so on. For example, 00100110 represents the integer as 2' + 2 4
P=2+4+32=38

For negative binary numbers the methods of representation used are one’s complement and two's
complement.

In one’s complement method the number is represented by complementing each bat, i.e. changing
each bit in its value to the opposite bit setting. For example, 00 1 0 0 1 10 represents 3%, after
complementing, it becomes 1101 1 00 | which is used to represent -38.

In two’s complement method, | is added 1o one’s complement representation of the negative number.
For example, =38 is represented by 1 1 0:1 1 0 0 1 which on adding | to it will become

1011001
+ 1

1001010, which represents —38 in two's complement notation,

Real Number Representacion

The meihod used to represent real numbers in computers is floating-peint notation. In this notation,
the real number is represented by a number called a mantissa. times a base raised to an integer power,
called an exponent. For example, if the base is fixed as 10, the nomber 208 52 could be represented as
W52 w 107S. The mantissa is 20052 and exponent 15 — 2. Both the mantissa and exponents are two's
complement binary integers. For example, 20952 can be represented as 10100011101 | in binary
form.

Therefore, the 24 bit representation of the number willbe G000 0000 10100011101 1 and
& bit two's complement binary representation of =2 is | 1 1 1 1 1 1 ; thus, the number is represented
as 00000000 10100011000, 000010

Character Representation

The information in computers is not always interpreted numerically. For example, to store the salary of
an employee we use the integer representation of the dota but with salary we also need to store the name
of the employee which requires a different data representation, Such information is usually represented
in character string form. There are different codes available to svore data in character form such as
BCD, EBCDIC and ASCIL

For example, if § bits are used to represent a character, then up to 2°=256 different characters can be
represented as bat patterns. 1 1 00 00 0 05 used w represent the character ‘A" and 1 100000 1 is
used to represent character “B’. Then, linally AB can be represented as 1 10000001 100000 1.
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ABSTRACT DATA TYPES

An Abstract Data Type (ADT) is defined as a mathematical model of the data objects that make up a
data type as well as the functions that operate on these objects. An abstract data type is the specification
of logical and mathematical properties of a data type or structure. ADT acts as a useful guideline to
implement a data type comectly. The specification of an ADT does not imply any implementation
consideration. The implementation of an ADT involves the translation of the ADT’s specification into
syniax of a particular programming language. The important step i the definmmon of ADT that involves
mainly two parts:

1. Description of the way in which components are related to each other
2. Statements of operations that can be performed on that data type.

For example, the int data type. available in the *C” programming language provides an implementation
of the mathematical concept of an integer number. The int data type in *C" can be considered as an
implementation of Abstract Data Type, INTEGER-ADT. INTEGER-ADT defines the set of numbers
given by the umon of the set {-1, -2, -3....0} and the set of whole numbers {{}, 1... + w}. INTEGER-
ADT also specifies the operations that can be performed on an integer number, for example, addition,
subtraction, multiplication, etc. In the specification of the INTEGER-ADT, following issues must be
comsidered:

* Range of numbers that will be represented.

* Format for storing the integer numbers,

This determines the representation of a signed integer valoe.
Example of an ADT Specification for a Stack

A stack is a set of finite number of elements, where insertion or removal of an element is allowed from
one end onlyv. Any new element that joins the set is kept at the top and only the element at the topmost
position can be taken out. In other words, a stack can be defined as a list where the only element that is
accessible is the most recently inserted one.

There are a number of methods for specifying an ADT. The example below uses an informal notation
to specify STACK abstract data type.

Specification of Abstract data fype STACK is as follows:

abstract typedef <1, 2, 3 ..., top= STACK;

condition top == NULL
abstract STACK PUSH (data)

Precondition top!=n
operation : insert {data)
top =+ data
/* top points to the most recently inserted elements */
abstract Pop ()
Preconditions top ! NULL
operation : Remove (top)

top =+ current data
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DATA TYPES

Each programming language has its own set of data types. There are several defiminions that define a
data type. Few of these definitions are given below:

= A method of interpreting a bit pattern is often called a data type.
* The term data type refers (o the implementation of the mathematical model specified by an ADT.
* A data type is the abstract concept defined by a set of logical properties.

In general. a data type can be defined as an abstract concept that defines an internal representation of
dlata 1n the memory, Once the concept of data type is made independent of the hardware capabilities of
the computer, a limitless number of data types can be considered.

A data type is an abstract concept defined by a set of logical properties. Once such abstract data 1ype
15 defined and the legal operations involving that type are specified, a data type can then be implemented.
An implementation may be a hardware implementation in which the circoitry, necessary to program the
required operations, is designed as part of the computer, or otherwise there may be a software
implementation, in which program consisting of already existing hardwired instructions is written o
interpret bit stnngs in the desired fashion and to perform the required operations. A software implementation
includes the following specifications:

* How an object of the new data type 15 represented by objects of existing data rypes?
* How soch an object 15 implemented in conformance with the operations defined for it?

Why do We Need a Data Type?

We can think of a universal data type that may hold any value like character, integer. float or any
complex number. Use of such data type has two disadvantages:

= Large volume of memory will be occupied by even a small size of data.

+ Different types of data require different interpretation of bit strings while reading or writing.
Different interpretations for different types of data would become very tedious. This can be
explained i terms of negative integer and a float value. Most of the computers represent a negative
value by storing [ at the most significant bit (MSB). Similarly, a Moat value is specially handled by
storing its charactenistics and mantissa in a particular pattern. Both of these data types require
special interpretation of bit strings which will become very complex while handling a universal
data type.

Thus, we see that the data types facilitate the opiimum use of memory as well as a defined way to

interpret the bit strings for different types of data.

PRIMITIVE DATA TYPES

Every computer has a set of native data types. This means that it is constructed with a mechanism for
manipulating bit pattern at a given location as binary numbers. Primitive data types are basic data
types of any language that form the basic unit for the data structure defined by the user. A primitive
data type defines how the data will be internally represented in, stored, and retrieved from the memory.
In most programming languages, primitive data types are mapped to the native data types of the computer
whereas in some languages new data types are offered using the software implementation in which a
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program consisting of already existing hardware instructions is written to interpret bit strings in the
desired fashion and to perform the required operations. For example, an integer type data can be directly
mapped to the computer’s native data type whereas “Date’ data type may be implemented using the
software implementation which in tum again will use integer representation of Date type data. Few
primitive data types which are commonly available with most programming languages are:

« Integer
e Character
+ RealFloat Mumbers

Integer

An integer data type is a primitive data type that may represent a range of numbers from 2 1o
21 _ |, where n depends upon the number of bits used to constitute one word in the computer.

Character

At a more general level, information can be represented in the form of characters. Any symbol from set
(-9, A-Z, a-z and other :::!peeial symbuols is a character. Most of the computers use eight bits to represent
a character. Thus, 2" (2%), i.e. 256 characters can be represented uvsing a siring of eight bits, The
number of bits necessary 1o represent a character in a particular computer 15 called the byte size.

Real/Float Numbers

A real number consists of two parts, mantissa and charactenistic. A real number data type is generally
denoted with the term Moat. This is because computers usually represent a real number using a floating-
point notation, There are many varieties of floating-point notations and each has individual characteristic.
A real number is represented using the following expression:

r
LU

where m is the mantissa and n 15 the base (which is fixed 10} and ri5 the exponent. A floating point
notation facilitates storage of numbers with extremely large and extremely small valoes. The range of
values that can be represented in a float data type are from ~3.4*10° 10 +3.4*10°%,

DATA STRUCTURE AND STRUCTURED TYPE

The term data strocture refers to a set of computer variables that
are connected in some logical or mathematical manner. More
precisely, a data structure can be defined as the structural
relationship present within the data set and thus should be viewed
as 2 muple. (N, R} where "N’ 15 the fimite set of nodes representing
the datn structure and ‘R’ is the set of relationship among those
nodes. For example, in a tree data structure each node is related to
cach other in a “parent child’ relationship. Thus, a large volume of
data can be represented using a tree data strocture and relationship
between eéach data can also be shown.

A stroctared type refers to a data structure which is made up
of one or more clements known as components. These elements Fig. 1.3 A Tree Data Structure
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are simpler data structures that exist in the language. The components of structured data type are

grouped together according to a set of rules, for example, the representation of polynomials requires at
least two components:

= Coefficient
= Exponent
The two components together form a composite type structure to represent a polynomial. The study
of these structured type data structures involves an analysis of how simple structures combine to form

the composite and how to extract an element from the composite. In "C’ programming language, the
structure type is implemented using struct keyword.

ATOMIC TYPE

Generally, a data structure is represented by a memory block, which has two parts:

* Data storage
* Address storage

This facilitates in storing the data and relating it to some other data by means of storing pointérs in the
address part.

An atomic type daia is a data structure that contains only the data items and not the pointers. Thus,
for a list of data items, several atomic type nodes may exist each with a single data item comresponding
to one of the legal data types. The list is maintained using a list node which contains pointers to these
atomic nodes and a tvpe indicator indicating the tvpe of atomic node 1o which it points. Whenever a test
node is inserted in the list, its address is stored in the next free element of the list of pointers.

List node

v

P

Address | Typel | Next* Address | Type3 | Newt * Address | Type2 | Next *

Atomic

Fig. 1.4 Aromic Nodes

Figure 1.4 shows a list of atomic nodes maintained using list of nodes. In each node, type represents
the type of data stored in the atomic node to which the list node points. 1 stands for integer type, 2 for

real number and 3 for character type or any different assumption can be made at implementation level (o
mdicate different data types.

DIFFERENCE BETWEEN ABSTRACT DATA TYPES,
DATA TYPES AND DATA STRUCTURES

To avoid the confusion between abstract data types. data types, and data structures, it is relevant to
understand the relationship between the three.
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« An abstract data type is the specification of the data type which specifies the logical and
mathematical model of the data tvpe.

» A data type is the implementation of an abstract data type.

* Data structure refers 1o the collection of computer variables that are connected in some specific
Manner.

Thus, there seems to be an open relationshap between the three, that is, a data type has its root in the
abstract data type and a data structure comprises a set of computer variables of same or different data

types,
REFINEMENT STAGES

The best approach to solve a complex problem is 1o divide it into smaller parts such that each part
becomes an independent module which 15 easy to manage. An example of this approach is the System
Development Life Cycle (SDLC) methodology. This helps in understanding the problem, analyzing
solutions, and handling the problems etficiently.

The principle underlying writing large programs is the top-down refinement. While writing the main
program, we decide exactly how the work will be divided into various functions and then, in the
refinement process, it is further decided what will be the task of each function, and what inputs are 10
be given and results to be obtained. The data and actions of the functions are specified precisely.

Similarly, the purpose of studying Abstract data types is to find out some general principles that will
help in designing efficient programs. There exists a similarity between the process of top down refinement
of algorithms and the top-down specification of the data stroctures. [n algorithm design, we begin with
the problem and slowly specifyv more details until we develop a complete program. In data specification,
we begin with the selection of mathematical concepts and abstract data types required for our problem,
and slowly specify more details until finally we can describe our data structures in terms of programming
language,

The application or the nature of problem determines the number of refinement stages required in the
specification process. Different problems have different number of refinement stages, but in general,
there are four levels of refinement processes:

* Conceptual or abstract level

* Algorithmec or data structures

* Programming or implementation
* Applications

Conceptual Level

At this level we decide how the data is related to each other, and what operations are needed. Details
about how to store data and how various operations are performed on that data are not decided at this
level,

Algorithmic or Data Structure Level

Al data structure level we decide about the operations on the data as needed by our problem. For
example, we decide what kind of data structure will be required to solve the problem-—contiguous list
will be preferred for finding the length of a list, or for retrieving any element, whereas for the evaluation
of any expression into prefix or postfix, stacks will be used.
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Programming or Implementation Level

At implementation level, we decide the details of how the data structures will be represented in the
computer memory. For example, we decide whether the linked lisis will be implemented with pointers or
with the cursors in an armay.

Application Level

This level settles all details required for particular application such as names for variables or special
requirements for the operations imposed by applications,

TN

Concept Stack Cugue General list
|
Algorithm Physical Limvear Circular Linked
| / \ N
Code Line of Array  Amay  Armay  Amay Simple Circular  Armay
people with  with  with with with with
counter  flap  skipped P tudl Wi
ChiTY poImters pOINECTS  CUTSOrs

\/

Airpor
simulation

Fig. 1.5 Refinement of a Queue

The first two levels are ofien called conceptual. The middle two levels can be called algorithmic as
they are concerned with representing data and the operations performed on the same. Last level is
basically concerned with programming.

Figure 1.5 shows that at the concepiual level, the quene has been selected as an abstract data type and
further at the next level circular quene has been selected, as this could provide the best solution. Last
level shows the operations which can be performed on the data, for the Airport simulation,

Summary
Data Structure is the particular organization of data either in a logical or mathematical manner. |
Diata type is a concept that defines intermal representation of data.
An abstract data type is the specification of logical and mathematical properties of data types or
structure. It acts as a guideline to implement a data struciure,
% The relationship between ADT, data type and data structure is well defined. An abstract data type |
is the specification of a data type whereas data type is the implementation of ADT and data |
structure comprises computer variables of same or different data types.

L — S
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Review Erercise

Multiple Choice Questions

1. Representation of an integer in the computer system can be done through
a. I's complement method
b. 2's complement method
¢. Both a and b
d. None of the above
2. Rey concept for representing a real nomber is a manfissa times

a. 10 raised 1o an exponent
b. 2 raised 1o an exponent
c. Base raised to an exponent
d. MNone of the above
3. The sl of native data tvpes that a paricular computer can support is determined by
a. Type of hardware company
b. What functions have been wired into hardware
¢, What software support is requined
d. Mone of the above
4. Whale considering data structure implementation, the factors under consideration isfare
a. Time
b. Space and time
¢. Time, space and processor
d. MNone of the above

Fill in the Blanks

1. The method of interpreting a bit pattern is called a
2. One of the examples of a structured data type can be |
3 o refers o the collection of computer variables that are connected in some specific manner.

4, Data structure defined at logical level is called

State Whether True or False

1. In 1I's complement method, the positive ‘0 and negative "0 15 separately represented.
2. The binary number system is the only means by which bits can be used to represent integers.
3. The limiting factor on the precision of numbers that can be represented on a particular machine is the
number of significant digits in mantissa.
4. A data wype is the collection of values and the set of operations on values.
Answer the Following Questions
1. Explain data type and why do we need data iypes?

2. Explain abstract daia type with an example.
3, What is a data structure and what are the differences between data type, abstract data tvpe and data

structure?
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Diaw a diagram for showing levels of refinement for a stack and a list for any problem.

. Develop an ADT specification for “Polynomials”. Also include the operations associsted with
pelynominals,

Suggest a suitable data structure for representation of imaginary numbers, An imaginary number is

represenied by a+ib where 1 is the iota for the number. Also give specification for the operations associated
with them.
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SOFTWARE ENGINEERING

Software Engineering is the theory and practice of methods helpful for the construction and maintenance
of large software systems. Development of a good software is a tedious process which continues for
long time before the software or program takes the final shape and 15 put into use. There are many
stages in the software development cycle. The process is often referred to as Software Development
Life Cycle (SDLC). In SDLC, the output from one stage becomes the input to the next stage.

In the simplified version, the software development life cycle may contain requirement analvsis,
design, implementation and maintenance phases which are implemented in sequence over a period of
time. This simplified version can be depicted through Fig. 2.1,

The different steps in software development life cycle are as follows:

1. Analyze the problem precisely and completely.
2. Bauild a prototype and experiment with it until all specifications are finalized.
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Requirement | Design | Implementation | Maintenance

analysis
N2 N
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requirement requirements  document document
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Fig. 2.1 Software Development Life Cyde

. Design the algonthm using the tools of data structures,

. Verify the algorithm, such that its correcmess is self-evident.

. Analyze the algorithm to determine its requirements.

. Code the algorithm into an appropriate programming language.

. Test and evaluate the program with carefully chosen data,

. Refine and Repeal the foregoing steps until the software is complete.
. Optimize the code w0 improve performance.

Maintain the program so that it meets the changing needs of its users.

O W0 00~ ThoLh B L

PROGRAM DESIGN

Program design can be considered as an important phase of the software development life cycle. Itis in
this phase that the algonthms and data structures to solve a problem are proposed. Some of the vanious
points that can help us evaluate the proposed program designs are as follows:

= As the design stage involves taking the specification and designing solutions to the problems, the
designer needs to adopt a design strategy. The strategy adopted while designing should be according
o the given specifications.

* Another important point which should be kept in mind while developing a solution strategy is that
it should work correctly in all conditions.

= CGenerally, the people who use the sysiem are not aware of the program design you have adopted.
Thus, there is a system manual which is a detailed guide to how the design was achieved. In
addition a user manual serves as a reference for the users who are not familiar with the system or
machines.

* A |large program shonld be divided into small moduoles and submodules by following one of the two
decomposition approaches—top-down approach or bottom-up approach.

* Other important criteria by which a program can be judged are execution time and storage
requirement.

ALGORITHMS

The term “algorithm’ refers w the sequence of instructions that must be followed to solve a problem.
In other words, an algorithm is a logical representation of the instructions which should be executed o
perform a meamngiul wsk.
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An algorithm has certain characteristics. These are ps follows:

* Each instruction should be unique and concise.

= Each instruction should be relative in nature and should not be repeated infinitely.
= Repetition of same task(s) should be avoided.

* The result should be available to the user after the algorithm terminates.

Thus, an algorithim is any well defined computational procedure, along with a specified set of allowable
inputs, that produce some value or set of values as output.

After an algorithm has been designed, its efficiency must be analyred. This involves determining
whether the algorithm is economical in the use of computer resources, 1.¢. CPLU time and memaory, The
term used to refer to the memory required by an algorithm is memory space and the term used to refer
to the computational tme 15 the ranning time.

The importance of efficiency of an algorithm 15 in the correctness—that is, does it always produce
the correct result, and program complexity which considers both the difficulty of implementing an
algorithm along with its efficiency.

DIFFERENT APPROACHES TO DESIGNING AN ALGORITHM

A complex system may be divided into smaller units called modules. The advantage of modularity s
that it allows the principle of separation of concerns to be applied into two phases: when dealing with
detail of each module in isolation (ignoring details of other modules) and when dealing with overall
characteristics of all modules and their relationships in order to integrate them into a system. Modularity
enhances design clanty, which in tum cases implementation, debugging, testing, documenting, and
maintenance of the prodoct.

A system consists of components, which have components of their own. Indeed a system is a
hierarchy of components. The highest level component corresponds to the total system. To design such
a higrarchy there are two possible approaches:

* Top-down approach
* Bottom-up approach

Top-Down Approach
A top-down design approach starts by identifving the major components of the sysiem or program,
decomposing them into their lower-level components and iterating until the desired level of module
complexity is achieved. Top-down design method takes the form of stepwise refinement. In this, we
start with the topmost module and incrementally add modules that it calls.

Thus, in top-down approach we start from an abstract design. In each siep, design is refined into
most concrete level until we reach the ievel where no more refinement 18 needed and the design can be
implemented directly.

Bottom-Up Approach

A bottom-up design approach starts with designing the most basic or primitive components and proceeds
to higher-level components. Bottom-up method works with layers of abstraction. Starting from the
very bottom, the operations that provide a layer of abstraction are implemented. The operations of this
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layer are then used o implement more powerful operations and still higher laver of abstraction. until the
stage is reached where the operations supported by the layer are those desired by the system,

Top-Down versus Bottom-Up Approach

What strategy should be followed to design a system? Should we follow the top-down approach,
breaking down the system into manageable components or should we adhere to the bottom vp approach
of defining a module and then grouping together several modules o form a new higher level module?

Stepwise refinement is “lop-down™ method for decomposing a system from high level specifications
into more elementary levels, It has its eriticisms that the submodules tend o be analysed in i=olation, that
no emphasis is given on the identification of communication or on reusability of components and little
attention is paid to data and more generally, to information hiding.

Bottom-up approach follows information hiding. It suggests that we should Hirst recognize whal we
wish to encapsulate within a module then provide an abstract interface to define the module’s boundaries
as seen from the clients. However, what is to be hidden depends on the result of some top-down design
activity. Some information hiding has proven to be highly effective in supporting design for change,
program requirements, or reusable components.

The top-down approach, however, is often useful way to better document a design. The design
activily should not be constrained 1o proceed according to a fixed pattern but should be a blend of twp-
down and bottom-up approaches.

COMPLEXITY

When we talk of complexity in context of computers, we call itcomputational complexity. Computational
complexity is a characterization of the time or space requirements for solving a problem by a particular
algorithim. These requirements are expressed in terms of a single parameter that represents the size of

the problem.

Given a particular problem. say one of the simplification problems. Let *n' denote its size, The time
required of a specific algorithm for solving this problem is expressed by a function:

f:R—=R

such that fin) is the largest amount of time needed by the algorithm o solve the problem of size n.
Function " is usually called the time complexity function.
Thus, we conclude that the analysis of the program requires two main considerations:

* Time complexity
* Space complexity
The time complexity of a program/algorithm is the amount of computer time that it needs to mn to

completion. The space complexity of a program/algorithm is the amount of memory that it needs to run
(o completion.

Time Complexity

While measuring the time complexity of an algorithm, we concentrate on developing only the frequency
count for all key statements (statements that are important and are the basic instructions of an algorithm).
This is because, it is often difficult to get reliable timing figure because of clock limitations and the
multiprogramming or the sharing environment.
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Consider the algorithm given below:

ALGORITHM a=a+1
A
ALGORITHM for x = 1 to n step 1
B =l ]
Loop
forx =1%o n stap 1
ALEORMHM for v = 1 1o n siep 1
[ a=a+1
Loop

In the algorithm A we muy find that the statement a=a+] is independent and is not contained within
any loop. Therefore, the number of times this shall be executed is 1. We can say that the frequency
count of algorithm A is 1.

In the second algorithm, i.e. B, the key statement out of three statements is the assignment operation
a = a+ 1. Because this statement is contained within a loop, the number of times it is executed is n, as the
loop runs for n times. The frequency count for this algorithm is n.

According to the third algorithm. the frequency count for the statement a=a+1 is n” as the inner loop
runs n fimes, each time the outer loop runs, the outer loop also runs for n times. n’ is said to be different
in increasing order of magnitude just like 1, 10, 100 depending upon the n. During the analysis of
alporithm we shall be concerned with determining the order of magnitude of an algorithm. This means
that we will determine only those statements which may have the greatest frequency count.

The following formulas are useful in counting the steps executed by an algorithm:

l+2+4 ... 4 =“{n2+”
1|+21+ +“g=n{n+1j{2n+]}
6

If an algorithm performs fin) basic operations when the size of its input 15 n, then its total running
time will be cfin), where ¢ is a constant that depends upon the algorithm, on the way it is programmed,
and on the way the computer is used, but ¢ does not depend on the size of the inputl.

Space Complexicy
The space needed by the program is the sum of the following components:

Fixed space requirement  This includes the instruction space, for simple variables, fixed size structured
variables, and constants,

Variable space requiremeni This consists of space needed by structured variables whose size

depends on particular instance of variables. It also includes the additional space required when the
function uses recursion.
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BIG ‘O’ NOTATION

If f{n} represents the computing time of some algorithm and gi(n) represents a known standard function
like n, n°, n log n, etc. then o write;

fin} is O gin)

means that f{n) of n is equal to biggest order of function gin). This implies only when:

Ifin)l = Clg{n)l for all sufficiently large integers n. where C is the constant whose value depends upon
various factors discussed above.

From the above statements, we can say that the computing time of an algorithm is O(g(n)), we mean
that its execution takes no more than a constant time gin). n is the parameter which charactenizes the
input and/or outputs. For example, n might be the number of inputs or the number of outputs or their
sum or the magnimde of one of them. If analysis leads to the result f{n)=0(gin}), then it means that if the
algorithm is run on the same computer on some input data for sufficiently large values of n, then the
resulting computation time will be less than some constant time lg(n)l.

Why Big ‘O’ Notation
Big O notation helps to determine the time as well as space complexity of the algorithms. Using the Big
O notation, the time taken by the algorithm and the space required to run the algorithm can be ascertained.
This information 18 useful o set the prerequisites of algorithms and to develop and design efficient
algorithms in terms of time and space complexity.

The Big 0" Notation has been extremely useful to classify algorithms by their performances. Developers
use this notation to reach to the best solution for the given problem. For example, for the Quick son
algorithm the worst case complexity is O{n”) whereas for Bubble sort the average case complexity is

O(n®). Thus, Quick sort can be graded as the better algorithm for sorting by any developer who has
choice between the two.

Most Common Computing Times of Algorithm

If the complexity of any algorithm is O 1), it means that the computing time of the algonthm is constant
(n) and it is called linear time which implies that it is directly proportional to n. (0{n") is called the
guadratic time, 0{n™) is the cubic time, (2%} is exponential time, O{log n) and 0(n log n) are the logarithmic
times. Algorithms with exponential runming time are not suitable for practical vse.

The common computing times of algorithms in the order of performance are as follows:

« (1)

* Ilog n)

= (n)

* (Wnlog n)

« (n’)

« O{n")

= 02"

Thus algonthms, according to their computational complexity, can be rated as per the aforementioned
order of performance.
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ALGORITHM ANALYSIS

There are different ways of solving a problem and there are different algorithms which can be designed
to solve a problem. Therefore, there is o difference between a problem and an algorithm. A problem has
a single problem statement that describes it in some general terms. However, there are many different
ways to solve the problem, and some of the solutions may be more efficient than the others.

Consequently. analysis of algorithms focuses on computation of space and time complexity. Space
can be defined in terms of space required to store the instructions and data whereas the time is the
computer time an algorithm might require for its execution, which usually depends on the size of the
algorithm and input.

There are different types of time complexities which can be analyzed for an algonithm:

* Best case ime complexity
* Average case time complexity
* Worst case time complexity

Best Case Time Complexicy

The best case time complexity of an algorithm is a measure of the mimimum time that the algorithm will
require for an input of size ‘n’. The running time of many algorithms varies not only for the inputs of
different sizes but also for the different inputs of same size. For example, in the renning time of some
sorting algorithms the sorting will depend on the ordering of the input data. Therefore, if an input data of
‘n’ ilems is presented in sored order, the operations performed by the algorithm will take the least time,
just checking the data in the sorted order which will correspond to the best case time complexity for an
algorithim.

Worst Case Time Complexity

The worst case time complexity of an algorithm is a measure of the maximum time that the algorithm
will require for an input of size ‘n’. Therefore, if various algorithms for sorting are taken into account
and, say, ‘n’ input data items are supplied in reverse order for any sorting algorithm, then the algorithm
will require n’ operations to perform the sort which will correspond to the worst-case time complexity
of the algorithm.

The worst case time complexity is useful for a number of reasons. After knowing the worst case
time ¢complexity, we can guarantee that the algorithm will never take more than this time and, such a
guarantee can be important in some time-critical software applications.

Average Case Time Complexicy

The time that an algorithm will require to execute a typical input data of size *n’ is known as average
case time complexity, We can say that the value that is obtained by averaging the running time of an
algorithm for all possible inputs of size ‘n' can determine average-case time complexity. This case of
time complexity may not be considered good measure as in this we have o assume the underlying
probability distribution for the inputs which if, in practice, is violated, then the determination of average
case time complexity will be meaningless.

Therefore, the computation of exact time taken by the algorithm for its execution is very difficult.
Thus, the work done by an algorithm for the execution of the input of size ‘n’ defines the time analysis
as function f(n) of the input data items.
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Another important step which can be considered in the analysis of an algorithm is identifying the
abstract operation on which an algonthm 15 based. For example, to identify the largest element in an
array. the primary operation of an algorithm is comparnison of the amay of ‘n’ elements to find out the

element with maximuom value, then the exchange operation becomes more important than comparison in
the array.

STRUCTURED APPROACH TO PROGRAMMING

Structured programming is a subset of sofiware engineering. It is a method for designing and coding
Programs in a systemanc, organized manner. The emphasis of structured programming is mainly on the
technical aspects of programming, whereas software engineering puts equal emphasis on technical,
managerial, psychological and financial aspects of software development.

The term “structured programming” was coined by Dijkstra in the article “Structured Programming”,
We deal with various wols required for building a structured program. Wirth has defined program as
follows:

Program = algonithm + data structures
some of the control structures which can be used for structured programming are given in Fig, 2.2,

- Sequence
IT_then_clsc
= Dio-while

o

Case

oo D

Fig. 2.2 The Set of Basic Control Stricctures for Structured Programming

Stroctured Programming emphasises functional specialization and tries to ensure that only one primary
function is allocated to any module.



RECURSION

A recursive routine is one whose design includes a call to itself. In design phase of software development
we use various problem solving methods in which recursion can be one of the powerful tools. For
example, in a procedure o design a stack, we start at the top of the stack and move down the stack until
the bottom is reached.

In an altermative perspective, whale printing of the stack, it can be thought of as the top together with
the remaining items of the stack — the “substack’, in order 1o emphasize the fact that tems that
comprise it is itself a stack. In this way, a stack of n items can be printed by printing the top element of
the stack followed by printing of the substack consisting of n=1 items. Again, the printing is continued
by printing the top element of the substack and then printing out the substack with n-2 elements or
items. Likewise, at every stage the top item is printed and the remaining substack processed.

Finally, task is complete when the substack is empty and no printing is required. Therefore, it can be
clearly seen that printing of substack requires exactly the same procedure of printing out the stack. In
other words, the procedure of printing uses itself within the description. This is called Recursion.

Another common example which can explain the concept of recursion very easily is to find out the
factorial of any number.

A C" function declaration for factorial is:

Data Srructures Using C

factorialia)
int a:
{
int fact =1
ifla=l}
fact =3 * factorial{a - 1); /* recursive function call *=/
return( fact);
}
In the function given above, when any number is passed to the function say:
number =1
fact =a * factonalia-1)

= | * factorialia—1)
=]

Similarly, if number = 2

fact = a * factoral{a=1)
=2 * factorial(1)
=2*]1=2from 1}

for number =3

fact = a * factorial{a—1)
=3 * fuctorial(2)
=3 * 2 * factorial(from 2)
=3 %2 ¥ |{from 1)
=

for number = 4
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fact = a * factorial{a—2)
= 4 * factorial(3)
=4 * 3 * factorial(2 ) from 3}
=4 % 3% 2* factorial( 1) from 2)
=4*3*2%* 1{from 1)
=24

Looping and Recursion

Loops are used when we want 1o execute a part of the program o block of statements several times.
There are many statements for the looping purpose. For example, while, do while, for, switch, etc.

A recursive function, as discussed above, is the function which calls itself (in function body) again
and again.

For example, to print the sum of digits of any number using loops:

main{)
{
ao
i
rem = n ¥10; /* taking last digits */
SUM + = rem;
nt =140 /* Skipping last digit */
} while (n=0):
}

Principles of Recursion
Some basic principles which are nsed while designing algorithms with recursion are:

Find the Key Step When beginning with the design of algorithms through recursion one should try
to find out the "Key step” for the solution. Onece you have executed the key step, find out whether the
remainder of the problem can be solved in the same way, and modify the step, if necessary,

Find a Stopping Rule The stopping rule indicates that the pfoblem or a substantial part of it is done
and the execution of the algorithm can be stopped.

Outline your Algorithm After determining the key step for the problem and finding the cases
which are to be handled, the next step is 10 combine these two using an “il” statement 1o select between
them. The main program and the procedure for recursion are now to be written to carry the key step
through until the stopping rule applies.

Check Termination Care should be taken to ensure that the recursion will always terminate after
the finite number of steps and the stopping rule should also be satisfied. It should also handle the
extreme cases correctly.
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Draw a Recursion Tree The key tool for the analysis of recursive algorithms is the recursion tree

as it helps in determining the amount of memory that the program will require and, the total size of tree

reflects the number of times the key step will be performed and the total time needed for the program.
Some examples of recursion are given below:

sumin)
int n:
ifin > Q)
{
rem=n % 10:
5 + = rem:
cumin/ 107 : /* recursive function call */f
}
returnis):
]

Similarly, another example of finding out the factorial of any number without recursion is

maini}

[

ifin = 0)
printf{ "No factorial of Negative number™):
glse
1fn==0}
printf{"Factorial of zero is In"):
else
whilein > 1)
{
fact * = n;
n- -:

|

Function for factorial using Recursion:

factoriali{n}
int m:
{
imt fact = 1
ifin > 13
fact = n * factorialin - 1): f* recursive function call */f
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returni fact):

}
Comparison between Recursion and [teration

For recursion, the recursion tree can help in providing useful information for deciding when recursion

should and should not be used.

A recursion tree can be defined as a part of tree showing the recarsive
calls. Therefore, if a procedure or function makes only one recursive
call o itzelf, its recursion tree is simple, rather it is a chain, each vertex
having only one child.

Let us consider an example. In the problem of iinding the factorial of
any number, the main task is o calculate the factorial from {(n—-1) down
to 1. The recursion tree for calculating factorial is given in Fig. 2.3.

After reading the tree from bottom to top we can oblain an iterative
program. Thus, when the tree s reduced o a chain, the transformation
of recursion to iteration is casy and saves both space and tme.

Thus, in this example of finding factorial. after studying the recursion
tree it was found that using iteration is easy and economical than recursion,
But on the other hand, the recursion tree for calculating Fibonaccei series
15 ol a chain but contains many vertices signifying duplicate tasks. When

LB

1
Fig. 2.3

a FECUrsive program is run, it sets up a stack o use while traversing the tree, but if the resulis stored on
the stacks are discarded rather than kept in some other data structure for further use, then a great deal

of duplication of work may occur as in recursive calculation of Fibonacei series.

Therefore, for the Fibonacci numbers we need additional temporary variables to hold the information
required for calculating the corrent number, Finally, by setting up or taking another data structure for
such type of calculation, it 1s possible to change any recursive program into the non-recursive form.

TIPS AND TECHNIQUES FOR WRITING PROGRAMS IN ‘C’

A program in any language is a collection of one or more functions. Every function is a collection of
statements which performs a specific task. For example, a program written in ‘C" can have the following

format:

Lomments
Freprocessor directives
Global_variables
maind )
local variables
statements

funcl()
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local variables
statements

func2()

{
local variables
statements

A program starts with commenis enclosed between /* and */. Comments can be given anywhere in
the program.

The preprocessor directives are executed before C program code passes through the compiler. These
preprocessor directives make programs more efficient. Most commonly used directives are: # include
which includes files, # define which defines the macro name and macro expansion.

For example,

# define TRUE 1
#define FALSE O

Here, the preprocessor searches for macro name TRUE and FALSE in the *C" source code and
substitutes 1 and () each time it 18 encountered.

Then there are declarations for global variables, which have same data type and same name throughout
the function and are defined outside the main( ) function. But the declaration of too many global variables
15 not advisable.

To make the program more efficient comstanis are used. Constants are values that can be stored in
the memory and can be changed during the execution of program. They can be defined for numeric,
character and stning data.

Another keyword which can be used is typedef which is used for defining new data types, The

syntax for typedef is:
tvpedef rvpe and datiname

Here, type is the data type and dataname is the user defined name.
"C" program contains the main() function but a program should be divided into functions. A function
is a self-contained subprogram which performs some specific, well defined task.

Summary

L Software engineering is the study and practice of wefthods helplul for the eonstniction. and
mandenance of large software systoms,

4 Program design involves laking the specifications and designing solutions $o-ihe-proflEms
accordmmgly.
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% An algorithm is a precise specification of a sequence of instructions to be carried out in order to
solve a given problem.

& Analysis of the algorithm 1s done after determining the running time of an algorithm based on the
number of basic operations it performs. The running time vanes depending upoen the order in
which input data is supplied 1o i

& Analysis of an algorithm is done on the following basis:

= Best case time complexity
= Worst case time complexity
* Avemage case ime complexity

& Comparison of algorithms i1s done on the basis of the programming effort done for a program

and on the basis of time and space requirements for the program. ,

Big ‘0" notation is extremely useful for classifying algorithms by their performances,

The term structured programming was given by Prof. E. Dijkstra and it supports modular design |

approach. According to this, the program procedures can be built from a combination of three

basic types of control structures: |
= Sequential
= Conditional
* Tterative

& Recursion is the name given to the phenomenon of defining a function in terms of itself.

& &

Review Exercise s

e
I.: E
i. N

Multiple Choice Questions
1. Algorithm must be

a, efficient
b. concise and compact
e free of ambiguity
d. None of these
2. In top-down approach
a. A problem is subdivided into subproblems,
b. A problem is tackled from beginning 1o end in one go,
¢. Subproblems are solved first, then all solutions o subproblems are put together 1o solve the main
problem.
d. None of the above

3. Modular programming uses

only top-down method
only boliom-up method
both o & b

Mone of the ibove

g i
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4.

5,
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Which ome of the following is better computing tvme (in analvsis of algorithim)?
a. DN} b, (2%
c. 0 log,N) d. none of these
Which one is not true?
a. Recursion involves entening an existing block.
b, Recursion may maintain pon-useiuol fotal vanables and temporary vanables through a stack.
. In a recursive process stacking and unstacking local variables is done by compiler to ensure that no
problem anses.
d. MNome of the above

Fill in che Blanks

In wp-down approach, exch subprogram should do taskis) but do it well.

l.
1, Top-down and boltom-up are two methods used for Programiming.
il

4,

A recursive function can be implemented vsing data structure.
The key tool for the analysis of recursive algorithms is

True or False

el e

Recursive functions must be called directly.

In top-down approach detailed consideration 15 postponed.

{MN} linear me is better than 01 ) constant tme.

Top-down approach wses divide and conguer method,

The aigorithms should always terminste and handle trivial cases correctly.

Descriptive Questions

b+ =

B ln B e

Define software engineering.
Define algorithm and design an algorithm fo find oot the total number of even and odd nuombers in a hist
of 100 numbers,
Explain different ways of analvzing algorithm.
Explain the structured approach (o programming.
What 15 the need of stack in implementing & recursive function?
The greatest common divisor (GCD) of two positive integers 5 the largest integer that divides both of
themt. For example, the GCD of 8 and [2 is 4, the GCD of 9 and 18 is 9 and GCD of 16 and 25 §s 1.
a. Write a recursive function GCDY (m, v : integer) © integer that implemenis the division algorithm. If ys=(,
then GCD of “and v is *; otherwise GCD of Y and "mod Y. -+
b, Rewrite the function in iterative form.
Determine what the following recursive "C' function computes. Write an iterative function to sccomplish
the same purpose,
int func{int n)
{
ifin==0)
return 0;
returnin + funt (nA-1)):
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Key Features l )
his chapter discusses a class of linear

# Introduction to Linear and Non-Linear Data | 4.0 structures—arrays—and the various op-

| i:r"":m':ﬁc erations that can be performed on arrays. An
N _rra;-.rs 'f‘ , array is an ordered collection of items, all of
L Single Dimensional Arrays which are of the same type

= Array Operations ' '

This chapter also explains the storage
representation of arrays in row-major and
colemn-major order.

% Two Dimensional Arrays
& Mulddimnensional Arrays
& Pointers and Airays

L An Overview of Poingers

INTRODUCTION TO LINEAR AND NON-LINEAR DATA STRUCTURES

Data structures are categorised into two classes: linear and non-linear.
In a linear data structure, member elements form a sequence. Such linear structures can be represented
in memory by using one of the two basic strategies.

+ By having the linear relationship between the elements represented by means of sequential memory
locations, These linear structures are called arrayvs.

= By having relationship between the elements represented by pointers, These siructures are called
linked lists.

Arrays are useful when the number of elements o be stored is fixed. Operations like traversal,
searching and sorting can easily be performed on arrays. On the other hand, linked lists are useful when
the number of data items in the collection are likely to change.

There are various non-linear structures, such as, trees and graphs and various operations can be
performed on these data structures such as:

Traversal Onpe of the most important operations which involves processing each element in the list.

Searching Searching or finding any element with a given value or the record with a given key.
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Insertion  Adding a new element to the list.
Deletion Removing an element from the list.
Sorting  Arranging the elements in some order.

Merging Combining two lists into a single list,

ARRAYS IN C

Arrays are preferred for situations which require similar type of data items to be stored together.

An array is a finite collection of similar elements stored in adjacent memory locations. By flinite we
mean that there are specific number of elements in an array and similar implies that all the elements in
an array are of the same type. For example, an array may contain all integers or all characters,

Thus an array 15 a collection of vanables of the same type that are referred by a common name. The
elements of the array are referenced respectively by an index set containing m consecutive numbers. An
array with n number of elements is referenced using an index that ranges from 0 to n=1. The lowest
index of an array is called its lower bound and highest index is called the upper bound. The number of
elemenis in an armmay is called its range. The elements of an array arr{n] containing n elements are
referenced as arr{0], arr[ 1], arr(2]..., arr{n-1] where 0 is the lower bound and ‘n-1" is the upper bound
of the array,

Declaration of an Array in C

An array can be declared just as any other variable in C, 1.e. data type followed by array name. The only
addition in the declaration is the subscript in bracket which indicates the number of elements it will hold.
By declaring an array, the specified number of memory locations (size of array) are allocated in the
memory. For example,

int age[20];
Mot sal] 10];
char grade[ 16];
The first example is of an integer type amay where cach element will hold an integer value, second
one is the floating type array and the third is the character type array.
The elements of an array can be easily processed as they are stored in contiguous memory locations.
For example,

int arr[5];

This 1% stored as

100 102 104 106 108
arrf[0]  arr{1]  arf2]  ard{3]  arr(4]

We can easily access and print the values from the array as:

scanf("3d”, &arr[1]);
printf("¥d”, arr[1]):
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An example of declaring and processing the elements of an array is given below:

/* To accept 10 numbers and print them. /*
# include <stdio.h=

maini)
{
int arr[10]. 1,
{
for{i=0: i<10: j++)
printf("enter the 3d number \n~, 1+1):
scanf("3d", &arr[i]);
}

for(i=0; 1<10; i++)
printf(“number %d is ¥din", i+1, arr[i]);
}

Array Initialization
Arrays can be initialized at the time of declaration. For example,

int age[5] = [&, 10, 5, 15, 20};
float sal[3] = [2000, 2000.50, 1000]:

The following values are assigned to each of the elements of the above-mentioned arrays:

Age (0] [ [2] [2] (4]
Value —=| & 10 5 15 20
Address —= 100 102 104 106 108

Sal 10] [1] 1]

Value ——= 2000 | 2000.50 | 1000

Address —= 1000 1004 10

An array of characters is called a string and 1t is terminated by a null (*0°) character. For example,

char name[3] = "Geeta”™,
The values assigned in the name array are as follows:

Name [0] [1] 2] [3] [4]
Value —| G e & i i
Address — 100 101 102 103 10

The character type amay can also be initialized as:

char name| | = “Geeta™;
:hm_ nm[ ] = {lGI'. ‘:‘._ L:P. Ltl. Lal'}_‘.
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SINGLE DIMENSIONAL ARRAYS

A single dimensional array 1% the simplest form of an array. The array is given a name and its elements
are referred to by their subscripts or indices. A one-dimensional array is used to store a large aumber of
tems in memory. [t references all the items i a uniform manner.

Representation of Linear Arrays in Memory

103
The memory of computer 15 simply a sequence of addressed locations 101
as shown in Fig. 3_1. Let arr be a linear array stored in the memory of T
computer, 103

Addiark]) = address of the ar{k] element of the array arr

As the elements of the array arr are stored in consecunve Memory
cells, the computer does not need o keep track of the address of :
every element of the array, It only needs to keep track of the address Flg. 3.1 Computer Memory
of the first element of the array which is denoted by: g

Basel arr)

It is called the base address of the arr. Using this base address Base{arr), the computer calculates the
address of any element of the array by using the following formula;

Addi{arr[k]) = Baseiarr) + wik-lower bound)

where w s the size of the data type of the array arr, Observe that the tme to calculate Addiank]) is
esseniially the same for any value of k. Furthermore, given any subscript k. one can locate amd access
the contents of arr|k] by scanning any other element of the array.

ARRAY OPERATIONS

Traversal

Let A be a collection of data elements stored in the computer’s memory. To print the contents of each
element of A or count the nomber of elements of A with a given property, each element of A will have
to be accessed or processed at least once. This is called traversing.

Algorithm for Array Traversal

Let A be a linear array with lower bound LB and upper bound UB. The following algorithm traverses A
applying an operation PROCESS to each element of A.

1 Initialize counter
Set counter := LB
2 Repeat steps 3 and 4 while counter £ LB
3. ¥isi1t element
Apply PROCESS to arr[counter]
i, Increase counter

et counter = counter + 1
Exit

iy
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Insertion and Delecion

Insertion refers to the operation of adding another element to the armay and deletion refers to the
operation of removing an element from the array.

If an element is o inserted at the end of the amray, then the task is easily done, provided, there 15
enough space o accommodate additional elements in the ammay.

But if we need to insert an element in the middle of an array then half of the elements must be moved
downwards to new locations to accommaodate the new element and retain the order of other elements.

Similarly, deleting the element from the end of an array is not a problem, but deleting from the middle
requires movement of each element upwards in order to fill up the void in the array.

Algorithm for Insertion

Let A be a linear array—ithe function used 18 INSERTA, N, K, ITEM}. N 15 the number of itlems, K is
the positive integer such that K S K. The following algorithm inserts an element ITEM into the K™
position of array A.

1. Initialize Counter
set J =N
Repeat Steps 3 and 4 while J 2 K
3. Move JY plement downward
Set ALJ+1] = ALJ]
4. Decrease Counter
Set J = J-1
End of step 2 loop
5. Insert element
set A[K] := ITEM
t. FReset N
Set N = N+l
7. Exit
Algorithm for Deletion
Let A be a linear array. The function used to delete from the armay is

DELETE(A, N, K, ITEM)

where N is the number of elements, K is the positive integer such that K £ N. The algorithm deletes K*
element from the array.
1. Set ITEM := A[K]
Z. Repeat for J = K to N-1:
[Move J+1 element upward]
Set A[J] = ALJ+l]
End of loop
3. Reset the rnumber N of elements in A
Set N o:= N-1

(]

Exit

=
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M Program to perform array operations. */
#includesstdio.h>

#incliude<conio_h>
#define MAX 5

void insert{int *, int pos., int num);
void del{int *, int pos):

void reverse(int *};

void display(int *):

void searchi{int *, int num}:

vold main{ )
{
int arr[5] :
clrscrl )
insertf{arr. 1. 11):
insertiarr, 2, 121
insertiarr, 3, 13):
insertiarr, 4, 14):
insert{arr, 5, 15);

printf{"\nElements of Array: "):
displayiarr):

del{arr. 5);:
del{arr, 2):

printf("\n\nAfter deletion: "):
display(arr):

insert(arr, 2, 222) :
insert({arr. 5. 555} :
printf( \n\nAfter insertion: ") ;
display(arr) :
reverselarr} :
printf("wn\nAfter reversing: "):
display(arr}:

searchiarr, 222)
searchiarr. 666) :
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getch( )
}

f* Inserts an element num at given position pos */
vold insert{int *arr, int pos., int num}

{
/* shift elements to right */
int i
for(t =MAX - 1 : 1 >=pos : 1--)
arr{i] = arr[i - 1] :
arr[i] = num ;
}

/* Deletes an element from the given position pos */
void del(int *arr. int pos)

{
/* skip to the desired position */
int 1 ;
for{i = pos ; 1 < MAK ; i++)
arr[i - 11 = arr[i] ;
arr[i - 1] =10 ;
!

/* Reverses the entire array */
void reverse(int *arr)

{
int 1 ;
for{i =0 ¢ 1 < MAX [/ 2 : ++)
{
int temp = arr(i] ;
arr[1] = arr[MAX - 1 - 17 :
arr[MAX - 1 - 1] = temp :
}
}

i* Searches array for a given element nom */
void search{int *arr, int num)
{

{* Traverse the array ™/

nt 1 ;

for{i =0 ; 1 < MAX ; j++)

{
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ifiarr[il == num)

{
printf{ "wnin The element ¥d is present at ¥dth position.”,
num, 1+ 1) ;
return ;
i
}
if(1 == MAX)

printf(™yn\n The element Zd 15 not present in the array.”. num) :
}

* Displays the contents of amay */
void display(int *arr)
i* traverse the entire array */
int 1 ;
printf(~wn" ) ;
for{i = 0 ; 1 < MAX ;| j++)
printf{"Edvt". arr[t]) :

Sorting

Sorting refers to the operation of rearranging the elements of an array in some specihied order, There are
many different sorting algorithms. A very simple sorting algorithm known as bubble sort has been
discussed here.

The algonthm tor bubble sort 15 as follows:
Algorithm for Bubble Sort

Let arr be an array of N elements. The following algorthm sors the elements of arr:
1. Repeat steps 2 and 3 for K=1 1w N-1

2. Set PTR := 1 [Initializes pass pointer PTR]
3. Repeat while PTR £ N-K : [Execute Pass]
a, If arr{PFTR] = ar[PTR+1]. then :

Interchange arr[PTR] and arc|FTR+1]
[End of if structure]
b. Sel PTR .= PTE+]
IEnd of inner loop]
|End of stepl outer loop]

4, Exit.
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FProgram to accept numbers and sort them in ascending order using bubble
sort*/
# include<stdio.he
maing)
{

int n.1.3.arr[10] . temp;

printf{“Enter how many numbers :7);

scanf{“¥d” .&n}:

for{i=0;1<n;i++)

{
printf(* enter the numbers¥d :™,1+1);
scant{“¥d” . Zarr[i]):

|

for{i=0;1=n;1++)

ford j=0; jen: j++)

{
if(are[j]=arr[j+1])
{
temp=arr[j]:
arr[jl=arr{i+1];
arr[j+1]=temp:
]

!

printf("Sorted numbers are: \n~ )
for{i=0:1<n;i++)
printf("¥d--".arr{i]);
printf{™wn");

}

{ 1f the entered numbers are
24 15 24 11 1
the program will show the following ocutput:

Sorted numbers are:
1 11 15 23 29

Searching

Searching refers to the operation of finding the location of any item in the array. The search is said to be
successful if the item is found; otherwise it is unsuccessful. There are many different searching
algorithms. The algorithm one chooses generally depends on the way the input data is organized.
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Linear Search Suppose arr is a linear array with m elements. Given no other information about arr,
the simplest way to search for a given ilem in arr is to compare the iem with each element in arr one
by one. That is, first we test am 1] = item, and then we test arr{2] = item, and s0 on. This method which
traverses the data sequentially is called linear or sequential search.

The algorithm for linear search is as follows:

Algorithm for Linear Search

Suppose arr is a linear array with N elements, and item is the given item of information. This algorithm
finds the location LOC of item in arr or sets LOC=0 if search is unsuccessful.

1. [Insert ITEM at the end of arr]
Set arr[N+1] == ITTEM
2. [INITIALIZE COUNTER]
SETLOC =1
3. [Search for [TEM]
Repeat while arrf LOC] # ITEM
Set LOC := LOC+1
[End of loop]
4, [Successful 7)
If LOC = N+1 then : Set LOC ;=0
5. Exi

* Program for linear search in an array. */

# include<stdio.h=
# include<conio.h=
void main( }

int arr[10] = {1, 2.3, 9, 11. 13, 17, 25, 57, 90} .
tnt 1, num ;

clrscr()

printf{"Enter number to search: ") .
scanf(“¥d”, &num) .

for{i =0 : 1 <=8 : 1++)
{
ifarr{9] < num || arr[1] >= num)}
{
iflarr[1] == num}
printf("The number is at position ¥d in the array.”, i);
else
printT{ Number is not present in the array.”) :
break :



}
}
getch( )
}

TWO-DIMENSIONAL ARRAYS

A two-dimensional array is a collection of elements placed in m rows and n columns. There are two
subscripis in the syntax of 2-D) array in which one specifies the number of rows and the other the
number of columns. In a two-dimensional array each element is itself an array.

The two-dimensional array is also called a matrix. Mathematically, a matrix A is a collection of
elements “a;" for all i and j's such that 0 £ t<m and (<j = n. A mairix is said 0 be of order m = n. A
matrix can be conveniently represented by a two-dimensional array. The various operations that can be
performed on a matrix are; addition, multiplication, transposition, and finding the determinant of the
matrix.

An example of 2D array can be arr[2][3] containing 2 rows and 3 columns and arr[0][1] is an
element placed at 0" row and 1™ column in the array,

A two-dimensional array can thus be represented as given in Fig. 3.2

Caolumn 0

R 0
Fow 1

arr [0] (1]
Fig. 3.2 Representation of 2-D array in memory
A two-dimensional array differentiates between the logical and physical view of data. A 2-D array is a

logical data structure that is usefol in programming and problem solving. For example, such an array is
useful in describing an object that is physically two-dimensional such as a map or checkerboard.

Row Major and Column Major Order

All elements of a matrix get stored in the memory in a -

linear fashion. The two ways in which elements can be arr [0][0] | ¢+ base (arr)
represented in computer's memory are—Row Major Row 0 < | arr [0][1]

Order and Column Major Order. In row-major arr [0] [2]

representation the first row of the array occupies the

L1

first set of memory locations, second occupies the next arr [1] [0]
set, and s0 on. Row 1 4 | arr[1][1]
The diagrammatic representation of two-dimensional ar (11 2]
array arr{2}{3] in row major order is given in Fig. 3.3 -
In Fig. 3.3, the memory locations are first occupied by Fig. 3.3 Represencation of 2-D Array in
the first row of the array. Now base(arr) has the address Row Major Order

of first element of the array arr{0][0]. We also assume
the size of each element in the array with esize.
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Now let us calculate the address of an element in the following 2-D array:
int matrix [3][4] = { {1. 2, 3, 4}, {5, 6, 7, 8). {9, 10, 11, 12} };
Formula to calculate the (j. k)™ element of a 2-D array of m % n dimension is
A(), k) = base(A} + W[N{(j-1) + (k-1]]

where W = word s1z¢
M = number of columns

Let us assume that the base address of the array matrix is [0, Since W=2 (as array is of integer
type whose size is 2), therefore, according to the formula, address of (2, 3™ element in the array makrix
will be

LOC (2, 3)

100 + 2[4 (2-1) + (3-1)]
100+ (4 +2)* 2
=100+ 12

=112

[Note: Lower bound of the amay is assumed to be 1.]

Thus we see that in the above matrix, address of (2, 3}'“ element which is 7 is 112 (as depicted in the
Fig. 3.4).

= A ildress
—== [ata
Index
[ Boow 1 Row 2 Row 3
2.3, 4 4 e - -
]il.l| S22 sy i i 1 3 3 4 % & T b g 1 |11 S}
San By Toy Bag 1 12 13 14 |5 16 (7 [8 9o Tl iz 5=
9':3-“m'!lllnll-hiz'i-*-“ 100 102 | 104 | 106 | 108 | 100 ] 102 104 116 118 120 122 ¢

Matrix represeniabion

Fig. 3.4 Row Major Representation

Similarly, for the column major order representation, let us consider the sameé matrix.

—= Address
—= [Data
Index
Colwnn | Column 2 Column 3 Columin 4
bin Znn 3on %e P \ “ " "
S B Tan Sna 0 |1 |2 i3 |4 |5 (6 |7 [& |9 |10 1
S 10nn Ug sy 1204 1 |5 |9 (2 (6 [w]3 |7 [uljfs [g 2

LOO| 10 | b0 | D06 ) LOE 110 112 ) 104 L6 118 | 120) 122
Fig. 3.5 Column Major Representation

Matrix representation

To find the address of (j. k)™ element in an array of m x n dimension and W word size of each element,
the following formula can be used:

Alj, k) = BaselA) + WIM{k-1) + (3-1)]
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LOC(2, 3) = 100 + 2[3(3—1) + (2-1)]
= 100 + 2T
= 114

We see that the address of the same element ((2, 3)" i.c., 7) has changed to 114 instead of 112, in
column major order representation of the amray. This is due to the fact that the elements in the column
major order representation are stored in a different order, i.e. all the elements of column 1 are stored first
and then all the elements of column 2 are stored, followed by all the elements in column 3, and so on.

Matrix as a 2-D Array

A matrix can be represented by a two-dimensional array. A matrix “A’ is a collection of elements 'a,-j'.
The matrix is said o be of order m x n, 1.€, it consists of ‘'m” number of rows and *n’ columns. The
element i is the element positioned at the intersection of i™ row and ™ column. When the number of
rows and number of columns are equal, then the matrix ‘A’ is called square matrix.
The common matrix operations are:
» Addition of two matrices
* Multplication of two matrices
* Transposition of a given matrix
* Evaluation of determinant of square matrix

/* Program for addition of two matrices®*/

#include<stdio.h>
int mat1[3103]. mat2[31[3]. mat3[31[3]. i. j. row. col:
void main()
{
printf("Hella™):
printf(“Enter the row of the matrix :");
scanf("¥d™, &row):
printf{“Enter the column of the matrix :"):
scanf("3¥d", &col):
printf("For first matrix :\n");
for(i=0;i<row:i++)
for(j=0; j<col: j++)
!
printf(“Enter the number for row$d. columngd: *. 441, j+1);
scanf("¥d” &mat1[1]1[j]):
}
printf("For second matrix :\n");
for{i=0;i<row;i++}
for(j=0; j<col; j++)
{
printf(“Enter the number for rowid, columnfd: © i+l j+1):
scanf(“%d" . &mat2[i1(j1);
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}

f*for addition*/
for(i=0:i<row;i++)

for( j=0; j=col ; j++)
mat3[11(J]=matl[1]1[J]+*mat2[1][1]:

I*for printing*/
printf({"Matrix 1 is:\n");
for(i=0;i<row;i++)

for{ j=0:j<col;j++)
printf({“¥d\t” . mat1[i1(Ji1);
printf(“\n~);

}

printf(" Matrix 2 is:\n"):

for(i=0:1<row: j++)

{
for{j=0; j<col; j++)
printf({ ¥d\t" . mat2[11011);
printf{*\n"):

printf{“After addition matrix is:\n7):
for(i=0:1<row;i++)
{
for{ j=0: j=col;j++)
printf(“¥d\t”, mat3[i1[j1);
printf({*\n"):
}

/*Program for multiplication of two matrices*/

# include<stdio_h=
maing}

{

int matl[31[3].mat2[3I[3].mat3[3II[3].41.].rowl.coll. rows.cold . k;

goto begin:

printf{“\nEnter the row of first matrix );
scanf("¥d” . &rowl);

printf({"\ntnter the column of first matrix ");
scanf("¥d” . &coll):

printf("\nEnter the row of second matrix 7):
scanf("¥d™, Arow2) ;

printf("\nEnter the column of second matrix ™).
scanf("¥d" . &col2):

Copyrighted material
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}

if{coll != row2)
goto begin:
printf("wnCreation of first matrix; 7J;
creatmat(matl, rowl ., coll);
printf({“\nCreation of second matrix:"™):
creatmat{matZ, row?, col2);
for(i=0:1<rowl j++]
for{ j=0; j<col2: j++)
[

mat3[11[3]=0 ;

for{k=0:k<coll:k++)

mat3[ 1) ]+=mat1[110 3] * mat2(k1[1]:
}
printf{ “\nMatrix 1 is;\n"};
printmat{matl,rowl.coll):
printf{“nMatrix 2 is:\n");
printmat{matZ, row?. col2):
printf("\nThe Resultant Matrixz 3 15:%\n7);
printmatimat3. rowl, col2);

creatmat (mat .p.m)
int mat{3]1[3].p.m;

{

}

int 1.3
for{1=0; i<p:i++)
for(j=0; j<m; j++)

{
printf{™\nEnter the number for rowdd. columnid :
scanf("3d”, Bmat[i][j1}:

}

return:

voild printmatimat. p.m)
int mat[31[3]).p.m:

{

int i.j:

for{i=0;i<p;i++)

{
for{j=0;j<m; j++)
printf{"\n&d\t™ .mat[11[31):
printf{"n"),

i+l j+l):

41
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!
}

/*Program for transposing matrix*/

# include<stdio.h=
int matl [3)[3].mat2[31[3].7.).row.col;
void main()
{
printt(” Enter the row of the matrix : );
scanf("4d” . &row);
printf{"Enter the column of the matrix :7):
scanf{"3d™ &col}:
for(1=0; 1<row;i++)
for{j=0; j<col: j++)
{
printf{"Enter the number for rowdd. column¥d: ", i+l j+1 }:
scanf("¥d™ &matl[i]1[1]):
!
priantf{™ Matrix is :\n"):
for{i=0:1<row;i++)

{
forl j=0: jecol ; j++)
prantf{"gdvt™ mat1{1103§1):
printf{"\n"}:
!

for{(i=0:i<row: i++)
for{ j={1: j<cal ; j++)
mat2(1)[ j)=matl[jI[1]:
primtf( " Transpose of the matrix :wn);
for{i=0;7<row; 1++)

{
for( j=0: jecol ; j++)
printf{ ¥d\t™ . mat2[11[1]):
printf{"\n"):
]

}
MULTIDIMENSIONAL ARRAYS

The arrays can also have more than two dimensions. For example, a three-dimensional array may be
declared as.

int arr{3][2][4]:
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An element of this array is referenced by three subscripis. The first specifies the plane number, the
second specifies the row number and the third the column number. Such an amay 15 useful when the
value is determined by three inputs.

The number of elements in any array 1s the product of the ranges of all its dimensions. For example,
arr contains 3 * 2 * 4 =24 elemenis. The arr[3][2][4] can be represented as shown in Fig. 3.6.

i 7T
it 77

Plane 0

Roowar

Row | ——t—e

Column  Column  Column  Column

0 1 2 3
Fig. 3.6 Representation of arr[3][2][4]

Therefore, row major representation of the elements of are[3][2][4] is as shown below:

arr (0] (2] [ arr [1] [0] [0 am 2] [0 [D]

fowo | A 101 (0 11 fowo |3 11100 1] owo | 8 1101 11)

arr [0] [@] [2] arr [1] [0] [2] arr [2] [ [2]

arr [0 0] 13] arr [1] [0F (3] am [2] (0] [3]

Flane 0 ar o] 10 are (1 (1 o) e E arr (2] 1] fO]
arr 0] [1] [1] arr [1] [1] [1] ar [2] [1] 1]

Row 1 1 arr 01 (11 12] Fow % are [11 1) 2] ROW 1 1 are (2] (1] (2]

arr [0] [1) 9] Larr [1] [1) [3) am [2] [1] [3]

It can be observed that, the last subscript varies most rapidly, and a subscript is not increased until all
possible combinations of the subscript 1o its right have been exhausted,

POINTERS AND ARRAYS

Pointers are special variables which contain the address of another memory location. The name of the
array is synonymous with a pointer to the memory location of the first element in the array. Pointers are
useful in accessing any memory location directly. An address of a memaory location is a long integer,
which is stored in a pointer type vaniable. Pointers also allow arithmetic operations except subtraction,
division, and multiplication between two operands of pointer type. This arithmetic property is useful
while accessing a list of elements stored in a sequential location, We get nothing relevant by adding two
pointers but subtraction of two pointers (if the result is positive) gives us the number of byies available
between two addresses.
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On array declaration, sufficient amount of storage is allocated by the compiler to store all the elements
of the array. The compiler also defines the name of the array as a pointer to the first element. For
example, if an array arr is declared as follows:

int arr{4] = {2, 4, 6, 8):
The elements will be stored as Tollows:

arr[0] arr{1] arr|2] arr| 3]
E a 6 8
100 102 104 106

The name arr acts as a constant pointer pointing to the first element, i.e. arr[()] of the array. Therefore,
the value of arr is equal to the address where arr [0] is stored, i.e.

amr = &arr{0] = 100
An integer pointer can be made 1o point to the array arr by the following assignment:
p = arr
ip = &arr{0]
When the pointer variable 18 incremented by | then it points to the next address which 15 equal (o the

base address +2 because pointer 15 of type int. Mow, the value of each element of arr can be accessed
using ip-++ as shown below:

ip = &arr{0)] (=100}
ipt] = &arr[1] (=102)
ip+2 = &arr[2] (=104}

So, the address of any element can be calculated by using its index and the size of the data type.
For example,

address of arr[2] = base address + (2 * size of int)

= 100+ (2 *2)
= 104

We can use pointers Lo access ammay elements. For getling the value of arr[2], ®(ip+2) can be used.

AN OVERVIEW OF POINTERS

A pointer is a variable which contains the address of some memory location. Pointers are popular in
programming becanse they

» provide the means through which the memory location of a variable can be directly accessed and
manipulated as required:

* support dynamic allocation routines; and

* can improve the efficiency of certain routines.
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Points to be Remembered while working with Pointers

* The "&" is the address operator, it represents the address of the vanable,
* The %ow is used for obtaining the address.
For example,
maing)
i
int a=Z;
printfi(“value of a = 2d\n". al;
printf{“address of a = fu'\n™, &a);

& variahle name

| 2 = value of a or valoe at address 1000
L]

address

* The “*" operator is the value at address operator. It gives the value at specified address. Considening
the above example we can use it as:

printf{“value at address %u = %d\n”, &a, (*&a)):

S0, we can say that the address of vardable *a’ preceded by * |, gives the value at that address.
= When a pointer variable is declared, an **° symbol should precede the variable name.
For example,

int *b; char *p; float *q;
* The address of a variable can be assigned to another variable.
For example,
int *b;
b= d&a:
Here, b is the variable which contains the address of variable a as its value,
= Another pointer variable can store the address of a pointer variable,
For example,
int a = 2;
int *b;
int **c;
b = &a:
C = &b:
In the example given above, ¢ has been declared as a pointer to pointer variable which contains the
address of pointer variable b.
= Various arithmetic operations can be performed on pointers—postfix, prefix, increment, decrement.

In pointer arithmetic, all pointers mcrease or decrease by the length of the data type they point
1o,
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= A pointer holds the address of the very first byte of the memory location where it is pointing to.

The address of the first byte is known as the base address. Therefore, adding 1 1o a pointer
actually adds the size of poinier’s base type.

For example,
int a = &;
int *b:
0 = &3
The variables of the example are represented as shown below
a b
2 1000
(LLLY 2000}

Therefore, b+ = 100042

The variable b comtains the base address, Le. the address of a, therefore, when increment or
decrement operation is performed, the address of a is incremented or decremented, i.e. 1000+2 or
10002,

S50, when a numbser is added to a pointer variable, the “hytes™ that pointer data type holds are added
number of times to the pointer variable.

For example.
int @a = 2:
in =h:
b = &a:
b= bh+l:
D = b+d
i h
2 Lo _|
1000 2000
S0, b= bl
= J(HH}+ ] =2

= 1000 + 2 = 1002
Similarly, b=b+2=1000+2%2= 1004
The same procedure is followed when a number is subtracted from a poimter variable.
|'|'=|'.I—1 =1EE}D—2=WE
b=b-3=1000-3*2
m OO0 = 6 = 90l
Pointers can also be used in handling functions. The arguments are passed to the functions in two
ways:
- gall by valoe
- call by reference
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Call by Value The process of passing the actual values of variables as arguments to a function is
called call by value.
For example,
maing)

{
int a=2:

int b=1:
printf{"Before calling the function. & and b are 3d, ¥d'\n". a. bl:

value(a, b);
printf{"After calling the function, & and b are ¥d, 3d'n™ . a. bl:

}
valuelp, q)

int p. a:
{
pt.
J++;
printf{“In function changes are ¥d¥d\n™, p. ql:

}

Note the addresses of variables at different stages of the program:

Before calling function
a

2
1000

In function
P

N
SO0

In incrementing

p

(3]

S000

After calling function
a

(2]

1000

g|-|- gl 8- g

The values of the variables a and b are not altered because when the function valoe is called, the
values of the variables a and b, not their addresses, are passed into the function.
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Call by Reference In call by reference, we pass the addresses of the variables as parameters to the
function. The addresses passed to the variables are pointer variables, therefore, values at the addresses
are incremented. Thus, the function which is called by “reference” can change the value of the vanable
used in the call.

For example,
maini)
-I
int a=2;
int b=l;
printf{"Before calling the function, a and De are ¥d¥a\n". a. b):
ref(fa, &b);
printf{“After calling the function, a and b are ¥d¥d\n". a. b):
}
refip. q)
int *p, *q;
{
(*pl++;
(*Q)++;
printf{"In function changes are ¥d, %d\n". *p. *q):
}

The addresses of the variables at different stages of the program are given below:
Before calling function

a b
2 ]
100K 2000
In function
p q
1000
5000 BODD
After (*p++) and (*g++)
p q
1000 [ 2000 |
5000

After calling the function
P

BOOG
4
3 2 |

1000 2000
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Therefore, when addresses of a and b are passed to the parameters p and g, which are the pointer
variables, the values at these addresses are incremented.

Summary

Data structures are classified as linear and non-lincar.

An array 15 a finite collection of similar elements stored in adjacent memory locutions.

There are many operations which could be performed on arrays—insertion, deletion, searching,
sorting, traversing.

Arrays can be single-dimensional, two-dimensional, or multi-dimensional.

There are two ways of representing two-dimensional arrays in memory—row-major order, and
column-major order.

Multidimensional arrays have more than two dimensions.

Pointers are special vanables which contain address of another memory location.

There is a close relationship between pointers and arrays.

The C compiler defines the name of the array as a pointer to the first element of the array.

PR P BE BE®

Review Exercise B

Muiltiple Choice Questions
1. Elements of an amay are accessed by
a. accessing function in built-in data structure
b. mathematical function
c. index
d. none of the above
2 Amayisa
a. limear data structure
b. non-linear data strociure
¢. complex data structure
d. none of the above
3. Row-major order in 2-Dimensional array refers to an armangement where
a. all elements of a row are stored in memory in sequence followed by next row in sequence and so on.
b. all elements of a row are stored in memory in sequence followed by next column in sequence and so
0.
c. all elements of a column are stored in memory in sequence followed by next column in sequence.
d. none of the above,
4. Armay is
. data in physical order
data in logical order
both a & b
none of the above

Bnoe
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Fill in the Blanks

|
2
3
4.
5
f
T

. A 2D array s also called

. Arruy has clemenis of data type.

. Array may be accessed by

. If elements of a row are stored next o one unuﬂ}l:r the array is said to be stored in order.
A data structure is szid 10 be if 115 clemenis Torm &8 seQUCnce.

. An amray is a collection of elements stored in memory locations.
Index of an array containing ‘n’ elements vanes from _ o ____

Answer the Following Questions

1.
2.

Wrrite a "C" function to find out the maximum and second maximum nwmber from an amay of inegers.
The median of an array of numbers is the element m of the array such that half the remaining numbers in
the array are greater than or equal 1o *m” and half are less than or equal 1o *m’, if the number of elements
in the array are odd. If the number of elements is even, the median is the average of two elements my and
my such that half of the remaining elements are greater than or egual to m; and m; and half of the elements
are less than or egual 1o m, and m.. Write a "C" fonction that sccepts an array of nombers and returns the
median of the numbers in the array.

Write a "C” function o find out whem:r there is an element “ag" in an m > n matrix "A° of numbers such that
‘o, 15 the smallest value in the i™ row and largest value in the ™ column. How many comparisons does
your function make?

Suppose an array 15 declared as follows:

char A[U, ) [Uy) .. [U,)

If this aray is stored in column major fashion then what is the addressing formula for the element Afi,]
Alsl - i) ?

A square matrix is called symmetric if for all values of i and j ali][j] = a[j][i]. Write a program which verifies
whelher a given 5 » 5 matrix is symmetric or nod.

There are two arrays A and B. A contains 25 elements, whereas B contains 30 elements. Write a function
o create an aray C that contains only those elements that are common to A and B.
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Linked Lists

? F 2 Lists 2 Lsts A list can be defined as a collection of ele-
Introduction Linked ments, We can add, search, or delete elements
& Dynamic Memory Allocation | in a list. The list is maintained in two ways—
% Basic Linked List Operations through arrays and linked lists.
% Doubly Linked List This chapter discusses the concepts of
@ Circular Linked List linked list which is a linear collection of data
& Atomic Node Linked List elements called nodes, each pointing to the
& Linked List in Arrays | next node by means of pointers. This chapter
% Linked Lists Versus Arrays also explains different types of linked lists
like doubly and circular linked lists and the

- various operations possible on these linked lists.
Linked lists overcome the drawbacks of amrays. In a linked list the number of elements need not be
predetermined. more memory can be allocated and released duning processing (Dynamic memory

allocation). Insertions and deletions are easier to make.

INTRODUCTION TO LISTS AND LINKED LISTS

“List” is a term used 1o refer o a linear collection of data items. Data processing involves storing and
processing data organized as a list. A list can be implemented either by using arrays or linked lists. In
arrays there is a linear relationship between the data elements which is evident from the physical relationship
of data in the memory. The address of any element in the array can easily be computed but, it is very
difficult to insert and delete any element in an array. Usually, a large block of memory is occupied by an
array which may not be in use and it is difficult to increase the size of an array, if required.

Another way of storing a list is to have each element in a list contain a field called a link or pointer,
which contains the address of the rext element in the list. The successive elements in the list need not
occupy adjacent space in memory. This type of data structure is called a linked list.

Linked List

Linked list is the most commonly used data structure used to store similar type of data in memory. The
elements of a linked list are not stored in adjacent memory locations as in arrays.
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It i= a linear collection of data elements, called nodes, where the linear order is implemented by means
of pointers. A linked list allocates memory for storing list elements and connects elements together
using pointers.

In a linear or single-linked list, a node is connected to the next node by a single link. A node in this
tvpe of linked list contains two types of fields—data, which holds a hist element, and next which stores
a link (i.e. pointer) to the next node in the list. A pointer to the head of the list is used to gain access to
the list itself and the end of list is denoted by a NULL pointer.

e

pu

data next

The structure defined for a single linked list is implemented as follows:

struct node
{ int data;

struct node * next:
}

The structure declared for linear linked list holds two members — an integer type variable "data’
which holds the elements and another member of type ‘node’, which has the variable next, which
stores the address of the next node in the list.

DYNAMIC MEMORY ALLOCATION

C language requires us to specify the number of elements in an array at compile time. This may cause
wastage of memory space. Such situations can be taken care of by using dynamic data structures.
Diynamic memory management technigues allow us to allocate additional memory space or to release
unwanted space at run time, thus, optimizing the use of storage space.
The memory management functions that can be used for allocating and freeing memory dunng
program execullon are:

» malloc Allocates requested size of bytes

« calloc Allocates space for an array of elements

» free Frees previously allocated space

* realloc Muodifies the size of previously allocated space.

Allocating a Block of Memory

The malloc function can be used to allocate a block of memory. [t reserves a specified size of memory
and retums a pointer of type void and takes the following form:

ptr = (cast-type *) malloc (byte-size)
The malloc returns a pointer (of cast fype) 1o an area of memory with size byte-size. For example,
y=(int*} malloc (100 * sizeofiint)):

In the statement given above, space * 100 imes the size of an int’ bytes 15 reserved and the pointer x
is assigned the address of the first bvte of the allocated memory.
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Allocating Multiple Blocks of Memory
The calloe function is used lor seeking memory space for storing derived data types at run time.
Multiple blocks of storage are allocated using the calloc function. The calloe takes the following form:
pir = {cast-type *) calloc (n, elem-size)
Contignous space for m blocks, each of size elem-size bytes is allocated.

BASIC LINKED LIST OPERATIONS
Creating a Linked List

Linked list is used to avoid any reference 1o specific number of items in the list so that insertion and
deletion 15 easily done, This can be achieved by using unnamed locations to store nodes. These can be

created by using pointers and dynamic memory allocation functions such as malloc. The head pointer
15 used to create and access unnamed nodes. Notice the following code fragment:

struct Tinked_list

{

int no;
struct Tinked 1ist *next:
}:
typedef struct linked list node;
node *head:
head = (node*) malloc {(size of (node});

The above statement obtains memory to store a node and assigns its address to head which is a
pointer variable.

head node

I .

no mext

To store values in the member fields use the following statements:

head — no = 1k,
head — next = NULL:

The second node can be added as follows:

head — next = (node*) malloc (size_of (node));
head — next — number = 20;
head —» next — next = NULL:

Inserting an Element
Insertion in a linked list can be done in the following two ways:

Insertion at the Beginning of the List Suppose we already have 5 nodes in the list and wish to
insert a new node in the beginning of the list.
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l:l.'I'I'I'FI- P

[90] +—={14] S—={30] J—{9] —F—{25] —{15] |
Fig. 4.1 Insertion at the Beginning of the List

MFunction to insert a new node at the beginning of the linked list*/
votd add_beg(struct node **g. int no)

{

struct node *temp :

f* add new node */
temp = malloc{sizeof(struct nodel}} :

temp -> data = no :
temp -> next = *g .t
*q = temp :
}
From the figure given above it can be seen that a temp variable of structure type is taken and space
is allocated for this element using ‘malloc’ function and its data part contains the element or number and
its link points to the existing first node.

Insertion After any Specified Node Suppose we have five nodes in the list and we wish to
insert a node afier the third node in the list. The process of element insertion is depicted in Fig. 4.2,

pl | remp
[20] ——={14] —G—=f{30] —S—={25] {42 N |
(99 |
{a) Before insertion
P | temp
[90] ——={14] 30 5] S—={42] N |
r=(new node)
E1IE

(b} After insertion
Fig. 4.2 Insertion After any Specified Node

[*Function to insert a new node after the specified node*/

void add after{struct node *q. int loc. int no)

{
struct node *temp. *r



}

_ Linked Lists
int i ;
temp = g

/* Skip to desired portion */
for(i =0 : 1 < loc ; i++)

{
temp = temp -> next ;
f* 1f end of Tinked 1ist is encountered */
if{temp == NULL) '
{
printf{“\nThere are less than %d elements in 1ist™, oo )
return ;
1
}

*Insert new node */
ro=malloc{sizeof(struct nodel)
r -> data = no

ro-= next = temp -> next

temp -= next = r ;

We begin with a loop and skip the desired number of nodes afler which a new node is 1o be added.
Suppose, we wish to add a new node containing data 99 after the third node in the list. The position of
pointers, once the control reaches outside the loop, is shown in Fig. 4.2. Now space is allocated for the
node to be inserted and 99 is stored in the data part of it.

* Function to insert a node at the end of a linked list */
void creat{struct node **q. int no)

{

struct node *temp, *r

1f(*q == NULL)/* If the Tist is empty, create first node */
{

temp = malloc{sizeof{struct node));
temp -= data = no:

temp -> next = NULL;

*q = temp

glse
temp = *q ;

f* go to lTast node */
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while(temp -> next != NULL)
temp = temp -> next

f* Add node at the end */
r=malloc{sizeof(struct nodel) ;
r -> data = no:

r -=next = NULL

temp -> next = r ;

}
Deleting an Element
The process of deleting an element from a linked list 15 depicted in Fig. 4.3:

P | node to be deleted
190] S| 30 (%] (25| N |

{a) Before deletion

) tesnp

190] {14 30 35 N |
bemp
node gets delcted

(o] ]
(b} After deletion

Fig. 4.3 Deletion in Linked List

In the following function, we traverse through the entire linked list, checking at each node whether it
has to be deleted. If the node being deleted is the first node then we shift the structure type pointer
variable to the next node and then delete the earlier node.

If the node 1o be deleted is an intermediaie node then the various pointers—the links before and after
the deletion should be taken care of.

/* Function to Delete the specified node from the linked list */

void delistruct node **g. int no)
{

struct node *old, *temp ;
temp = *q .

while(temp != NULL)
{
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ifitemp -> data == no}

{
/* 1 node to be deteted is the first node in the linked 1ist */f
if{temp = *q)
*q = temp -> next:
/* Deletes the intermediate nodes from the Tinked 1ist *=/
else
old -= next = temp -> next :
f* tree the memory occupied by the node */
free{temp)
return :
}
/* Traverse the Tinked list till the last node 15 reached */
glse
{
old = temp ; /* old points to the previous node */
temp = temp -> next ©  /* go to the next node */f
}

}

printf{"\nElement 2d not found™. no)
}

Displaying the Contents of the Linked List

It simply displays the elements of the linked list contained in the data part. For this purpose the list is
traversed with the following statement till the NULL is encountered:
printfi™%d"”, q —» data); /* q points (0 the first node */
q = g — next;
#Function o Display the contents of the linked list*/

vioid display{struct node *start)

{
primefi™yn") .

/* Traverse the entire linked list */
while{start '= NULL)

{

printf("%d ", start -» data) ;
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start = start -» next

}

In the function, the vanable start points to the first entry in the hst. The address of the next node 15
taken by the statement:

SLart = slan -> next

The end of the list is indicated by NULL value. The loop lists the current value of node to see if it is
NULL. If node is not NULL, the loop displays the entry value Index data next

and assigns node the address of the next list entry. l - 0
For example, Fig. 4.4, above we can see that the current

node is 2 and data stored at this position is 11 therefore, 11 will ™= 2 1 5

be printed first then as the next is pointing to 5 the next current 3 Ba L1

node will be 5 and the data in it {55) will be printed and the index 4 &6 5

will move to the number stored in the next of 5. The process is

repeated till the NULL value is found in the next ficld of the ™oL 52 3

number. Fig. 4.4

Counting the Number of Nodes in a Linked List
The count function simply counts the number of nodes present in the linked list.
MFunction to Count the number of nodes present in the linked list*/
int counti{struct node * q)

{
int c=10 :

/* traverse the entire linked Tist */
while{g != NULL)

{

gq=4q -> next ;

L4+ -
}
return ¢ ;

}
Searching in Linked List
Searching means finding information in a given linked list.
/* Search a node with a given information */
void search{struct node *nodel)

{
int node number = 0;
At search node;
int flag = 0;
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nodel = &start :

printf(“\n Input information of a node we want to search:™);
scanf("¥d". &search_node).
if(nodel == WULL)
{
printf("\n List is empty”);
}
while(nodel)
{
1f[3Eﬂl"Eh_l'|DdE == node->data)
{
printf{~\n Search is successful™);
printf("\n Information which we want to search is: §d°. search_node):
printf("\n Position from begimming of the 1ist: 3d”. node number+1};
nodel = nodel-=next;
flag = 1:
}
glse
{
nodel = nodel->next;

}
node number ++;

]
if{1flag)
{

printf{™wn Search is unsuccessful™);
printf{*\n Information does not exist in the list: %d", search_node):

}
J

Reversing a Linked List
The reversing of the list means that last node becomes the first node and first becomes the last.
void reverse(struct node **x)

{
struct node *q. *r. *s :

q=*x

r= NULL ;:

/* Traverse the eatire Tinked list */
while(g != NULL)
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{
=T
r=4q ;
q=4g -> next :
r->mext=-s5;
}
Xy = o

}

The function reverse() receives the parameter struct node **x, which is the address of the pointer of
the first node in the linked list. To traverse the linked list, a vanable of type struct node * is required. g
has been initialized the value of x, so g starts pointing to the first node.

The NULL valoe is stored in the link part of the first node, i.e.

§s=T
r=q;
r —+ next = s,

r which is of type struct node * is inftialized w a NULL value. Since r contains NULL, s would also
contain NULL. Now r is assigned to q so that r also starts pointing to the first node. Finally, r — next

is assigned to § so that r — next becomes NULL which is nothing but the next part of the first node.
Before storing a NULL valee in the next part of the first node, q is made to point w0 the second node
through

q = q — next;

When there is second iteration of while loop, r points to the first node and g points to the second node.
Now the next part of the second node should point to first node. g 15 made 1o point to the second node.

q = q — Dext;

During the second iteration of while loop, r points to the first node and q points to the second node.
MNow the nexi part of the second node should point to first node which is done by:

S=T;
r=q;
r — next = s;
Since r points to the first node, § would also point o the first node. Now ris assigned the valoe of
q s0 that r now points to the second node. Finally, r — next is assigned to § 50 that r — next staris

pointing to the first node. But if we store the value of s in the second node then the address of third node
would be lost. Hence, before storing the value of § in r — next, q 15 made to point to the third node by:

g = — next;

While traversing the nodes through the while loop, q starts pointing to the next node in the list and r
starts pointing (o the previous node. By the end of while loop the first node becomes the last node and
the last node becomes the first node.
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When *x=r is executed, il ensures that pointer p now starts pointing to the node which is the last
node in the orginal list.

q
imml ~— data 2 | —+—=] data 3 [ ——{ data 4 U‘+“1

NULL

r=NLILL

s= NULL
Fig. 4.5 Initial List

Now, r=q, 1e. r also starts pointing (o the first node (Fig. 4.6). q points to the second node as g =g
= nexl.

q
data 1 —|—H—-1.+1m1 —+— daa3 | 4—=] datad |N|

Fig. 4.6

r points to the first node and s also points to the first node as s = r (Fig. 4.7). Now, ris assigned the
value of g, therefore, r now points to the second node (Fig. 4.7). From the above assignment as s was
pointing to the first node so, r — next = s

5 r q
|iml|ﬂ| | duta2 | (4= data3 | ——= datad |N|
T

Fig. 4.7

The r — next starts pointing to the first node (Fig. 4.7)

8 Ir 1:]
| datal [N| |dam2]| |dam3] 4o~ damd |N]
q=NULL

Fig. 4.8

I 1
datal [M| |deta2| ;]| | data3d],;4—= datad|[M|
t

Fig. 4.9
| datad | —= data3 | = data2 | §— dama | | +—1
NULL

Fig. 4.10 Final Reversed List
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Sorting the List
MFunction for sorting a linked list by address swapping */

yoid sort(node * first)
i
node * temp=NULL.*9.%]. *dummy=NULL ;

int count=0;
for(j=start:;]:J=)->next, count++);
whilelcount )
{
for{i=start;i;i=1->next}
{
if(1-=data=dummy->data)
dummy=1 :
}
temp=start ;
{ fRemove the greatest data node at the end
if{dummy==start)
{
start=dummy->next:
getchi):
]
glga
{
while( temp-=next !=dummy )
temp=temp->next
temp - >next=dummy ->next ;
dummy -=next=RULL ;
]
f/Insert the nth greatest data node in the beginning
dummy - =next=nes
THEw=CLImY
getchil ):
dummy=NULL :
count--:
!
start=new:

I-

According to the above program the function sort finds the largest element from the linked list and
removes il. The node containing the largest element is removed from the linked list and is appended to
the new list in the ascending order. When all the nodes from the main linked list are removed. the new list
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contains all the nodes in ascending order and the address of the first node of the sorted list is assigned
o the pointer pointing to the main list {(the pointer to the main list contzins NULL address poanter
because all the elements are removed from the list).

The following illustrations explain the sorting method used in the above program:

O o 1T o I o I3 o I o I o [ S T
Start
@——NULL

L (s {2 s s {7 e

Start
MW

2, @-—-|z|——[5—-13]—-[7}—-NULL
Start
(oo {10 }=nuL

Mew

50 (o2 {5 {7 = nunL
Start
(o5 o {10} nurL
New
Start

(2 s E o i =N
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Merging Two Linked Lists

Here we wish to merge two linked lists pointed by two pointers into a third list. While merging the list,
care is taken to ensure that the elements common to the lists appear only once in the third list.
/* Merge the two linked lists, restricting the common elements to occur only
once in the final Tist */
viaid merge(struct node *p, struct node *q, struct node **s5)
{
struct node *z :

2= MULL :

f* If both lists are empty */
ifip == NULL && g == NULL)
return

/* Traverse both linked 1ists t111 the end. If end of any one 1ist is
reached foop 1s terminated */
while(p '= NULL && g !'= NULL)
{
f* If node being added in the Tirst node */
if{*s == NULL}

{
*s = malloc(sizeof(struct node)) :
zZ = *g
}
gloe
{
z -> 1ink = malloc(sizeof(struct node)) ;
z =7 -> link ;
]

if(p -» data < q -> data)
{

7 - data = p -» data ;
p=p-= link ;

glse

if(g -» data < p -> data)
{

Zz -» data = q -> data ;
g=1q -= link :
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glse
i
ifip -=> data == g -> data)
{
z -> data = q -> data :
p=p-> link :
gqg=9q -> link ;
#
}

}

/* If end of first list has not been reached */
while(p '= NULL)

/
Z -= 1nk = malloc{sizeof(struct node)) ;
=12 -= link ;
Z -» data = p -» data :
p=p-= link ;
}

f* If end of second 1ist has been reached */
while(g '= NULL)

{
z -> Tink = malloc{sizeof{struct nodel)) ;
Z=7 -=link :
7 -» data = q -> data :
g=a0aq ->1ink :
i

2 -> Tink = NULL -
}

The function merge{) receives three parameters. The first two parameters are of the type struct
node * which point to the two lists that are to be merged. The third parameter 8 is of type struct node **
which holds the address of pointer third which is a pointer to the resultant merged list.

The lists are checked before merging to find whether they are empty or not. If the lists are empty
then the control simply returns from the function else a loop is execuled to traverse the lists, that are
pointed by p and q.

£ is the pointer which points to the merged list and contains the NULL value. Inside the while loop we
check the special case of adding the first node o the merged list pointed by z. If the node added is the
first node then z is made to point to the first node by:

¥ = *g
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After this, data from both the lists are compared and smaller data is stored in the data pant of the first
node in the merged list. The pointers that point to the merged list and the lisis from where we copied the

data are incremented appropriately.
[n the next iteration of while loop, the if condition for the first node fails and we reach to the else

block. Here, we allocate the memory for the new node and its address is stored in 2 — next. The z i
made to point to the node:

Eo=F = next;

If the data, while comparing in both the lists is equal, then it is added only once and pointers of all the
three lists are incremented.

ifip — data == q — data)

{
z — data = q — data:
pP=p — Next;
q=q — next:

}

DOUBLY LINKED LIST

The doobly or two-way linked list uses double set of pointers, one pointing to the next item and other
pointing to the preceding ibem.

It can be traversed in two directions either from the beginning of the list to the end or in the backward
direction from end of the list to the beginning.

A doubly linked hst can be shown as follows:

poinier prev. puinter next
i
data data data data
- K
MNULL MNLULL

Fig. 4.11 Doubly Linked List

Each node contains three parts:

1. An mformation field which contains the data.
2. A pomnter field mext which contains the location of the next node in the list.
3. A pomnter field prev which contains the location of the preceding node in the list.

The structure defined for doubly linked list is:

struct dnode

{
int data:
struct node * next:
struct node * prey;
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Creating a Doubly Linked List

The function d_create() adds a node at the end of the existing list. It also checks if the list is empty.

The function accepts two parameter—s of type struct dnode ** which contains the address of the
poinier to the first node of the list or a NULL value in case of an empty list. The second parameter num
15 an integer which is to be added in the list. To begin with, we initialize g which is of type struct dnode
* with the value stored at . This is done because using q the entire list is traversed if it is non-empty.

[T the list is empty, the condition gets satisfied and now the memory is allocated for the new node
whose address is stored in &s {i.e., p). Using 5, a NULL value is stored in prev and next and the value
of num is assigned to its data part,

If the list is non-emptly then through the statements

while(q —» next ! = NULL)
q=q — next;
q is made 1o point 1o the last node in the list. Then memory is allocated for the node whose address
15 stored in r. A NULL value is stored in the rest part of the list by:

r— prev = q:
q = next =r;

[*Function to add a new node at the end of the doubly linked list*/
void d_create( struct dnode **s, int num)

{
struct dnode *r, *q = *g .

f* 1 the linked 1ist is empty %/
1f(*s == NULL)
{
f*Create a new node */
*s = malloc{sizeof(struct dnodel) :
(*s) -= prev = NULL
(*5) -> data = num ;
(*s) -> pnext = NULL

else

M Traverse the linked 1ist til11 the last node is reached */
whilelg -= next !'= NULL)
q=q -> next :
/* Add a new node at the end */
ro=mallocisizeof(struct dnode))
r-> data = num :
ro-= next = NULL :
ro-> prev = q ;
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q -> next = r ,

}
Adding a Node in the Beginning of Doubly Linked List

Function d_addatbeg() This function adds the node in the beginning of the list. The function
takes two parameters s of type struct dounode ** which contains the address of the pointer to the first
node and num is an integer o be added in the list.

The allocation of memory for the new node is done whose address is stored in q. The num is the data

part of the node. A NULL value is stored in the prev part of new node as this is the first node in the list
This is done by:

q = next = *5;

Now the address of this new node is stored in to the prev pan of the first node. Make this new node
the first node in the hst.

{(*8) = prev =q
ls=q:

*Function to add a new node at the beginning of the linked list®/

void d_addatbeg(struct dnode **5, int num)
\

struct dnode *g :

f* Create a new node */

q = malloc{sizeof(struct dnode)) ;

f* Agscign data and pointer to the new node */
g -= prev = NULL

q -= data = num :

q -» nest = ®*5

f* Make new node the heag node */

(*s)} -> prev = q :

*S-Q;

i
Adding a Node After a Specified Position in Doubly Linked List

Function d_addafter() The d_addafter() function adds a node at the specified position of an
existing list.

The function accepts three parameters. The first parameter g points to the first node of the list. The
second parameter loc specifies the node number afier which new node must be inserted. The third
parameter is mum which is to be added to the list

To reach to the position where node is 10 be inserted, a loop is executed.
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f*Function to add a new node after a specified number of nodes*/

void d_addafter(struct dnode *g, int Toc. int num}
{

struct dnode *temp :
nt 1

/* Skip to desired portion */

for{i =0 : 1 < lac : 1++)
{
qQ=q-=next :
f* If and of linked 1ist is encounterad */
if{g == NULL)}
{
printf { "\nThere are less than ¥d elements™, loc J;
return ;
1

/* Insert new node */

g=4q ->prev ;

temp = mallocisizeof(struct dnode)) :
temp -> data = num .,

temp -> prev = q ;

temp -> next = g -> next :

temp -> next -> prev = temp

q -= next = temp ;

]

Deleting a Node from Doubly Linked List
This function deletes a node from the list if the data part matches with num. The function receives two
parameters—ithe first is the address of pointer to the first node and second is the number to be deleted.
To traverse the list, a loop is run. The data part of cach node is compared with num. If the num value
matches the data part, then the position of the node to be deleted is checked.
If it happens to be the first node, then the first node 15 made to point to the next part of the irst node.

*g = (*¥5) = next;
The value NULL is stored in prev part of the second node, as it wiil now be the first node. This is
done by:
*s = (*s) — next = NULL;

If the node to be deleted is the last node then the NULL is stored in next part of the second last node to
the position where the node is to be inserted. By this time q is pointing to the node before which the new
node is to be added.
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The statement g = q — prev; makes q point to the node after which the new node Oshould be added.
The memaory is allocated for the new node and its address is stored in temp. The valoe of num is stored
in the data part of the new node.

The statement temp — prev = q; makes the prev pan of the new node to point to g. The address
stored in the mext part of the node pointed by q should be pointed by next pant of the new node. This 15
done by:

temp — next = q — next;

Now the prev part of the next node is made to point to the new node:
lemp — NEXL — prev = [emp;
Finally. the next part of q is made point to the new node.
q — next = temp:
ifig = next == NULL)
q - prev — next = NULL;

If the node to be deleted is the intermediate node, the address of next node is stored in next part of the
previous node and the address of previous node is stored in the prev pan of the next node.

q — prev — next = q — next;
( —* DEXE — prev = g = prev;
Finally, the memory occupied by the node being deleted is released by calling the function free.
f*Function to Delete the specified node from the doubly linked list*/

vold d delete{struct dnode ™5, int num)

{

struct dnode *q = *5

/* Traverse the entire Tinked Tist */
while(g !'= HULL}

i
1

[* 1f node to be deleted is found */
1fig -= data == num)

{
/* If node to be deleted is the first node */
if{g == *s5)
{

*s = (*g) -= paxt
(*5) -= prey = NULL ;
}

{

glse

/% 1T node to be deleted is the last node */
iflgq -> next == NULL)
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qQ -> prey -> naxt = NULL

glse
f* [T node to be deleted is any intermediate node*/
{

g -> prev -= next = -> next ;
q -= next -> prev = q -> prev ;

}
frea(q) .

}

return : /% Return back after deletion */
1
q=q ->next ; /* Go to next node */
]
printf{"\n¥d not found.”, mum}

}

Displaying the Contents of Doubly Linked List

To display the contents of the doubly linked list. we follow the same algorithm that we had used in the
singly linked hist. Here q points W the first node in the list and the entire list is traversed using
q=4q -> next :
wvoid d_display(struct drode *g)

{
printf{*\n~} ;
{* Traverse the entire |inked 1ist */
whilefg != NULL)
{
printf{“E2d\t”, q -= data) ;
q=4gq -> next :
}
!

CIRCULAR LINKED LIST

A linked list in which last node points to the header node is called the circular linked list. The circular
linked lists have neither a beginning nor an end. A small change in the structure of linear linked list is
made, that 15, the next field in the last node contains a pointer back to the first node rather than the NULL

pointer. Therefore, the structure defined for circular linked list is same a8 for the linear linked list as
given below:

struct node

{

1t data:
struct node * next:



A shortcoming of the limear linked list is that with a given pointer to a node in linked list we cannot
reach any of the nodes that precede the node which the given pointer variable is pointing to. This
disadvantage is overcome by making a little change in the structure of linear linked list and thus making
a circular linked list as shown in Fig,
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4.12.
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Data

Mext

Data

MNext

A circular linked list can be used to represent a stack and a queue, The following program implements
queune as a circular linked list. Pointers front and rear point to the first and last nodes of the list respectively.

/* Program to maintain a circular linked list */

vold main( )

{ /* Here front points to the first node and rear points to the second node */

Fig. 4.12

struct node *front. *rear :
front = rear = NULL

cir_add{&front,
cir_add(&front,
cir_add(&front,
cir_add{&front,
cir_add(&front,
cir_add(&front,
clrscrl )

printf(“Before deletion:\n") ;

&rear,
&rear,
&rear,
&rear,
&rear,
&rear,

cirg disp(front) .

10}
17y
18} ;

h)

30}
15} ;

del_cirgl&front. &rear) :
del ciral&front, &rear) .
del_cirg(&front, &rear) ;

printfi“\nminAfter deletion:\n") ;

cirg_displ front)
}

M Adds a new element at the end of quepe */
void cir_add(struct node **f, struct node **r, int item)

{

struct node *q .

/* Create new node */
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g = malloc{sizeof(struct node)) ;
q -= data = item ;
/* If the queue 15 empty */
TF(*f == NULL)

*f =q ;
else

(*r) -=next = q :

*r=q:
{(*r} -> next = *f :

}

f* Removes an element from front of queue */
int del_cirg { struct node **f. struct node **r )
{

struct node *g ;

int item ;

M 11 queue is empty */
FE(*F == NULL)
printf{"queus is empty”™) :

else
{
if(*f == *p)
{
item = (*f) -> data :
free(*f} :
*F = NULL :
*r o= NULL :
!
glse
{
/* Delete the node */
q=*f :
item = q -» data ;
*f = (*f} -> next ;
(*r} -> next = *f ;
free(q) ;
}
return{item) :
!

return NULL ;
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}

/* Displays whole of the gueus */
void cirg_disp{struct node *f)

'!
struct node *q = f. *p = NULL ;

[F Traverse the entire Tinked Vist */

while(q != p)

{
printf("¥d\t”, g -» data) .
q=0q -= next;
p=1:

}
j

The front and rear are the two pointers which point to the first node of the list. They are initialized 1o
NULL.

Creating a Circular Linked List using Queue

Function Ciradd() This function accepts three parameters, The first parameter receives the address
of the pointer to the first node (i.¢.. address of first node—front), the second receives the address of the
pointer to the last node (i.e., address of last node—rear). The third parameter holds the data items we
need to add in the list.

The memory is allocated for the new node whose address is stored in pointer q. Then, the data which
is present in item is stored in the data part of the new node. If the new node is added in the empty list
then the address of the new node 15 stored in front *f = q;.

Then * r = q; is executed, which stores the address of the new node into rear. Thus, both front and
rear point to the same node.

The statement (*r) — link = *f; is executed to store the address of the front node in the next part of
the rear node {As the link part of the last node should contain the address of the first node).

Mext. if the new node is not added in the first node then the address present in the next part of the last
node is overwritien with the address of new node, (*r) — next = q;

Then the address of the new node is stored in the pointer rear *r = q; and the address of the first node
1% stored in the next part of the new node. This is done by:

+ (#*r) = link = *f;
Deleting from Circular Linked List

Function Deicirg() This function receives two parameters. The first parameter is the pointer to the
front and the second is the pointer o the rear. The condition is checked for the empty list.
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[f the list is not empty, then it is checked whether the front and rear point to the same node or not. If
they point to the same node, then the memory occupied by the node is released and front and rear are
both assigned a NULL value.

[f the front and rear are pointing o different nodes then the address of the first node 15 stored n &
—spointer . Then the front pointer is made to point to the next node in the list, i.e. the node pointed by

(*f) — link;. Now the address of front i1s stored in the next part of the last node. Then the memory
occupied by the node being deleted is released.

Displaying the Circular Linked List

Function cirg-disp() This function receives the pointer to the first node in the list as a parameter.
Then g is also made to point to the first node in the list. This is done because the entire list is maversed

using q. Another pointer p s set to NULL imtially, The circular list 18 traversed through a loop tll the time
we reach the first node again. We would reach the first node when q equals p.

ATOMIC NODE LINKED LIST

An atomic data type contains only the data items and not the pointers. Thus, for a list of data items
several atomic type nodes may exist, each with a single data item corresponding to one of the legal data
types. Their list is maintained using a list node which contains pointers to these atomic nodes and a type
indicator indicating the type of atomic node to whach it points. Whenever a list node is inserted in a hst,
its address is stored in the next free element of the list of pointers.

Address T:'?x N?' Address T:';P: Nfﬂ Address T:'T: HE“ h

Flg. 4.13

/* Program to maintain a list of atomic nodes */

# include<stdio. h=>

# include<conio.h=

typedef struct nodelist

{ int type:
union AtomMode * data:
struct nodelist * next;

} nodelList;
nodelist * start=NULL;
typedef union AtomNode
{
char chardata:
int intdata:
long tongdata;
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float floatdata:
double doubledata:

MAtomNode -
void main{)
{
int type.data:
while(l)
{
puts(~1. New data”):
puts{“2. Display List™):
puts(™3. Exit"):
scanf({“Ed” &ch):
switchich)
[
case 1: scanf("id” &type);
InsertNode{start.type);
break
case 2: Display(start);
getch():
break
case 3: exit{0}:
]
!
|
void InsertMode{nodelist * first,int type)

{

AtomNode * node:

nodelist * temp=NULL :

node={AtomNode * ) malloc(sizeof(AtomNode)):
switch(type)

{

case 1:
puts{"Enter char data !;
scanf("§c”, dnode->chardata):
break ;

case 2:
puts{“Enter int data}:
scanf{~%d~ . &node->intdata):
oredk

case 3.
puts{"Enter long data™});
scanf{"¥1d" . Anode->|ongdatal:
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break ;

case 4:
puts({“Enter float data”):
scanf(“§f"  &node->floatdata):
break:

case 5:
puts{“Enter double data”);
scant{“211"  Enode->doubledata) ;

break;
default:
puts(“Invalid type”):
1
temp=(nodelist * )} malloc(sizeof(nodelist)):
temp->type=type;
temp - =data=node:
temp-=next=NULL ;
if{first)
{
while{first-=next)
first=first-=next:
first-=next=temp;
}
glse
start=temp:
}
void Display(nodeList * first)
{
if (first)
{
while(first)
{
switch{first->type)
{
case 1:
printf{"%c” . first->data->chardata):
break :
case £:
puts(“Enter int data™):
scanf("%d”,&node->intdata):
break ;
case 3:

puts{“Enter long data”™):
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scanf{“%1d” . &node->1ongdata)
break ;

case 4:
puts{“Enter float data™):
scanf({“¥f", &node->floatdata):
break:

case 5:
puts{“Enter double data™);
scanf{ ¥17f" &node->doubledata);
break

switch{type)
{

case 1:
puts{“Enter char data”):
scanf(“¥c™.&node->chardata):
break :

case 2:
puts(“Enter int data™):
scanf("3d" . &node->intdata):
break

case 3:
puts{“Enter long data”™);
scanf(~31d", &node->longdata):
break ;

case 4:
puts{“Enter float data”):
scanf("%f"  &node->floatdata):
break

case 5:
puts{~Enter double data”);
scanf{ 1", &node->doubledata);
break ;

printf{"\tid", first->data);
first=first->next:
}

}

puts("List does not exist™):

else

}

For the *C" representation of atomic node list we require the following structure:
struct nodelist
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{
int type:
union atomicnode;
struct nodelist * next:
}

and - uniocn atomicnode
{
char chardata:
int intdata:

I

In the nodelist structure the type member keeps the type of data according to the following
convention—1 - char, 2 - int.

The member next is a pointer to nodelist which points to the next node and the member atomicnode
15 union type member.

The data siructure for atomicnode has been chosen as a union instead of structore type becanse only
one member of the data structure will be used for each data item. For example, a particular data can be
of type char or int or long. Therefore, union is the best data structure for 'C" implementation of atomic
node.

The program uses the data structure discussed above 10 maintain a list of atomic nodes.

The function receives two parameters—a pointer to the nodelist and the type of the data. According
to the type of data, the data is scanned from the user and is stored in the new atomicnode. The address
of this atomic node is stored in the atomic node pointer. Mew nodes, both for the nodelist and the atomic
node, are allocated dynamically for the function. Similarly, logic for display () function selects the type
of the data in the atomic node, reads and displays it accordingly.

LINKED LIST IN ARRAYS

Linked lists can be implemented without using pointers. For example, consider an ordered list of integers
given by L = (10, -5, 0, 99). This list can be stored in an array, say “Ele”. The concept of link can be
implemented by using another array, “Next”. The i™ element of “L" is guaranteed to be stored in the i™
index of an array “Ele”.

The node in a linked list contains two parts—"data” and “next”. These two parts of node are split
and stored in two arrays “Ele” and “Next”. If Ele[i] represents the data part of the node then Next[i]
denotes the next part of that node. In this case the actual physical address is not denoted by next. Rather
Next{i] is an integer and if Mext[i] is j then the node next 1o the one represented by i"™ index of “Ele” and
the “Next” is the node represented by i index of “Ele” and “Next”. If Next[i] = -1 then, the node under
consideration is assumed to be the last node. Initially these arrays
are unused and so a variable “free” is set to 0. The “free” function “Ele”

keeps track of the available parts in the arrays. EAEAEEREAER
Figure 4.14 illustrates the initial situation of arrays: “Next”
When the first element of our lisi | is added to the array, Ele[0)] EEEEIEE

contains 10, Next[0] remains —1, “free” becomes | and new

variable “start” is required to remember which index in these amavs Free: 0

Fig. 4.14
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represent first node in the list. Figure 4.15 illustrates the
sddiven of first node in the list

When an attempt is made 1o add the second element of
the list, the existing clement is traversed from “start”™, As in
our case, the value is (0. Then the Next[(] is —1. this is the
end of the list. So the new node 15 added after thas node, The
index where the new node is to be stored in “Ele™ and “Next™
is found by inspecting “free”. Next [(}] 15 updated by current
value of “free” and “free’ is also incremenbed.

Figure 4.16 illustrates adding second element in the list.

Note that Ele] 1] is set to—5, Next[0] is set to | and Next[1]
is set to 1. Another addition will need to traverse the List
from “Start”, start = 0, As Next[(] = | the nexi node can be
found in index 1 of the ammay “Ele” and “Next™. The Next[1]
is found, the value is =1, Le. the node is the last node.

el
(o2 f2f2]-T212]
“Mext”
EIEEIETETEIE
Free: | Start: 0
Fig. 4.15
“Ele™
[lo]-s[22]2]~]2]"7]
“Mexi"
EIEIEIEIEEIE
Free: 2 Sitart; O
Fig. 4.16

As before, Next[1] is set to the carrent valoe of “free”. Ele{free] 15 set to -1, and “free” is incremented.
Figure 4.17 and 4.18 illustrate the addition of third and fourth nodes to the list.

“Elc”

llof-sfof2]?2]-

[ ?]

“Iexi”

RN EY SRS EY E Y

Free: 3

Start: 0

Fig. 4.17 Adding Third Node to the List

*Ele"

lwl-sjojwi?2{~]2f2]7]

Nent”

[t12]3]

IEEIETE

Free: 4

Start: 0

Fig. 4.18 Adding Fourth Node to the List

Now if we want to delete the second node in the linked list, the next field of the first node is o be
changed, in respect of the next field of second node, The array will be shown as given in Fig. 4.19.

“Ele™

[wo]?[ofesf?j~—]2(7])

“Mext'”

2?23 ]-1]?[~1-1]-1]

Free: 4
Fig. 4.19

Start: 0
Deletion of the Second NMode from the List
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Therefore, it can be seen that no shifting of elements is done, Only the "next” array is updated. Say,
if we want to again add an element with valee 56 to the list after deletion (Fig. 4.200.

“Ele™
(tof?fofoofse[-]2[7]7]
“Mext”
L2l ?f3[4f-t]-J-tf-1]-t]
Free: 5 Start: O

Fig. 4.20 Adding Another Node to the List

It can be observed that the unused node 2 (e, the element with index | in the arrays “Ele” and “Next™)
could not be reused. The varable “free” keeps on increasing without paying any atténtion w the unused
nodes. Figure 4.21 illustrates the deletion of the first node in the list. The value of the “Next™ array with
index “start”™ has 1o be made the new value of “start”™. In this example start = () and Next[0] = 2 before
deletion. so the new valve of “stan”™ become 2 and MNext [(F] becomes undefined after deletion.

“Fle™
[ *l*Jofoofse[-[2[2[7]
“Next™

(rlrlsfaf-af—J-1]-1]-1]
Free: 5 Start; 0

Fig. 4.21

LINKED LISTS VERSUS ARRAYS

We can store similar data in memory with the use of either an array or a linked hst.
Arrays are very simple data structures thai are easy to understand but they have the following
disadvantages:

= The size of arrays cannot be increased or decreased during execution. They have a fixed dimension.
For example, if we have allocated space for 10 elements and try to add more than 10 elements we
are not able o do so, and on the other hand if we have allocated the space for 10 elements bul are
not using the whole space, the unused space goes waste.

* The clements in an armray are stored in contiguous memory locations, but in many cases it may be
possible that the contiguous memory space is nol available.

= The operations like insertion of a new element in an array or deletion of an existing element after
the specified position may be tedious as insertion or deletion requires each ¢lement after the
specified position to be shifted one position to the nght (insertion) or one position to the left
{deletion).
Linked List can be used to overcome all these disadvantages.

= A linked list can grow or shrink during the execution of program.

= There is no problem of shortage of memory as the nodes are stored in different memory locations.

* [n varnious operations like insertion and deletion no shifting of nodes is required.
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The major disadvantage of dynamic implementation (linked lists) is that it may be more time consuming
for the system to allocate and free storage to manipulate a variable list.

Linked list is the most commonly used data structure to store similar type of data in memory,
Self referential structures and pointer data types may represent the singly connected linked lists.
To make the traversal operation easy, doubly connected linked lists are used, in which every node
contains links to its left and right neighbours.

The NULL value in the end of a single linked list denotes the end of the list. The NULL link when
set to the beginning of the list, results in the list called circular linked list.

The idea of dynamic memory allocation is to be able to allocate and deallocate memory at runtime
in response to program requirements and thus manage that space efficiently.

Arrays can also be used to implement the linked lists. For the implementation through arrays, we
use two arrays, “data™ and “next” to store the nodes of the lists.
Theammhnkedhmmnmnennunwmhmmhumuhﬂﬂmlm |
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Review Exercise

Multiple Choice Questions

1. In linked list, a node contains
a. node, address field and data feld
b, mode number, data field
. next address field, information field
d. None of these
2. In linked list, the logical order of elements
8. is same as their physical arrangement
b. is not necessarily equivalent to their physical arrangement
¢. is determined by their physical arrangement
d. None of the above
3. NULL pointer is used (o el
. end of linked list
b. empty pointer field of a structure
c. the linked list is emply
d. All of the above
4. List pointer variable in linked list contains address of the
a. following node in the list
b. current node in the list
¢. first mode in the list
d. Mone of the above
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Due o the linear structure of linked list having linear ordering. there is similarity between linked list and
B.I'I!'.E.}' n

i insertion of a mode

b, deleton of a node

o, traversal of elements of list

d. None of the above
Searching of linked list requires linked list 1o be created
in stored order only
in any order
without underfiow condition
. None of the abowve

0 F B

Fill in the Blanks

L.
.
3.
&,

5
.

The next address field 15 known as . [pointerfaddress)

In linked list, the identity of next element is defined. (explicity/implicity}

Besides data feld, each node of linked list contains at least __ maore fields. (oneftwo)

End of the linked list is marked by putting in the next address field in the last node. (mexy/
NULL pointer)

. List pointer vanable contains the address of pointer. {firstMast)

Anempling to delete a new node in linked lists results in underflow. (empty/non-empty)

State whether True or False

1.
L
3

4.
5

List-null can be used to initialize list as empty list.
Powner 1s used to provide the linear order in linked list,

. In linked list. successive elements neéed nol occupy adjscent space n mEmony.

List pointer vanable contains the address of last node in linked list.

. Allemping 1o create a new node, when free space pool has no space, results in overflow condition.

Descriptive Questions

1.

Write a “C" program to delete a node containing given information in singly linked list.

2 Write a *C’" function to combine two singly connected linked lists in the following manner. Suppose one

list is “C" which can be given by L = (1, 1, 15, ... 1) and the other list is “M™ where M can be expressed as
M = (my, m, ... mg) where each 1, and m,; represenis one node in respective lists. For simplicity you may
assume that each node contains integer as data. After combining them the combined list shoutd be (1,
g, 1;. my...). Do not use any additional node for writing the function.

. Write a program that reads the name, age and salary of 10 persons and maintains them in linked lise sorted

by name.
There are two linked lists A and B containing the following data:
Ar2.59 14,157, 20,17, 30
B:14,2.9 13,3787, 28
Write programs o create:
(i} A linked list C that contains only those elements that are common in linked list A and B,
i} A linked list I which contains all elements of A g8 well ag B ensuning that there s no repetition of
elements.
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5. Assume a singly linked list containing integers., Write a Panction movel) which would move a node
forward by n positions in the linked list
6. Wrle a “C’ program to create & doubly linked list in ascending sored order of information.
7. Wrile a " program o deléfe a node containing a given information in doubly hinked list. Make necessary
assumptions,
8. Consider a circulbar list with & pointer pointing o 15 tal. Wote "C fonciion (o
(i) insen a node in the front of the st
(i} insert a node at the rear of the list
(i} find the length of the hist
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Polynomials and
Sparse Matrix

Key Features T . .
he two important applications of arrays

& - Introduction to Polynomials d Tinked lists L nomials and sbacse
& Representation of Polynomials f‘:‘ﬂnl 1518 are—polyn 5 and sp

4 Introduction to Sparse Matrix A ol A

% Representation of Sparse Matrix through polynomial 15 made of ditferent terms,

each of which consists of a coefficient and an
exponent. This chapter includes the represen-
tation of polynomials through linked lists and
arrays and various operations performed on
these polynomials.

Sparse matrix is a matrix most of whose elements are zero. A sparse matrix can also be represented
by using arrays and linked lists. Varnous operations like addition and multiplication can be performed
using different representations,

Linked Lists
4 Representation of Complex Numbers

INTRODUCTION TO POLYNOMIALS

A polynomial, p(x), is an expression in variable x of the form (ax" + bx™ '+ + jx + k) wherea. b, ¢, . k
are real numbers and n i5 a non-negative integer. The number n is called the degree of the polynomial.
An important characteristic of a polynomial is that each term in the polynomial expression consists of
two parts—one is a coefficient and the other 1s an exponent.
Consider the following polynomial:

10x° & 15x° = ¥ = x

Here, (10, 15, =7, =1) are coefficients and (5. 3. 2, 1) are exponents.

Exponents are the placeholders for any value that remains constant for each term in a single expression.
In data structure, a polynomial can be represented as a list of nodes where each node consists of
cocfficient and an exponent.

Points to be considered when working with polynomials are:

= Sign of each coefficient and exponent 15 stored within the coefficient and exponent itself.

* Only addition of term with equal exponent is possible.
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* Storage of each term in the polynomial must be done in ascending/descending order of their
exponent.
For example,

1I5x* - 17x*+ 10x+13

15 |ab—= 72— w [1|—= 13 [0
REPRESENTATION OF POLYNOMIALS

Polynomials can be represented in the following two ways:

« Using armays
* Lsing linked lists

Representation of Polynomials using Arrays

We often need to evaluate many polynomial expressions and perform basic arithmetic operations—
addition, multiplication, etc.—on them. For this purpose, we need a way to represent a polynomial. The
simplest way to represent a polynomial of degree “n” is to store the coefficient of (n+1) terms of a
polynomial in an array. Thus, x + 4x° - 6x” is a polynomial of degree 5 and x + 4x* - 9x" + 10x% is a
polynomial of degree 6.

Thus, each element of an array consisis of two values, namely, coefficient and exponent. It is also
assumed that exponent of each successive term is less than that of the previous term. After building an
array for polynomials, we can use it to perform various operations.

A polynomial can be represented by using the structure given below. Here we also define a macro
MAX to set the limit of exponent of any term in the polynomial. The following program inserts each
term of the polynomial in an ascending order.

/* Program to display and add two polynomials using arrays */

# include =stdio.h=
# include =<conio.h=

# define MAX 10

struct term

{

int coeff ;
int exp ;

| F

struct poly

{

struct term t[10] ;
int totalterms
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This program uses the following functions (o manage a polynomial:

void initpolyistruct poly *) ;

void polycreate({struct poly *, int ¢, int &) :
struct poly addpoly(struct poly, struct poly) .
void display(struct poly) ;

vioid main( )

{
struct poly pl. p2. p3 .
clescr( )
initpoly(&pl)
initpoly(&p2) .
initpoly(&pd)
polycreate(&pl. 1. 7) .
polycreate(&pl. 2, 6) .
polycreate(&pl. 3, 5) .
polycreate(&pl, 4, 4) .
polycreate(&pl. 5. 2)
polycreate(&pZ, 1, 4) .
polycreate(&p2. 1, 3) .
polycreate(&p2, 1. 2) .
polycreate(dp2, 1. 1) .
polycreate(&p2. 2, 0)

pd = addpoly(pl, p2) .

printf("\nFirst polynomial:\n")
displayipl) ;

printf{*\n\nSecond polynomial :\n") .
display(pg) :

printf{"\n\nResulitant polynomial:\n™})
displayipd) ;
getch( ) :

}

f* Initializes elements of struct poly */
vold imitpolylstruct poly *p)
{

int i
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int 1 ;
p -> totaiterms = 0 :
for{i =0 ; 1 < MAX ; i++)
{
p == t[1].coeff = 0
po-=tlil.exp =10 ;
}
!

{* Adds the term of polynomial to the array t */
virid polycreate(struct poly *p, int ¢, int &)
{
p -= t[p -= totalterms].coeff = ¢ ;
p -= t[p -» totalterms].exp = e :
(p -> totalterms) ++
!

{* Displays the polynomial equation */
vold display(struct poly p)

{
int flag = 0, i :
for{1 =0 : 1 < p_totalterms . i++)
{
iflp.t[i].exp != 0}
printf("¥d x*Id + ~, p.t[i].coeff, p.tli].exp) :
glse
!
printf("§d”, p.t[1].coeff) ;
flag = 1 :
]
1
ifi!1flag )
printf{“\bib™) .
}

f* Adds two polynomials pl and p2 */
struct poly addpoly(struct poly pl. struct poly p2)
{

tnt 1. j. ¢ :

struct poly pd :

initpoly(&p3) ;



if(pl.totalterms > p2. totalterms)
¢ = pl.totalterms ;

else
c = p2.totalterms ;

for(i =0, j=0: 7 =<=¢: p3.totalterms++)

{
ifipl.t[i).coeff == (0 &% p2.t[j].coeff == 0)
break
1f{pl.t(1].exp == p2.t[j].exp)
{
if(pl.t[1].exp == p2.t[j]. exp)
{
pd.tlpd.totalterms].coeff = pl.t[i].coeff + p2.t[j]. coeff ;
pd.t{p3.totalterms].exp = pl.t[i] exp :
14+
I+
}
else
{
pd.tlpd.totalterms]. coeff = pl.t[1].coeff ;
p3.tlpd.totalterms] . exp = pl.t[1]).exp :
1R
}
}
gl se
{
p3.t[pd.totalterms].coeff = p2.t[j].coeff
pd.t[pd.totalterms].exp = p2.t[j].exp ;
o
}
}
return p3 :

}

f* Multiplies two polynomials pl and p2 */
struct poly mulpoly(struct poly pl. struct poly p2)

{
int coeff, exp :

struct poly temp, pd ;

initpoly{&temp) :
initpoly{&p3) :
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ifipl.totalterms != 0 &8 p2.totalterms != )

!
int 1
for(i = 0 ;: 7 < pl.totalterms ; i++)
{
int § :
struct poly p o
initpoly(&p) ;
for{j =0 ; j < p2.totalterms ; j++)
|
coeff = pl.t[i].coeff * p2.t[j].coeff :
exp = pl.t{i].exp + p2.t[j).exp :
polycreate(&p, coeff, exp) .
}
if(i '=0)
{
pd = addpoly(temp, p) ;
temp = p3
|
else
temp = p .
}
]
return pd

In the program given above, the function mulpoly() is used for the multiplication of two polynomials.
To build two polynomials we call the function polyereate]). Themnlnu]y[} function takes two parameters

pl and p2 and returns the result 1n the third polynomal p3.

The mu]pnlﬂj function checks whether the two polynomials are n-:m—empl}r If they are not, then the
comtrol goes in a pair of for loops. Each term of first polynomial in pl is multiplied with every term of
second polynomial contained in p2. We also call polycreate() to add terms to P. The first resultant
polynomial equation is stored in a temporary variable temp of the type struct poly. Then onwards
addpolyi) is called to add the resulting polynomial equation. The resulting term is displayed using the

display() function.
Representation of Polynomials using Linked Lists

A polynomial can be thought of as an ordered list of non-zero terms. Each non-zero term is a 2-tuple

containing two pieces of information:

* the exponent pan
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* the coefficient part
For example, consider the following polynomial:
I -0+ 5

For this polynomial, the first tuple indicates the term 5.x", ie. 5, the second tuple indicates —9.x” and
last denotes 3.x°, The tuples are arranged in increasing order of their exponent part, that means first
tuple contains the non-zero with the least power of “x" and the last uple contains the non-zero term with
highest power of x'.

—= 0| 5 91 2 “ 3|5 p—=*

The structure for a polynomial can be defined using a linked list:

struct poly

{
float coeff:
int exp;

struct poly *next;
}

Omce we build a linked list to represent a polynomial we can use such a list to perform commaon
polynomial operations like addition and multiplication.

Program to Create, Display and Add Polynomials using Linked Lists The following

structure represents a node of a linked list. The node can store one term of a polynomial. This program
uses stdvoh, comioh and alloc. b header files.

/* Program to create, display and add polynomials */
struct polynode

|
float coeff ;
int exp ;
struct polynode *next ;
Lo

void create poly(struct polynode **, float, int) :
void display(struct polynode *) ;
void add_poly(struct polynode *. struct polynode *, struct polynode **) .
void main( )
{
struct polynode *first, *second, *total ;
inti=10:

first = second = total = NULL : /% Empty linked 1ists */
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create poly(&first, 1.4, B) ;

create poly(&first, 1.5, 4) ;

create poly(&first, 1.7, 2)

create poly(&first, 1.8, 1) ;

create poly(&first, 1.9, 0) ;

clrscr( ) ;

display(tirst) :

create_poly(&second. 1.5, &) :
create polyi{&second, 2.5. 5) :
create_poly(&second, -3.5. 4) :
create poly(&second, 4.5, 3)
create polylasecond. 6.5 1)

printfi“\nin")
displayisecond) .

f* Draws a dashed horizontal line */
printf{ n")
while(i++ < 79)
printf(~-"}
printf (T\min")
add_poly{first, second, &total) ;
display(total) : /* Displays the resultant polynomial */

]

/* Adds a term to a polynomial */
void create poly(struct polynode **q. float x, int y)

i
struct polynode *temp ;

temp = *q ;

f* Creates a new node 1T the |ist 15 empty */
if{*q == NULL)

{ *3 = malloc({sizeof{struct polynode)) :
temp = *g .

!

glgp

{

/* Traverse the entire linked list */
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while(temp -> next != NULL)
temp = temp -> next

/* Create new nodes at intermediate stages */
temp -> next = malloc ( sizeof { struct polynode ) )
temp = temp -> next ;

}

/* Assign coefficient and exponent */
temp -> coeff = x ;
temp -> exp = y
temp -> next = KULL ;
}

/* Displays the contents of linked 1ist representing a polynomial #/
void display(struct polynode *g)
{

/* Traverse till the end of the Vinked list #*/
whilel{g '= NULL)
{
printf{"L.1f x*8d : ", q -» coeff, q -> exp) :
q=49q -> next :

}

printf("\bABAD™) : /* Erases the last colon */
}

/* Adds two polynomials */f
vold add poly{struct polynode *x, struct polynode *y, (struct polynode **s)

{
struct polynode *z

f* 1T both 1inked lists are empty */
if(x == NULL 8& y == NULL)
return ;

/™ Traverse til1l one of the 1ist ends */

while(x != NULL &% y '= NULL)

{
/* Create a new node 1f the 1ist 15 empty */
if(*s == NULL)

{
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*¢ = malloc{sizeof{struct polynode)) :
Z="% ;
]
/* Lreate new nodes at intermediate stages */
else
i
z == nexst = malloc{sizeof(struct palynodel)
F= 7 -=next
}

f* Store a term of the larger degree polynomial */
if(x -> exp < y -> gxp)

{
7 -> coeff = y -= coeff |
Z -=exp =y -> exp:
¥y =y -=next ; /* Go to the next node */
|
else
{
ifix -> exp = y -> exp)
{
z -> coeff = x -> coeff .
F -= gip = X -> BED |
o= - onext ;. /% G0 to the next node */f
!
algp
{
f* Add the coefficients, when exponents are equal =/
1T(x -> exp == y -> exp)
{
/* Assigning the added coefficient */
z -» coeff = x -> coeff + y -» coeff
2 - eEp = X - BEp .
/* Go to the next node */
Xo=x -= next ;
¥y =y -» naxt ;
!
}
}

}

/* Assign remaining terms of the first polynomial to the result */
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while(x '= NULL)
{
if{*s == NULL)
i
*c = malloc(sizeof{struct polynode))
z = %g -
]
else
{
z -> next = malloc(sizeof{struct polynode))
=7 -=next ;
]

M* Assign coefficient and exponent */
Z2 == coeff = ¥ -= coeff
Z -7 EAp = X - BEp
= x -=next ; J/* 0 to the next node */

|

/* Assian remaining terms of the second polynomial to the result */
while{y != NULL}

{
if(*s == NULL)

[
*s = malloc{sizeaf(struct polynodel) ;

z = *g

Z -> next = malloc{sizeof(struct polynode))
zZ =2 ->next ;

}

/* Assign coefficient and exponent */

z -> coeff = y -> coeff ;

Z->exp=Yy ->exp .

¥y=y -=next ; /* G to the next node */

}

z -= next = NULL ; /™ Assign NULL at end of resulting Tinked 1ist */
}

In the program given above, the function create_poly()is called several times to create two polynomials
pointed to by the pointers pl and p2.
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The function add_poly() is called to add two polynomials. The function traverses the linked list till
the end ol any one of them is reached. While doing this traversal the polynomials are compared on term
by term basis. If the exponents of two terms being compared are equal then their coefficients are added
and their resull is stored in p3. If the exponents of two terms are not equal the term with bigger exponent
is added to the third polynomial.

While traversing, if the end of one of the lists is reached the control breaks out of the while loop. The
remaining terms of other lists are added to the resulting polynomaal.

The terms of the resulting polynomials are displayed osing the function display().

Multiplication of Two Polynomials using Linked List
/* Program to multiply two polynomials maintained as linked lists.*/

void mul poly{struct polynode *, struct polynode *. struct polynode **)
void result_add poly{float. int. struct polynode **)

f* Multiplies the two polynomials */

void mul_poly(struct polynode *x. struct polynode *y.
struct polynode **m)
{

struct polynode *yl :
flpat coeffl, expl ;

vyl =y : /* Point to the starting of the second linked 1ist */

if(x == NULL && v == NULL)
return

M* 1f one of the Tist is empty */
f{x == KULL)

me=y o
olge
{
ifly == NULL)
Rowm ox o
else J/* If both linked 1ists exist */

{
f* For each term of the first list */

whilel{xz !'= NULL)
{
/* Multiply each term of the second linked 1ist with a
term of the first linked list */
whitely !'= NULL)
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coeffl = x -> coeff * y -> coeff ;
expl = X -2 exp + ¥y -> exp ;
¥y =Yy ->next :

/* Add the new term to the resultant polynomial */
padd({coeffl. expl. m) :
}

y =yl ; [/* Reposition the pointer to the starting
of the second Tinked list */

K= -=next : /* Go to the next node */

}
1

/*Adds a term to the polynomial in the descending order of the exponent */
void result_add poly(float c. int e. struct polynode **s)
{

struct polynode *r, *temp = *5 :

F* 1f 1ist is empty or if the node is to be inserted before the first node */
if(*s == NULL || & = (*s) -> exp)

{
*s = r = malloc(sizeof(struct polynode))
(*s) -> coeff =C ;
(*s) ->exp = :
(*s) -= next = temp :
}
else
{
/* Traverse the entire linked 1ist to search the position to insert a new
node */
while(temp i= NULL)
{

ifltemp -= exp == &)

{
temp -> coeff += ¢ ;
return
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if(temp -» exp » & && (temp -> next -> exp < ¢ ||
temp -> next == NULL))
|

r = malloc(sizeof(struct polynodel) :

r -= coeff = ¢;

r-=pxp =g ;

r -» next = temp -> next ;

temp -> next = r ;

return |

}

temp = temp -> next . /% Go to next node */

}

r == next = MULL :
temp -> next = r :

The program given above uses ereate_paoly() function to create two polynomials.

The mul_poly() function is used to multiply the polynomials. The function receives three parameters.
The two parameters X and ¥ point to the list that represents two polynomials. The third parameter is the
address of the pointer of resultant list. The variables coeffl and expl are used to hold the valoes of
coefficient and exponent of current resultant node.

Another pointer is made to point 1o the second list such that after multiplication of all the terms of
second list with the first term of first list, the pointer can be repositioned 1o the first node of the second
list.

A condition is checked for the lists to be empty. If the lists are found to be empty the control returns
back. If one of the two lists are found empty then the pointér of the resultant list 13 made to point (o
another list.

If the lists are not found empty, then a while loop runs till the end of the first list (x!=NULL). In this
loop, for the first time, each term of second list is multiplied with the first term of the first list. Then
again the pointer is repositioned to the first term of the second list (y=y1). The process continues till
each term of the first polynomial is multiplied with the second polynomial,

The function result_add_poly() adds the node to the resultant list in the descending order of exponents
of the polynomial.

We initialize a structure pointer temp with a value *s, where *s is pointer 1o the first node of the
resultant list. When the function is called for the first time its value is NULL.

The condition here is checked again to find whether the resultant list is empty or nol. If it 15 s0 then
we add the first node. Hence, the memory is allocated for new node, and the valve of coefficient and
exponent is assigned to the coefficient and exponent part of new node. In the beginning temp is stored
in the next part of the resultant new node.
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When result_add_poly() is called to add the second node, we need to compare the exponent value of
new node with that of the first node, If the exponent value of new node is greater than the exponent
value of the first pode in the resultant List, the new node is made the Girst node.

If both the above conditions are not satisfied, then the resoltant list is waversed for searching the
proper position where the new node is to be inserted. If the exponent of the same order already exists
then simply the coefficient part is added. IT it does not exist then the memory is allocated for new node,

INTRODUCTION TO SPARSE MATRIX

Sparse matrix can be defined as a matrix with maximum number of zero entries. A sparse mairix can be
divided into two calegones:

. N° Sparse matrix

* Triangular sparse matrix

N? sparse matrix is a mairix with zero entries that form a square or a bar,

A sparse matrix with zero entries in its diagonal, either in the upper or lower side, is known as a
triangular sparse matrix.

REPRESENTATION OF SPARSE MATRIX

The first method 1o represent a sparse matrix is called tuple method.

Tuple Method

A sparse matrix can be conveniently stored in the memory using 3-tuple method. Using this method,
only the non-zero entries from the given matrix are stored in three tuples. The three toples are—row,
column, and value.

Consider the following sparse matrix with 3 rows and 4 columns.

Coll | Coll | Cold | Cold
Row | 15 0 0 21
Row 2 22 11 0 0
Row 3 0 19 35 16

The 3-tuple representation of above matrix will he:

______ Row | Column Vilue
ala) 1 | 15
al) ! 1 4 21
al2) 2 1 22
al3) 2 2 11
al4) 3 2 19
als) i i 35
al(6) 3 4 16
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Index Function Sparse matrix is used to represent the matrix containing many zero elements. In
this representation, only the non-zero elements are stored along with their row number and column
number. Now consider the following rmatrix:

4 0 0 0 Row | Column | Value
Y11 0 0 0 i 0
S I 0 5
7 45 41 22 1 1 11
2 0 1
Triangular Matrix 2 I 22
. 2 i3
3 i 7
3 1 45
3 2 41
3 3 .

3-Tuple Representation of matrix A

The above matrix is a triangular matrix having all the zero elements in the upper diagonal and non-zero
elements in the lower diagonal.

Index function can be used where all the non-zero elements form a pattern such as a tniangle.

Index function gives the sequential location of an array entry.

According lo matrix A

Total number of elements in the first row = |
Total number of elements in the second row =2
Total number of elements in the third row =3

m -

Total number of elements in the n—1" row = n—1
Total number of elements in the n™ row = n

Therefore, total number of non-zero elements in matrix

n+l
2

If we consider the dimension of matrix A as j x k, then total number of elements up to J-1 =

A=l+2+3 .. .+n-l+n=n*

J-1* JL%'-—I {as per the above formula)

j—1
2

=j"
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Therefore total number of elements in the j"1 row and the K™ column,

o j=1
=K [’ "3 ]
The above formula returns the total number of non-zero elements in matrix A. Since the number of last
non-zero element i.e., ], k™ glement is 10, now by substituting the dimensions of Matrix A in the above
4-1
2

This means that this formula is true to return the position of any j, k™ element lying in a sparse matrix.
Since, the arrays in C are represented with lower bound 0, therefore, the value returned by the index
function will be one more than the actual position of the element in a sparse matrix.

Similarly, Index function can be used to find the index number of 22,, ,, in the sparse matrix. Here,
j=3, k=2,

= |0},

formula (e, j=4, k=4), we get: 4+ 4%

3-1
= L
2+3 0
=3
In array representation of sparse matrix using 2-wple method. the index of 22, |, will be 5-1=4,

Dope Vector

In order to access each element (string in the above array) in the rectangular array (Fig. 5.1), most
compilers of high-level languages simply write the index function into the machine-language. The
calculation of the index function for accessing any element at run-time might be slow. Therefore, an
auxiliary table is used to access elements in the rectangular array. This table keeps necessary information
about each element to access it. e.g. example, address of the clement, size, eic. This is known as Dope
Yector.

[INjF|O]S b
M|I|C|R|O|S|O[F!T
O/RA|(C|L
ClI|§|(C|O
TIE|CIH|N|O

Fig. 5.1 Rectangular Array

I N|FIO|(SIY|S(WM|I|[CIR|O|SIO[FIT|O|(O/R|A|[CIL|E|W]| -
Fig. 5.2 Row Major Order Representation

The advantage of a dope vector is that it is much smaller than the rectangular array, and therefore it
can be permanently kept into the memory without using oo much space. lis entries need 1o be calculated
only once. For all later references Lo the rectangular array, the compiler can find the position for i, j®
element by taking the entry in position i of the auxiliary tble, adding j, and then moving to the resulting
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101 109 19 126 132

101

109

119

126

132

Fig. 5.3 Dope Vector (Access Table)

Representation of Sparse Matrix through Arrays
A sparse matrix is one where most of its elements are zero. Consider the following sparse matrix:
15 0 0 21

A=22 11 0 0
0 19 35 16

The idea is to store information of non-zero elements only. If this is done then the matrix may be
thought of as an ordered list of non-zero elements. Information about non-zero elements has three parts:

= An inleger representing ils row.

= An integer representing its column.

= The data associated with its elements.

The elements of the above sparse matrix are represented as follows using array:

LL15|1,4,21|2,1,22 {2,211 | 3.2,19 | 3,335 | 3. 4,16

- Prngrnmlni‘eprmtqursémaﬂ‘hlnmlrﬁy'f

#define MAX] 3
#define MAXZ 3

struct sparse
{

int *sp ;
int row ;

|

void initsparse(struct sparse *) ;
void create_array(struct sparse *) -
void display(struct sparse) :

int count(struct sparse) :
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void create tuple(struct sparse *, struct sparse} :
void dispiay tuple(struct sparse)

void delsparse{struct sparse *) ;

void mainl )

'I

struct sparse 51, 52
int ¢ ;

clrscr( ):

initsparse{&sl) ;
initsparse{&s? } :

create array(dsl) .
printf{"wnElements in Sparse Matrix; 7)
display(sl) ;

c = count{sl) ;
printf(Tvn\nNumber of non-zero elements: ¥d°, c) .

create tuple(ds?, sl)
printf("\n\nArray of non-zero elements: ") :
display tuple(s2) :

delsparse(&sl) :
delsparse{fs2) :

getch( )
}

J* Initialises element of structure */
vold Tnitsparsel(struct sparse *p)

{
po=> 5p o= NULL :

)

/* [ynamically creates the matrix of size MAX] x MAX2 */
void create array(struct sparse *p}

{

nt nm, 1

p -> 5p =(int *I)malloc{MAX]l * MAXZ2 * sizeof(int)) ;

107
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for{d = 0 ; 1 < MAXT * MAXZ | i++)

{
printf("Enter eiement no. ¥d: ™, 1) :
scanf("&d™, &n} .
*lp-=sp+il=n:

}

j

f* Digplays the contents of the matrix */
void display{struct sparse p)
d

int 1 ;

/* Traverses the entire matriz */
for{i = 0 ; 1 < MAKT * MAKZ ; 4+
[
f* Positions the cursor to the new Tine for every new row */
if(i ¥ MAX2Z = 0)
printf{“\n"}) ;
printf{"¥d\t™, * (p.sp + i)} :
}
)

f* Counts the number of non-zero elements */
int countistruct sparse p)

{

int cnt =0, 1 ¢

fordi = 0 ;1 =< MAXLT * MAKZ | i++)

{
ifi* (p.sp+ i) !=10)
cnt++
|
return cnt

}

f* Creates an array that stores information about non-zero elements */
vold create_tuple{struct sparse *p, struct sparse s)

{
intr=0,¢c=-1, 1=-1, 1 :

[ -> row = count(s) + 1 :
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p ->s5p = (int *) malloc {(p -> row * 3 * sizeof(int)) ;
*p -> sp + () = MAX]
*p o= sp + 1) = MAXZ ;
*p -o»sp+ 2 =p->row -1 ;
1=2:
for{i = 0 ; i = MAXL * MAXZ ; j++)
{

CHs

f* Sets the row and column values */
PFOCCT % MAXZ) == () &% (3 != 0))
{
[ -
c=10:
}

/* Checks for non-zero element
row. calumn and non-zero element value
15 assigned to the matrix */

if(* {(s.5p + 1) != 0}

{
1+
*p -=s5p+ly=r:
1++ :
*p->s5p+l)=c;
1++ :
*p-=sp+ 1) = *s5.5p + 1)

}

]
}

/* Displays the contents of 3-tuple */
void display_tuple{struct sparse p)

{
int i ;
for{i =0 : 9 <p.row™*3 ;: i++)
{
if(1 %3 ==10)
printf{*\n"} ;
printf("Edvt™, * (p.sp + i} :
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/* Dealiocates memory */
vorid delsparselstruct sparse *p)
{
tfreelp -= sp) ;
|
In the program above a structure sparse is designed as:
struct sparse
{
int *sp
int row :

b

The function create_array() dynamically creates a matrix of size max] = max2. The values are
taken for the matrix and the displayv() function displays the content of sparse matrix. The count()
function counts the total number of non-zero elements.

The create_tuple(} function creates a 2-dimensional array dynamically. The problem of how muoch
space to be allocated is there. Since each row in the 3-tuple form represents non-zero elements in the
original array the new array should contain as many rows as the number of non-zero elements in the
original matrix. Hence, the first row of new armay should contain number of rows, number of columns,
and the number of non-zero elements in the original array. The size of the new array can be determined
through the following stalements:

p —* row = count(s) +1;
p—* sp = (int *) maloc (row * 3 * gize{int));

The first statement given above can count the number of non-zero elements in the armay. To count we
have added 1. The 0™ row stores the information about number of rows the 1% row stores, the row and
column position of non-zero elements. The number of rows depends on the number of non-zero elements
in the array, therefore, the array 18 created dynamically. There are 3 columns in the array. The o
column stores the rows number of non-zero element. The 1% column stores the column number of the
non-zero element and 2™ column stores the value of non-zero element.

The display_tuple() function displays the contents of 3-tuple.

Sparse Matrix Operation Using Arrays

Addition of Two Sparse Matrices
/* Program to add two sparse matrices */

#define MAX1 3
#dafine MAXZ 3
#define MAXSIZE G
#define BIGNUM 100

struct sparse

{
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int *sp
int row :
int *result ;

b

vold initsparse(struct sparse *)
void create_array(struct sparse *)
int counti{struct sparse) :
void delsparse {struct sparse *}) :
/* Counts the number of non-zero elements */
int count{struct sparse )
{

intent =0, 1

for(i = 0 ; 1 < MAX] * MAXZ : 1++)

{

if(* {s.5p + i) != Q)
cit++

J

return crt

}

/* Carrtes out addition of two matrices */

void addmat{struct sparse *p. struct sparse sl. struct sparse s2)

{
int1=1. J=1. k=1
int elem = 1 :
int max, amax. bmax :
int rowa, rowb, cola, colb, vala. valb ;

/* Get the total number of non-zero values
from both the matrices */

amax = *(sl.sp + 2} ;

bmax = *(sZ2.5p + &) :

mdx = amax + bmax :

f* Allocate memory for result */

po-> result = (int *) malloc{MAXSIZE * 3 * sizeof{int)) ;

while{elem <= max)
{
/* Check if i < max. non-zero values
in first 3-tuple and get the values */

111
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®¥clsp+ i1 *¥3+0)
®slsp+i*®3+ 1)
*Hslspr1*3+2):
cola = BIGNIM

< Max. non-zero values

in second 3-tuple and get the values */

if(i == amax)
{
rowa =
cola =
valag =
}
gl 58
rowa =
f* Check if j
1f(] <= bmax)
{
rowh =
colh =
valh =
else

*e2 sp+ %3+ 00 ;
*s2.sp+ ) *3+ 1)
*e2d.sp+ ) *I+2)

rowh = colb = BIGNUM :

01T row no.

ot both 3-tuple are same */

1firowa == rowb)

{

f* 1f col no. of both 3-tuple are same */
if{cola == colb)

{

)

f* Add tow non-zero values
store 1n result */
*p ->result +kE* 3+ 0 = rowa |
*p o> oresult + k¥ 3+ 1) = cola
*p o= result + k¥ 3+ 2) =vala + valb
1++ -
j++ :
max-- :

f* If col no, of first 3-tuple is < col no. of
second 3-tuple. then add info. as it is
to result */

if{cola < colb)

{

*(p -> result + K * 3+ () = rowa -



*p o-> result + k * 3+ 1) = cola
o o> result +# K * 34+ 20 = vala ;
i++

}

f* 1f cal no. of first 3-tuple is = col no. of
second 3-tuple. then add info. as it is

to result */

ificola = colb)

{
*p -> result + £ * 3+ 0) = rowb ;
¥(p ->result + &k * 3+ 1) = colb
¥ - result + kK * 3+ 2) = valb
J’++ :

}

k++ -

}

{* If row no. of first 3-tuple s < row no. of
second 3-tuple, then add info. as it is
to result */
ifirowa < rowb)
{
Hp o> result + kE* 3+ 0) = rowa
*(p -> result + kK * 3+ 1} = cola ;
*p -> result + kE* 3+ 2} =vala ;
T+
k++ -

}

f* If row no. of first 3-tuple is > row no. of
second 3-tuple, then add info. as it is
to result %/

ifirowa > rowb)

{
*p -= result + kK * 3+ 0) = rowd
*p -> result + k* 3+ 1) =colb
*p ->result + kK * 3+ 2) =valb :
j++ '
k++

}

elem++ -
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M Add info about the total no. of rows,

cols, and non-zero values that the resultant array
contains to the result */

*p -= result + 0) = MAKL
*=p -= result + 1) = MAXZ
*p -> result + 2) = max ;

1]

/* Deallocates memory */
void delsparselstruct sparse *p)

{

if{p -> sp 1= NULL)

free{p -= sp} :

iflp == result = HULL)

free(p -> result) :

The function addmat() carries out addition of two sparse matrices. The function firstly obtains the
total number of non-zero elements that the 3-wple would hold. The following statements help in the

RAMmeE:

amax = *(s1.5p+2);
bmax = *{s2.sp+2);
max = amax + bmax;

The memory is then allocated for the target 3-tuple that stores the results of addition. The while loop
helps in carrying oot the operation of addition. The | and § variables are used as counters for first 3-tuple
{pointed by s1.5p) and second 3-tuple (pointed by s2.sp). Then we retieve the row number, column
number and non-zero value of i" and j™ non-zero elements respectively. The cases which are considered
while addition are as follows;

If the row numbers as well as column numbers of the non-zero values retrieved from first and
second 3-tple (pointed by s1.sp and s2.sp respectively) are same then two non-zero values vala
and valb are added. The row number rowa, column number cola and vala + valb is then copied to
the target 3-tuple pointed by the result.

If the column number of first 3-tuple is less than the column number of second 3-tuple, then we
have added the information about the i™ non-zero value of first 3-tuple 10 the target 3-tuple.

If the column number of first 3-wple is greater than the column number of second 3-tuple, then
we have added the information about t.hej"" non-zero value of second 3-tuple to the target 3-tuple.
If row number of first l-mgle is less than the row number of second 3-tuple then we have added
the information about the 1 non-zero valoe of first 3-tople w the wrget 3-wple.

If row mumber of first 3-tuple is greater than the row number of second 3-ple, then we have
added the information about the j'h non-zero value of second 3-tuple to target 3-wple.
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Then the total number of rows, columns and non-zero values that the target 3-tuple holds are stored
in the zero™ row of the target 3-tuple (pointed to by result).
The function display(} displays the result of addition operation.

Multiplication of Two Sparse Matrices
/M Program to multiply two matrices */
#define MAX] 3

#define MAXZ 3

#define MAXSTZE 20

gdefine TRUE 1
#define FALSE 2

struct sparse
{
int *sp
int row ;
int *result

}:

void sparseprod{struct sparse *, struct sparse. struct sparse)
void search nonzero(int *sp, int i1, int*p, int*flag) :
vold searchinb{int *sp. int jj. int colofa. int*p. int*flag) :

void main{ )
{
struct sparse s[5] ;
mE 1
clrscr( )
for{i =0 ; 1 <= 3 : q4+4)
initsparse{&s(i]) :

create array(&s[0]} :

create tuple(&s[1]. s[01) ;
display_tuple(s[1]}) :

create array(&s[2])

create tuple(&s[3]. s[2]) ;
display_tuple(s{3]) ;
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sparseprod(&s[4]. s[1]. s[3]) :

printf{"\nResult of multiplication of two matrices: ™) :
display_result(s[4]) :

forii =0 : 7 <=3 ; i++)
delsparse(&sfil) :

getch( ) .
}

/* Performs multiplication of sparse matrices */
void sparseprod(struct sparse *p, struct sparse a, struct sparse b)
{
tnt sum, k, position, pose, flaga, flagb, 1 ., j :
k=1;

p == result = (int *) malloc(MAXSIZE * 3 * sizeof(int)) :
for { i=0 ;1<*{asp+0*3+0) i+ )}
{
for { j=0; j<*(bsp+0*3+1): j& 3
{
/* Search 1f an element 15 present at ith row */
search_nonzero{a.sp, 1. Bposition, &flaga) :
if(flaga == TRUE}
{

sum = 0 :

/* Run loop till there are elements at ith row
in first 3-tuple */
while(® (a.sp + position * 3 + 0} == 1)

{
/* Sparch if an element is present at ith

column,
in second 3-tuple */
searchinb{b.sp. j. * (a.sp + position * 3 + 1},
fposi, &flagb)

/* If found then multiply */
if(flagb == TRUE)
sum = sum + *(a.sp + position * 3 + £} *
*(b.sp + posi * 3+ 2)

Copyrighted maierial
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position = position + 1 ;

}

/™ Add result */

if{sum 1= 0)

{
*fp->result +k*3+0)=
*p-=result +k*3+1)=]:
*p ->result +k *3+ 2) =5um ;
E=k+1:

}

f* fdd total mo. of rows. cols and non-zero values */
*p-=result + 0 *3+0)=*a.sp+0*3+1) ;
*p-zresult +0*23+ 1) =*bsp+0D*3+1);
*p->result «+0*34+2)=k -1;

}

f* Searches if an element present at ith row */
void search nonzero(int *sp. int 13, int *p. int *flag)
{
int 1
*flag = FALSE
for(j=1:je=*(sp+0*3+2): j+s)
{
if(*{sp+j*3+0)==1i)
{
=l
*flag = TRUE ;
return ;

}

/* Searches 1 an element where col. of first 3-tuple
is equal to row of second 3-tuple ™/
void searchinb{int *sp, int jj. int colofa, int *p, int *flag )

]
int j
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*flag = FALSE
for{j =1:J<=*sp+0*3+2) . j+)
{
1f(*(sp+jJ*3+ 1) ==73] 88 *(sp+3*3+0)==rcolofal
{ r
o=
*flag = TRUE ;
return

!
I

The program for multiplication of sparse matrix holds three functions:

sparseprod() function. Using this we have allocated memory required to store the resultant tuple. The
multiplication is done using the for loops. The outer for loop runs the number of times which is equal to
the row dimension of first 3-tuple {poinied by a).

The inner for loop runs for the number of times, which 18 equal to column dimensions of second 3-
tuple (pointed by b).

search_nongero(). This function checks whether or not an element is present at i™ row. The flag is set
to TRUE if a non-zero element is there and stores the position in pos using which a non-zero element in
i™ row is retrieved. A while loop is run till there are elements at i™ row in a.

searchinb{). This function is called in while loop which searches for an element whose row number is
equal to column number of an element of a currently being considerad and column number is equal 1o ).

Transpose of Sparse Matrix
* Program to transpose a sparse matrix */

#define MAX] 3
fdefine MAXZ 3

struct sparse
d

nt *sp o,
int row

|

int count(struct sparse) :

void transpose{struct sparse *, struct sparse) :
void display_transpose(struct sparse) ;

YO1d maing

{

B

struct sparse s[3] .
int c, 1
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for(i = 0 : i == 2 . i++)
initsparse(&si{il) ;
clrscrl ) :

create_array(&s[0]) :

printf{"\nElements in Sparse Matrix:") ;
display(s[0]) :

¢ = count{s[0]) :

printf("\n\nNumber of non-zero elements: 3d°, c) .

create tuple(&s[1]. s[0]) .
printf{*\n\n&rray of non-zero elements: ") ;
display_tuple(s[11} :

transpose(&s(2]. s[1])
printf("\n\nTranspose of array:™) ;
display_transpose(s[2]) :

for{i =10 ; 1 <= 2 ; i++)
delsparse(&s[i]} :
getch{ ) :

}

/* Obtains transpose of an array */
void transpose{struct sparse *p, struct sparse s)

{
int x, g. pos_I., pos_2. col, elem, C. y :

/* Allocate memory */
p <= 5p = {int *) malloc(s. row * 3 * sizeaf(int)) :
[ro==ToW = 5. T0W ;

/* Store total number of rows. cols
and non-zero elements */

*p -=sp + 0) = *s.sp + 1) ;

*p->sp+ 1) = *s.sp+0)

*p ->s5p+2) =*(s.5p+ 2)

col = *(p -= sp + 1} ;
elem = *(p -> sp + 2)

iflelem <= 0)
return
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=1

forlc =0 @ ¢ < col ; c4+)

{
for(y = 1 ;: y < elem ; y++}
{
g=y*3=+1:
if{*{s.5p + q} == ¢)
{
pos 2=x*3+ 0 :
pos 1 =y * 3+ 1 :
*(p o> sp + pos_2) = *{(s.5p + pos_1) :
pos 2= x*3+ 1 ;
pos 1=y *3+0 ;
*(p ->sp + pos 2) = *(s.5p + pos 1) :
pos 2=x* 3+ 2
pos 1=y *3+2;
*p -> sp + pos_2) = *(s.5p + pos_1)
LR
}
}
}

}

/* Dsplays 3-tuple atter transpose operation */
void display transpose{struct sparse p)
{

nt 1 ;

for(t = 0 ;1 <p.row ® 3 @ ++)
'i
if{i §3==10)
printf{"\n") :
printf("%d\t™. *(p.sp + 1)) :

In the transpose() function we allocate memory to store the elements in 3-tuple. The total number of
rows, columns and non-zero elements are also stored by using the following  statements:

ip—=sp+0i=*s.5p+ l});
p—=sp+ l="s.5p+ 0}
*p—=sp+2i=*s.sp+ 1)
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The statement p — sp is used to store the total number of columns, where the total number of rows
should be stored. Similarly, the place where total number of columns should get stored, we have stored
total number of rows. In the case of transpose, total number of rows becomes equal to the total number
of columns.

The for loop is used to carry out the transpose operation. The outer for loop runs till the non-zero
elements of col nomber of columns. In the inner for loop, we obtain the position at which column
number of a non-zero element is stored. This is done through the statement:

Q=Y " 3 + 1
Then it is checked that whether the column number of a non-zero element matches with the column

number currently being considered, i.e. C. If the two values match, then the information is stored in
target 3-tuple using the following statements:

pos_ 2=x"%3+0;
pos_l=y*3+ 1
*(p — 5p + pos_2) = *(s.5p + pos_l);

The varable pos_2 is used for the target 3-tuple, to store the position at which the data from source
3-tuple should get copied. The variable pos_| is used for source 3-tuple to extract data from it. The third
statement copies the column position of non-zero element from source 3-tuple to target 3-tuple. This
column number gets stored at the row position in target 3-tuple.

Similarly, the row position of a non-zero element of source 3-tuple is copied at the column position of
target 3-tuple.
pos_ 2=x*3+1;
pos_l=y*3 40
*p —»sp + pos_2 = *(s.5p + pos_1);
The non-zero value from source 3-tuple is copied to target 3-tuple using the following statements:
pos 2=x*34+12;
pos_l=y*3+2;
Hp — sp + pos_2) = #(s.5p + pos_l);

Thus, the target 3-tuple is transpose of an array the user entered for create_array() function. The
elements are displayed using display-transpose function.

REPRESENTATION OF SPARSE MATRIX THROUGH LINKED LISTS

The sparse matrix can also be represented using a linked list. An element of sparse matrix consists of
three integers

* jts row number (i)

* its column number (j) and

= jts value (val)

In linked representation, consider “head” nodes for each row and each column pointing to the elements
in a particular row or column. A head node for a row consists of three parts (Fig. 5.4).
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Mext row R Mumber Elements in this row

Fig. 5.4 Parts of Head Node for a Row

Row number indicates the row to which the “head” node is pointing to by component “Element”. The

head node also points to another “head™ node for the next row.
The structure definition for Rowhead is

typedef struct Rowhead

{
int rownum:
Element * right;
struct Rowhead * next;

| Row:

Similarly, a column consists of column number, a pointer pointing to next column and the pointer to
elements in that column. The structure definition of colhead will be:

typedet struct columnhead
| int column;
Element * down:
struct columnhead * next;
} Col:
The structure definition for Element will be:

typedef struct Element

{
int 1, 3. val:
struct Eiement * down:
struct Element * right;
} Element:

The structure defined for one element can be shown as in Fig. 5.5:

MNext
Mext element .
i this column R Mumber Column Number Value cm:r;:nt in

Fig. 5.5 Structure for an Element

A gparse matrix can be defined as a node having two pointers, one pointing to the list of rows and
other pointing (o the list of columns. The node also contains two integers specifying the number of rows
and the number of columns. The node can be shown as in Fig, 5.6:
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. Mumber of Mumber of First
First row row coluemns o] L
Fig. 5.6 Node

The structure defiminon of the node depicted above will be:

typedef struct sparsematrix
{

Row * firstrow;

Col * firstcol;

int totrows;

int totcols;
} sparsematrix:

/* Program to store sparse matrix as a linked list */

#define MAX] 3
sdefine MAXZ 3

/* S5tructure Tor col headnode */
struct cheadnode
{
int coing -
struct node *down
struct cheadnode *next
bl
i* Structure for row headnode */
struct rheadnode
{
int rowng
struct node * right ;
struct rheadnode *next

}

/* Structure for node to store element */
struct node
{

int row ;

int ¢ol

int val :

cstruct node *right

struct node *down

123
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/* Structure for special headnode */
struct spmat
{

struct rheadnode *firstrow .
struct cheadnode *firstcol :
int noofrows ;
int noofcols

o

struct sparse
{
int *sp
INL FOW
struct spmat *smat
struct cheadnode *chead[MAXZ]
struct rheadnode *rhead[MAX1] :
struct node *nd

}o:

vold initsparselstruct sparse *) ;

void create array(struct sparse *) .

woid display(struct sparse) ;

int count(struct sparse) ;

vold create tripletistruct sparse *, struct sparse)

vold create_lTististruct sparse *) .

wold insert(struct sparse *, struct spmat *, int. int. int) ;
void show_11ist(struct sparse) :

void delsparse(struct sparse *) ;

void main{ )
{
struct sparse sl. s¢

clrscrl )

initsparse(&sl) :
initsparse(&sZ) ;

create_array(hsl)

printf{*\ntlements in sparse matrix: ") .



Polynomials and Sparse Matrix

displayisl) :
create triplet(idsd, s1) ;

create 11ist(&s2) ;
printf{ “\minInformation stored in linked list @ 7)
show 111st(s2) ;

delsparse{&sl) :
delsparse (&s2)

getchi )} :
}

f* Initializes structure elements */
vold initsparse(struct sparse *p)

{ .
int i ;
/* Create row headnoges */
for{i =0 ; 71 = MAX] ; i++)
p -» rhead[i] = (struct rheadnode *} mallocisizeof(struct rheadnode)) :

/* Initialize and 1ink row headnodes together */
for(d1 = 0 : 1 < MaX1 - 1 : 1++)

{
p -> rhead[i] -> next = p -= rhead[1 + 1] ;
p -= rhead[i] -= right = NULL :
p -> rhead[i] -> rowno = 1 ;

}

p -> rhead[i] -= right = NULL
p -> rhead[1] -» next = NULL ;
i* Create col headnodes */
for{i =0 ; 3 < MAXL ; i++)
p == chead[i] = {struct cheadnode *) malloc{sizeof(struct cheadnode)) .

/* Initialize and link col headnodes together */
for{i = 0 ;1 < MAXZ - 1 . 1++)

{
p -> chead[i] -> next = p -» chead[i1 + 1] :
p -= chead[1] -= down = KULL :
p -> chead[i] -> colno = 1

}

p -> chead(i] -> down = NULL :
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p -> cheadli] -> next = NULL ;

/* Create and initialize special headnode */
p -= smat = (struct spmat *) malloc(sizeof(struct spmat)) .

p -> smat -> firstcol = p -> chead[0] ;
p -> smat -> firstrow = p -> rhead[0] :
p -> smat -> noofcols = MAXZ .
p -> smat -> noofrows = MAX] .

}

/#* Creates, dynamically the matrix of size MAXI x MAXZ */
void create array(struct sparse *p)

{

intm, 1 ;
p->sp = {int *) malloc(MAXL * MAXZ * sizeof{int}) :

/* Get the element and store it */

for(i =0 : 1 < MAX1T * MAXKZ : j++)

{
printT{“knter element no. %d: . i) :
scanf{~¥d”, &n) :
¥p->5p+1)=n;

}

}

/* Displays the contents of the matrix */
void display(struct sparse s)

'i

int 1

/* Traverses the entire matrix */
ford{i = 0 ¢ i = MAX] * MAXZ - J++)
{
/* Positions the cursor to the new line for every new row */
11 & MARZ == (0}
printf{™\wn") :
printf{"Xd\t™. *(s.sp + 1)} :
}
!

/* Counts the number of non-zero elements */
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int countistruct sparse s}

{

int ct =0, 1

for{i = 0 : 1 = MAXL * MAXZ : q4+)

{
if{*(s.5p + 1) = 0)
ct++
}
return cnt ;

)

{* Creates an array of triplet containing info, about non-zero elements */
vold create triplet(struct sparse *p, struct sparse s)

{

intr=0 ., c=-1.1=-1,1:

po-=row=count { s )
p-=5p = (int *} mallocip -=> row * 3 * sizegpf(intl})

for(i = 0 ;1 < MAXL * MAX2 © 1++)
{

e o

/* Sets the row and colusm values */
TFE00T & MAXZ) = ) &&(1 '= (1))

{

r++
c=10:
!

f* Checks for non-zero element. Row, column and
non-zero element value s assigned to the matrix */

if(*(s.sp + 1) =0}

{
14+ -
*p->sp+1l)=r
T4+ -
*p-=sp+ 1) =10 ;
1+

*Hp -=sp+ 1) = *s.5p o+ i),
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}
}

/* Stores information of triplet in a linked 1ist form */
void create 11ist(Struct sparse *p)

{
int j=0, 9 ;
for{i =0 : 1 <p ->row; i+, j+= 3)
insert(p. p -» smat, *(p -=sp + j), *(p ->sp+j+1).
*p->s5p+J+2));
}

/* Inserts element to the list */

vold insert{struct sparse *p, struct spmat *smat , int r, int c.

{
struct node *templ. *tempZ .
struct rheadnode *rh ;
struct cheadnode *ch
int i, J ;

/* Allocate and initialize memory for the node */

p -> nd = (struct node *) malloc(sizeof(struct nodel) .
p->nd ->col =c :

p->nd ->roWw=r

p->nd -=val = v ;

f* Get the first row headnode */
rbh = smat -= firstrow :

/* Get the proper row headnode */
for(1=0.1<r ; i++)

rh = rh -> next ;
templ = rh -> right :

f* If no element added in a row */
if(templ == NULL)
{
rh == right = p == nd :
p -> nd -> right = NULL ;
}

else

int v}

Copyrighted material
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{
f* Add element at proper position */
while((templ != NULL) && (templ -= col < ¢))
{
temp2 = templ
templ = templ -> right :
|
tempZ -= right = p - nd :
p -=nd -= right = NULL :
I

f* Link proper col headnode with the node */
ch = p -> smat -> firstcol ;
for(j =0 J<c: j++)
ch = ch -= next ;
templ = ch -> down

/* 1T col not pointing to any node */
if(templ == KULL)

{
ch == down = p -=nd :
p ->nd -> down = NULL ;
}
else
{

{* Link previous node in column with next node in same column */
while(({templ != NULL) &% (templ -> row < r))
1
temp2 = templ ;
templ = templ -> down
}
tempZ -> down = p -> nd :
p-=nd -> down = NULL :

}

void show_11ist{struct sparse s)

{

struct node *temp ;

/* Get the first row headnode */
tnt ¢ = 5 smat -> noofrows

nt 1 ;
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printf("\n"}

for(i =0 ; 1 <r ; 7++)
#
temp = s.rhead[1] - right ;
if{temp != NULL)
{
while{temp -> right '= MULL)
{
printf({"Row: Ed Col: %d Val: %dwn™. temp -= row.
temp -> col, temp -> val) ;
tempy = temp -= right :
}
if{temp -> row == i)
printf{"How: ¥d Col: 2d Val: 3d\n™ . temp -> row,
temp -= col, temp -= val) :

/* Deallocates memory */
void delsparse(struct sparse *p)

{

int r=p -= smat -> noofrows .

struct rheadnode *rh o

struct node *templ. *tempd
int 1, ©

f* Deallocate memory of nodes by traversing rowwise */
for{fi=r-1,1210:1--)

{
rh = p -> rhead[i]
templ = rh -> right
while(templ '= MULL)
{
tempd = templ -> right :
free{templ) :
templ =~ temp? :
}
]

* Dedllocate memory of row headnodes =/
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for{i=r-1.:1>={; 1i--})
free{p -= rheadfi]) :

/* Deallocate memory of col headnodes */
c =p ->smat -> moofcols ;
for{i=c¢c-1;i>=0;i--}

free(p -= chead[i]) ;

!

The program above first creates the matrix of size MAX] x MAXZ. The variable 51 of type struct
sparse holds this matrix. The function triplet contains the information about the non-zero elements of
the matrix. The variable s2 stores the triplet. The create_list () function stores the information in the
form of linked list.

To add nodes in the linked list the create_list function calls the imsert() function. The number of
iterations of for loop depends on the number of rows in the miplet.

The insert() function accepls a pointer smat to the special node, the row number r, column number
., and the value v of the non-zero element. The new node is created by nd. Then, the row, col and val
of this node has been initialized. To place this node in the rowlist at a proper position we need to know
the first row of head node. This we have retrieved from the field firstrow of smat. To get the proper
row head node for the node nd the following statements have been writlen:

for(i = ;1 < r; i++)
rh = rh — next;

The statement templ = rh — right; stores the address of first row., [f the rowlist is empty then
templ would be NULL. If not, then the node nd is the first node in the rowlist and the field right would
be made to point to the node nd. If templ is not NULL then the last node in the rowlist is found out.
The node in the rowlist whose right field stores NULL and column number stored in col is less than the
column number of nd, would be the last node. The right field of that node would point to node nd.

This new node nd should also be linked with proper column head node. The first column head node
is known by smat, The proper column head node ch is retrieved through a for loop. The down field of
ch gives the address of the node, which is the first node in the columm list. If column list is empty then
templ would be NULL. If this is the case then nd would be the first node in the column list and field
down of ch would be made to point to the node nd.

Again if temp1 is not NULL, the list is traversed to get the last node in the list. The node in the column
list whose down field stores NULL value and row number stored in row is Jess than the row number of
nd would be the last node.

The show_list() function reads and displays the data stored in linked list. First, the list is traversed
rowwise, by doing so we know about the total number of row head nodes in the list. This is retrieved
from the member number of rows of smat. A for loop runs for r umes where ris number of rows. In
every iteration of for loop. a rowlist is traversed with rhead[i] till we get a node whose nght field is
NULL and thus displays the data of each node in the row list.

REPRESENTATION OF COMPLEX NUMBERS

The ability to create a composite data structure is supported by C/C++ programming languages through
the vse of stroctures. A structore is a collection of one or more vanables that are grouped together under
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a single name. Thus, a structure allows a group of related variables 1o be treated as a unit instead of
separate entities. A structure is declared as follows:

struct
{
member list;
} structure name;
where member list is any valid list of vanable declarations, and structure name is the variable given to the
structure,

As an example, consider complex numbers. C/C++ do not provide a built-in data type for representing
complex numbers. A complex number contains a real and imaginary part, it makes sense to group two
parts of such a number together when using them in a program.

The structure defined for a complex number can be:

struct
{
float real;
float imaginary;
} complex_num;
To gain access to individual structure members, a structure membership operator must be used, For

example:
complex_num.real = 3.2;
If we are given the address of structure variables, then the structure membership operator used
will be:
(&complex_num) — real = 3.2;
“Both the statements given above will assign the real pant of the complex_num to the value of 3.2.

Summary
Each term in the polynomial expression consisis of two parts—a coefficient and an exponent. |
The simplest way to represent a polynomial of degree “n” is to store the coefficient of (n+1) |
terms of a polynomial in an array. .
Sparse matrix can be defined as a matrix with maximum number of zero entries.
A sparse matrix can be stored in the memory using 3-stuple method. Using this method, only the |
non-zero entries from the given mairix are stored in three tuples—row, column. and value. '
The ability to create a composite data structure is supported by C/C++ programming languages
through the use of structures. A structure is a collection of one or more variables that are
grouped together under a single name. '
' &% A siructure allows a group of related variables to be treated as a unit instead of separate
entities.

BB BE

*
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Muitiple Choice Questions

1. Sparse mairices are represenied using
a. singly linked list where each node contains non-zero elements of the matrix
b. circular linked list for each row and column with each row corresponding 1o non-zero elemenit.
€. @ binary tree
d. a doubly linked list
2. A complex number contains
a. a tangible and an intangible part
b. a real and an imaginary pan
€. a decimal and a fractional part
d. MNone of the above
3. An eclement of sparse matrix consists of integers
A two
b. three
C. six
d. ten

4. A sparse matrix is one where most of its elements are

a. even
b. prime
. FETD
d

. odd

Fill in the Blanks

1. Polynominals in memory can be represented by lists.

2. For representing polynomial in memory using linked List each node must have hields.
3. A polynomial is made of different terms each of which consisiz of a and

4. A sparse matrix with zero entries in its diagonal either in the upper or lower side is known as

State whether True or False
1. A polynomial in two variables can be represented as a linked list of structure.
2. The index function can be uwsed o represent polynomials in computers.
3. Index function gives the sequential location of an array entry.
4. A sparse matrix cannot be stored in the memory using 3-tuple method.

Descriptive Questions

. Define polynomial as an Abstract Data Type. Write a ‘C" function to multiply two polynomials and to
return the product.

2. Write "C’ ﬁmcumsmaddmdmu]uﬂymm]rgemwgmwhmhmnmhmmmadhyhﬂt—mdam
Lypes.
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. Implement the following complex ADT vsing the “C" programming language. The complex ADT is used
o represent complex numbers of the form 2 = o+ i where o and B are real nombers and i is the imaginary

number, The operations supported by this ADT are;
L Addition (z1, 22},

[Mote: o, + iB,)+ (o + i) = (o, + @)+ 0 (B, + Bs)]
iL Subtraction {21, 22}
[Mote: qer, — iB,) — (e, — iBy) = (o, — o) i (B, - B]

. Write a "C" function to compute the product “C" of two sparse matrices ‘A" and “B’ represented as ordered
hists instead of two-dimensional arrays. To compute one element in "C” dot product of one row of A" and
ome column of “B* is to be evaluated, for this purpose, compute the transpose of B first. Now each row in
transpose of "B’ corresponds 0 a column in B, B" now can be used for efficient multiphication.

5. Develop an ADT specification for “Polynominals”. Also include the operations associated with

polynominals,

Suggest 3 suitable data structure for representation of imaginary numbers. An imaginary number is
represented by a+ib where i is the iota for the number, Also give specification for the operation associated
with them,
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Stacks

Key Features T _ )
his chapter explores one of the most im-

introduction to Stacks portant data structures—>Stack. The stack has

#
& Stack as an "?"b“ra“mu Type been defined as an abstract data type which
% Representation of Stacks through Arrays serves as a concrete and valuable tool for

Representation of Stacks through Linked Lists problem solving.

. ?ggic:ﬁ?ﬁzi?;f Astack isa IinE:.l.r_ data structure where all the
insertions and deletions are done at end rather
than in the middle. A stack can be implemented by using both arrays and hnked lists.
The main application of stack is in the conversion and evaluation of expressions in Polish Notation—
Infix, Prefix and Postfix. This chapter will also highlight the relation of stacks with recursion.

}.

]_

INTRODUCTION TO STACKS

The linear data structures—linked lists and arrays—allow us to insert and delete elements at any place in
the list, at the beginning, at the end, or in the middle. In computer science we may COme ACTOSS
situations, where insertion or deletion is required only at one end, either at the beginning or end of the
list. The suitable data structures to fulfil such requirements are stacks and queues.

A stack is a linear structure in which addition or deletion of elements takes place at the same end.
This end is often called the top of stack. For example, a stack of plates, a stack of coins, elc, As the
items in this type of data structure can be added or removed from the top, it means the last item to be
added to the stack is the first item 10 be removed. Therefore stacks are also called Last In First Out
(LIFO) lists.

STACK AS AN ABSTRACT DATA TYPE

Stacks can also be defined as Abstract Data Types (ADT). A stack of elements of any particular type is
a finite sequence of elements of that type together with the following operations:

l. Inmitialize the stack to be empty.
2. Determine whether stack is empty or not.
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3. Determne if stack is fall or not.

4, If stack is not full, then add or insert a new node at one end of the stack called top. This operation
is called push.

5. If the stack is not empty, then retrieve the node at its top.

. If the stack is not empty, then delete the node at its top. This is called pop.

The above definition of stack produces the concept of stack as an abstract data type. The basic
operations that can be performed on stacks are—push and pop.

REPRESENTATION OF STACKS THROUGH ARRAYS

Stacks can be represented in the memory through arrays. To do this job we maintain a linear array
STACK, a pointer variable TOP which conains the location of top element. The vanable MAXSTACK
gives the maximum number of elements held by the stack. The TOP = 0 or TOP = NULL will indicate
that the stack is empry.

Figure 6.1 shows array representation of a stack. The TOP is pointing to 3 which says that stack has
three items and as the MAXSTACK=8, there is still space for accommaodating five items.

§
ITEM 1 | TTEM 2 | ITEM 3 |
1 2 3 4 5 6 7 "
TOP T MAXSTACK ! I

Fig. 6.1 Array Representation of a Stack

The operation of adding (pushing) an item onto a stack and the operation of removing (popping) an
itemn can be implemented using the FUSH and POP functions.

[Note: Sometimes when a new data is 1o be nseried into a dita strecture but there is no available space: the situation
is called OVERFLOW, On the contrary, if one wants to delete data from the data structure that is empty then the situstion
is called UNDERFLOW.]

/*Program implements stack as an array */

# include =<stdio.h=
# include <comio.h=

# define ARR 10

Struct stack

i
int a[ARR] ;
int top :
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void init_stack(struct stack *) ;
void pushistruct stack *. int item)
int paop{struct stack *) ;

void maind )

{

struct stack s
int 1 :

clrser( ) -
init_stack(&s) .

push(&s. 8) :

push(&s. 20) :
pushibs. -4)
pushi{&s. 15} :
push(ds, 18) :
pushi&s, 127 :
push{ds. 16} :
pushi{&s, 25) ;
pushi&s, 0} ;

push(&s, 10} ;
push(&s. 5) :

i = pop{&s) ;
printf{"\n\nitem popped: ¥d", 1) .

i = pop(hs) :
printf{ " \nltem popped: ¥d". 1)

i = pop{&s) ;
printf({“\nitem popped: ¥d°. 1) :

i = popl{&s) .
printf{“\nltem popped: Id™. 1) :

i = pop(&s) ;
printf{“\nltem popped: &d™. 1)

getchi )
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/* Initializes the stack */
void init_stack{struct stack *s)

{
}

/* Adds an element to the stack */
void pushistruct stack *s, nt item)

5 -= top = -1

{
if{s -= top == ARR - 1)
[
printf( \nStack 1s full.™})
return
5 -» top+
§ -=> g[s ->top] = item ;
}

J* Removes an element from the stack */
int pop{struct stack *s)

{
nt data :
it{s -> top == -1)
{
printfi \nStack is empty.”)
return NULL
i
data = 5 -= als -> top]
5 ->= top-- ;
return data
}

A structure stack has been defined as follows:

struct stack

1
int a[ARR]:
int top:

}

The puash(} and pop{) functions are used to insert or delete elemenis from the top of the stack. The
clements are actually stored in the array. The varable top is an index into that array. The insertions and
deletions are done with the value of top in the array. To begin with, the stack is empty, the top is set to
a value —1, by ininalizing the stack with init_stack function.
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In our case, as the array holds 10 elements, therefore, stack would be considered full il the value of
top becomes 9 and il in such a case an element is added, the message *Stack is full’ is given to the user.
The push{() function in main() has been called 1o add 11 elemenis o the stack. The value of top would
become 9 after adding tenth element. as a result of which, the eleventh element would not get added 1o

the stack.
The pictorial depiction of pushing elements in stack is given in Fig. 6.2,

Push [} Push E

1] B

(B]
cC C
B B
A A

Fig. 6.2 Pushing Elements in Stack
Figure 6.3 gives the pictorial depiction of popping elements from stack.

Pop E Fop D

(’—\

ﬂ-ﬂ?nﬁm)

lE(ag
L

-'!||
Fig. 6.3 Popping Elements from Stack

REPRESENTATION OF STACKS THROUGH LINKED LISTS

The stack can also be implemented using linked lists. The armay representation of stack soffers from the
drawbacks of the array’s size, that cannol be increased or decreased once it is declared. Therefore,
either much of the space is wasted, if not used, or, there is shortage of space if needed.

The stack as linked list is represented as a single linked list. Each node in the list contains data and a
pointer to the next node. The structure defined to represent stack is as follows:

struct node

{
int data:
node *next:
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The pictorial depiction of stack in linked list is given in Fig. 6.4

TOP

Links to
next node

e

A
Fig. 6.4 Stack as a Linked List

f*  Program implements linked list as a stack. */

# include <stdio.h=
# include =conio.h=
# include <alloc. b=

f* Structure containing data part and 1ink part */
struct node
{
int data .
struct node *Tink
} :
void pushistruct node **, int} ;
int pop{struct node **) .
void delstack{struct node **) .

void maing )

{
struct node *s = NULL
it 1 :
clescri )

pushi&s, 100
pushiks, 197 ;
pushi&s, 1) ;

pushi&s, 20)
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pushiks, 32} :
pushi{gs, 15) :

1 = popl{hs) ;
printf{~\nltem popped: %d". i) ;

i = poplhs) ;
printf{ " \nitem popped: ¥d". 1) ;

1 = pop{&s) :
printf{ \nltem popped: *d", i)

delstack{hs)

getch{ ) .,
}

f* Adds a new node to the stack as linked 115t */
void pushistruct node **top. int item)

{
struct node *temp ;
temp = (struct node *) malloc(sizeof(struct nodel})
if{temp == NULL)
printfi wnStack is full.”™) ;
temp -> data = item ;
temp -= link = *top ;
*top = temp ;
}

/* Pops an element from the stack */
int poplstruct node **top)

{
struct node *temp |
int item ;
if{*top == NULL)

{

printfi™\nStack 1s empty.”)
return NULL
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}
temp = *top :
item = temp -» data ;
*top = (*top) -> link :
free(temp) .
return item

}

f* Deallocates memory */
void delstack(struct node **top)

{
struct node *temp .
if{*top == NULL)
return ;
while{*top = NULL)
{
temp = *top ;
*top = (*topi -> link ;
free (temp) :
}
}

In the program given above, a structure node has been designed. The variable s is used to point to the
structure node. To make the stack empty NULL 15 assigned to 5. The push{) creates a new node
dynamically.

After creating the node the pointer s should point to the newly created item of the list. Hence, the
address of this new node is assigned to s using the pomter top.

To remove the node from the stack popi) function bas been used. If the stack is not empty the
topmost item gels removed.

The pictorial depiction of pushing into stack using linked list is given in Fig. 6.5,
Figure 6.6 gives the pictorial depiction for pop operation from the stack using linked list.

APPLICATIONS OF STACKS
Stacks are frequently used in evaluation of arithmetic expressions.

Reversing a List

A simple example of stack application is reversal of a given list. We can accomplish this task by pushing
each character onto the stack as it 18 read. When the line is finished, characters are then popped off the
stack—they come off in reverse order as shown i Fig. 6.7,



o[ ]
A B
Push *C’
op [
C A B
Push ‘D"
TOP[ |
3 C A

B

Fig. 6.5 Pushing an Element into Stack using Linked List

TOP
D C A
Pop ()
TOP
C A B
Pop ()
TOP
A B
Fig. 6.6 Popping an Element from the Stack using Linked List
Polish Notations
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The process of writing the operators of an expression either before their operands or after them is called
the Polish Notation. This notation was imtroduced by Jan Lukasiewicz. The main property of Polish
Notation is that the order in which operations are to be performed is ascertained by the position of the

operators and operands in the expression.
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Push A in empty stack | 4 | Now
Push B (‘\
B Pop E €]
A

b= pli=]

Push © (—\

Pop D

|y

=53

Push [ (r-\

D PopC | C
C B

B A

A

Push E (_\'

E PopB | B
D A

C

E Pop A

End of lne
Fig. 6.7 Reversing a List

The computer system can understand and work only on binary paradigm, it assumes that an arithmenic
operation can take place between two operands only, For example, A+B, CxD, VA, etc. Usually an
arithmetic expression may consist of more than one operator and two operands, for example, (A+B = C{DY
(J+D)). These complex anthmetic expressions can be converted into polish sirings using stacks which
can then be executed in two operands and an operator form.

The notation refers to these complex arithmetic expressions in three forms:

= If the operator symbols are placed before its operands, then the expression is in prefix
notation.

* If the operator symbols are placed after its operands, then the expression is in postfix
notation.

= If the operator symbols are placed between the operands then the expression is in infix notation.
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Table &.1 Motations

Infix Motarion Prefix Notation Pasific Netarion
A+ B + AB AB +

A-C)*B * - ACH AC-B*
A+={R*0C) + & * BC ABC * &

(A +BWC -1 f+ AB-CD» AB+CD -/

(A + (B *CHiC - (D * Bj) f+ A*BC-C*DB ABC*+ CDB* -/

Conversion of Infix to Postfix Expression

While evaluating an infix expression, there is an evaluation order according to which the operations are
executed:

* Brackets or Parentheses

» Exponentiation

= Multiplication or Division

* Addition or Subtraction

The operators with the same prionty (e.g. * and /) are evaluated from left to right.
The steps to convert infix expression to postfix expression are as follows:

(i} The actual evaluation 1s determined by inserting braces.
{ii} Convert the expression in the innermost braces into postfix notation by putting the operator after
the operands.
(i} Repeat the above step (1) until the entire expression 5 converted into postiix notation.

Algorithm to Convert Infix Expression to Postfix Expression

The algorithm transforms the infix expression A into equivalent postfix form B. The algorithm uses
stack to temporarily hold operators and left parentheses. The posifix expression B will be constructed
left o right using operands from A and operators which are removed from STACK. We begin by
pushing left parenthesis onto STACK and adding a nght parenthesis at the end of A. The algorithm is
finished when STACK is empty.

The algorithm is as follows:

Push left parenthesis “{™ onto STACK and add right parenthesiz )" to the end of A.
Scan A from left to right and repeat steps 3 to 6 for each element of A until the stack is empty.
If an operand is encountered, add it to B.
If a left parenthesis 15 encountered push it onto the stack.
If an operator is encountered then
a. Repeatedly pop from the STACK and add to B each operator {on the top of stack) which has
the same precedence as or higher precendence than operator.
b. Add operator 1o STACK.

Lh e L D e
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f. If a right parenthesis is encountered, then:
a) Repeatedly pop from the STACK and add to B each operator {on the top of STACK ) until a left

parenthesis is encountered.
b) Remove the left parenthesis. (Do not add left parenthesis 1o B)
7. Exit
For example, consider the following arithmetic infix expression.
A A+ (B*C-{D/ETF 3} *~ @G5} * H )
1234686 780 101112 13 44 15 16 17 18 18 20
A:A+{B*C—{D/ETF)"GJ*H)

The elements of A have now been labelled from left to right for easy reference.
Table 6.2 shows the status of STACK and of the Postfix string B as each element of A is scanned.

I. Each element is simply added to B and does not change STACK.

2. The subtraction operator (-} in row 7 sends * from STACK to P before it () is pushed onto the
STACK.

3, The right parenthesis in row 14 sends T and then / from STACK to B, and then removes the left
parenthesis from the STACK.

4. The right parenthesis in row 20 sends * then + from STACK to B and then removes the left
parenthesis from the top of STACK.
After step 20 is executed, the stack is empty

Table 6.2 Evaluation of an Expression from Infix to Postfix using Stack

Symbal Scanned Sheack Expression
1. A { A
2 + [+ A
3, i [+ A
4, B [+ AB
5. * (+(* AB
A, C (+0(* ABC
T, - {+{= ABCH*
8 { {+{=1 ABCH
9, D (+0=i ABC*D
o, (+{=0f ABC*D
11. E (+{=0f ABC*DE
122 T (+{-0/T ABC*DE
13 F (e{=(/T ABC*DEF
4. ] {+4- ABC*DEET/
15. * {4(=* ABC*DEFT/s
la. G (+({~* ABC*DEFT/G
17. } [+ ABC*DEFT/G*-
18. " (+* ABC*DEFTIG*-
19, H {+* ABC*DEFTIG*-H
)

20, - ABC*DEFT/G*-H"s




MProgram to convert infix & postfix expression®/

#Finclude<stdio.h>
#include=conio. h=
#nclude<string. h>
#include<ctype . h>
fFinclude<stdlib. h=
#Finclude=graphics h>
#include<al ioC, he

f MACROS

#define ENTER “\0°
#define BLANK ~ °
#define TAB "\t~

edefine MAXLENGTH &4
#define empty (-1)
#define operator {(-10)
#define operand (-20)
gdefine leftparen (-30)
#define rightparen (-40)

f* SYMBOL PRECEDEMCE */f

fdefine Jeftparenprec 0
#define addprec 1
#define subprec 1
gdefine multprec 2
#define divprec 2
gdeting remprec 2
#define none 999

void read _input(void);

votd infix to postfixivoid):
void write output{void):
void pushichar symbol):

char poplvoid):

tnt get typelchar };

int get_preci(char };

int white spacei{char };

void full_stack{):

void empty_stack():

147
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char infix[MAXLENGTH+1], stack [ MAXLENGTH] . post 1 x[MAXLENGTH+1]:
static int top;

static char *symbols="()+-%*/":

void maing)

{
int gdriver=0DETECT, gmode:
char choice;
initgraph( &adriver, &gmode, w:\\software\\bgi~}:
normyideo():
primt VRN ELVELE seedecce NOTATIONS =seo====inin"):
do

[
top=empty :
flelrsorl ),
read_input{):
infix_to postfix():
write output{):
printf{"\n\n Do You Wish To Continue [y/n] : 7):
choice=getchi ) ;
printT{"\n");
twhile(choice=="Y" || choice=="y");
getchi):
}
void infix_to_postfix({void)
{
int 1,p.len, type. precedence;
char next:
=p=(;
len=strloen{infix):
whileli<len)
{
if(lwhite space(infix[i]))
{
type=get _type(infix[i]).
switch{type)

{

case leftparen:
push{infiz[1]};
break ;

case rightparen:
while((next=pop{})!="(")
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pastfix[p++]=next:
break ;

case operand:
postfiz[p++]=infix[i];
break .

Cdse operator:
precedence=get_prec{infix[i]):
while(top=empty && precedence<=get prec(stack[topl))
post fix[p++J=pop();
pushiinfix[i]):
break

}
T++;

}

whi le{ top=empty )
postfix[p++]=pop(};

postTix[p]=ENTER;
}
int get typel{char symbol)
|
switchi{symbol)
{
case (" : return{leftparen);
case "} ¢ return{rightparen):
Ccase '+
case -
case "% :
case "% .
case /.
return(operator);
default : return{operand):
!
}

int get_precichar symbol)
{
switchisymbol )
{
case "+ return{addprec).
case "= @ returni{subprec):
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‘case '* . return(multprec):
case '/ : return{divprec);
case ‘%" . return{remprec);
case (7 : return{leftparenprec):
default : returninone);
}
}
void pushichar symbol)
{
1T {top>MAXLENGTH)
full stack():
else
stack[++topl=symbol;
]
char pop(void)
{
if{top<=empty)
{
printf(“\n Sorry. Stack Is Empty 'wn”):
exit(2):
}
glse
return{stack[top--]):
}
void full _stack{void)
{
printf{"\n Sorry. Stack Is Full !'\n"):
exit(l);
}
void empty stack(void)
printf("\n Sorry., Stack Is Empty ''n™):
exit(2);
}
/ fREAD
void read_inputivoid)

{

Copyrighted material
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printf{~“\n Enter The Infix Upto ¥d Characters Only : ~  MAXLENGTH):
gets(infix);

!

JIWRITE

void write_output{void)

{ printf("\vn Infix : 257 infix).
printfi"\n Postfix @ Is7,postfix);

}

JIWHITE SPACE

int white spacel(char symbol)
{

}

Evaluation of Postfix Expression

In an infix expression, it is difficult for the machine to keep track of precedence of operators. On the
other hand, a postfix expression itself determines the precendence of operators (as the placement of
operators in a postfix expression itself determines the precedence of operators). It is easier for a machine
to execute a postfix expression than an infix expression.

As postfix expression 15 without parentheses and can be evaluated as two operands and operator at a
time, this becomes easier for the compiler and the computer to handle. Evaluation rule of a postfix
EXpression states:

"While reading the expression from left to nght, push the element into the stack if il 1s an operand;
pop the two operands from the stack, if the element is an operator (except NOT operator). In case it is
NOT an operator, pop one operand from the stack and then evaluate it (two operators and an operand).
Push back the results of the evaluation. Repeat it till the end of stack™.

return(symbol==BLANK || symbol==TAB || symbol==ENTER):

Algorithm for Evaluation of Postfix Expression
M* Reading the expression takes place from left to right */
1. Read the next element /™ first element for first time */
2. If element is operand then:
i. Push the element in the stack
3. If element is operator then
i. Pop two operands from the stack /* POP one operand in case of NOT
operator */
ii. Evaluate the expression formed by the two operands and the operator.
iii. Push the results of the expression in the stack end.

4. IF no more elements then
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i. POP the result
el
goto step |

For example, evaluate the postfix expression
AB+CxD/iTA=2 C=4 D=3, starting from left to right.
1. First element is operand A, push A into the stack.

A Stack

2. Second element is also operand B, push B also into the stack.

B
A

3. The third element “+° is an operator, pop 2 elements from the stack, i.e. A and B and evaluate the

CXPrEssIon,
(_D,, 5 /?m

H
A A

Stack empty

Evaluating =A+B
=2+3
Fesult =5
4, Push the result, 1.e. 5 nto the stack.

.

5. Next element C is operand; push it into the stack.



C
5

6. MNext * is an operator, pop 2 operands from the stack, i.e. 5 and C and evaluate

(}pﬂ

C
5

Evaluating =5xC
=5.‘;||:.4
= 20}

7. Push the result 20 into the stack.

T

20

8. Next ‘D) is operand; push it into the stack.

9. MNext /" is an opérator.

oo

D
20

10. Pop 2 operands and evaluate.

Evaluating = 20VD = 2065 = 4,

20

m:u

20

11. End of expression, thus, the result is 4.
/* Program to evaluate postfix expression */

#include=math . h=

Stack empty

Stack empty
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#includes<string. h>
#Finclude<stdio. b
#include<conio. h>

#define MAX 30
#define OPERAND 10
#define OPERATOR 20

typedef struct prexp

{

int top:

int stack[MAX]:
lstck:;

void init{stck *);:

void push{stck *.int);

int popi{stck *):

void eval({stck * char.int.int);
void main()

{

char pos[MAX]:

int numl,num?.item,1.1.pr;
stck stk

fflush(stdin}:
clrscr();

init{stk);
printf("Enter the postfix expression : 7);
gets(pos);

for(i=0;pos[i]'="%0";i++)

{
if(pos[i]==" "||pos[i]=="\t")
continue;
switch{gettype(pos[i1]}}
{

case OPERAND: item=pos[i]-70";

push{&stk.item);
oreak:

Copyrighted material
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case OPERATOR:muml=pop(&stk):
numZ=popl{&stk):
eval(&stk,posli].nume numl) ;
}
}

printfi ¥d” stk stack[0]}:
geteh():
}

void init{stck *st)

st->top=-1:
i

void pushi{stck *st.int num)
{
st->top++;
st-=stack[st->top]=num;
}

int pop{stck *st)
{
int num:
num=st ->stack[st->topl:
st->top--; '
return num:

}

void eval(stck *st.char op,int numl,int num2)
{
int res:
switch{op)
{
case "+ :res=snuml+nume
break ;
case - :res=numl-numé;
break :
case "% :res=numl*num?;
break:
case "/ :res=numl/num2:
break:

Copyrighted material



Data Structures Using C

case "% :res=numlinum?:
break ;

case "% :res=pow{numl.numz);
break ;

}

push{st,res);
]

int gettype{char c)
{
switchic)
{
case
case ’
case
case
case :
case "% :return OPERATOR.
default:return OPERAND;
}

,

P

}

Converting an Infix into Prefix Expression

Algorithm to Convert Infix to Prefix Form

Suppose A is an arithmetic expression written in infix form. The algorithm finds equivalent prefix
expression B,

Push ° )" onto STACK, and add “( * to the end of A.
Scan A from right to left and repeat steps 3 to 6 for each element of A until the STACK is empty.
If an operand is encountered add it to B.
If a right parenthesis is encountered, push it onto stack.
If an operator 15 encouniered then:
a. Repeatedly pop from STACK and add 10 B each operator (on the top of STACK) which has
same or higher precedence than the operator.
b. Add operator to STACK.
6. If a left parenthesis is encountered then
a. Repeatedly pop from the STACK and add to B (each operator on top of stack until a left
parenthesis is encountered.
b. Remove the left parenthesis.
7. Exit
Forexample, ASB*C-D+E/F/M(G+G)

il
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Table 6.3  Evaluation of an Expression from Infix to Prefix using Stack

Svmibal Scanned Stack Prafix Exprezzion
I )
G ] G
+ b a
i I+ GG
{ Empty + iy
! ! + GG
F ! F + GG
f i F+ GO
E i EF + GG
* " i EF « GG
[B] + D i EF + GG
- + — D i EF + G
C + = CD /' EF + GG
. s CD iV EF + GG
B + = BCD if EF + GG
i +-*3 BCD i EF + GG
A +—*5 ABCD I EF + GG
Empty 4+ =*% ABCD ¥ EF + GG

/* Program to convert infix expression to prefix expression */

#include<stdio h>
#include<conio . h>

#define MAX 30
#define OPERAND 10
#define QOPERATOR 20
#define LEFTPARA 30
#define RIGHTPARA 40

typedef struct prestk
{

int top:

char stack[MAX]:
1stack:

void init{stack *);

vo1d pushistack *,char}:
char poplstack *);

int getprecichar);

int gettypelchar):

void maing )



Data Structures Using C

stack stk;

char inf[MAX] ch, pre(MAX]:
int 1.1.k=0.pr;
frlushi{stain};

clrscr():

init{&stk);
printf(" Enter the infix expression :7):
getsiint);
|=strlen{inf}:
for(i=]-1:{==0:7--)
{
switchi{gettype(inf[il1})
'i
case OPERAND:prelk++]=inf[i];
break ;
case OPERATOR:pr=getprec({inf[i]};
while{pr<getprec{stk.stack[stk_top])&&stk. top!=-1}
prelk++]=pop(&stk)
push{&stk, inf[i]);
break ;
case RIGHTPARA:push{&stk.inf[1]):
break
case LEFTPARA:whilel (ch=pop{&stk)})!=")")
pre[k++]=ch;

)

while{stk.top!=-1)
pre[k++J=pop(&stk);
prefk]="\";
strrevipre):
puts{pre):
getchi )

!

yoid init{stack *st)

{
]

void pushistack *st.char c)

st->top=-1;



st -=top+:

st-»>stack[st->top]=C:

}

char papistack *st)

{

char c;

c=st-=stack[st-=top]:

st->top--;
return C:

}

int getprecichar )

{

switeni{c)

{

Case
Case

case

Ccase
case
Case
Casze

}

"1 return O

+

creturn 1

return 2;
rreturn 3

o S e W
' ' '
[

int gettypei{char )

i

switchic)

4
case

case

Casge
Ccase
Case
Case
Case
Case

- %

+

‘4" :return OPERATOR:
[ return LEFTPARA:
1" :return RIGHTPARA:

default :return OPERAND:

}

159
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Evaluation of Prefix Expression

Algorithm for Evaluation of Prefix Expression
M Reading the expression takes place from right to left #/

1. Rend the next element
2. If element is operand then
. Push the element in the stack

3. If element is operator then

.. Pop two operands from the stack
ii. Evaluate the expression formed by two operands and the operator
fi. Push the results of the expression in the stack end

4. 1 no more elements then
i. Pop the result
elge

golo step 1.
For example, evaluate the prefix expression:

+A*B+ CDif A=2 Ba3 C=d D=5
Starting from right to left: +A * B + CD
1. First element is operand D, push I} into the stack.

B

2. Second element is also C, push C also into the stack.

C
D

3. The third element '+ is an operator, pop 2 elements from the stack, i.e. C and D and evaluate the

eXpression.
G C nnp D

i
D D

Stack empty




Evaluating =C+D
=5+4
=0
. Push the result, i.e. 9 into the stack

Result in (_\
stk

9

. Next element B is operand; push it into the stack.

B
9

. Next * is an operator, pop 2 operands from the stack, i.c. B and 9 and evaluate.

(T

B
9 9

Evaluatng =R *0Q
=3*9
=27
. Push the resalt 27 into the stack.

Stack emply

27

. Next A is an operand, push it into stack,

27

. Next + is an operator, pop 2 elemenis and evaluate.
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fp.\,ph

A

27

27

Evaluating =A+ 27
=2+27
=29

10}, End of expression, thus, the result is 29,
/* Program to evaluate prefix expression */

#include=math. h=

#include<string. h=
#include<stdio. h=
#include<conio. h=

#define MAX 30
fdefine OPERAND 10
#define OPERATOR 20

typedet struct prexp
{

int top:
int stack[MAX]:
1stck:

yoid initistck *):

void push{stck *,int):

int popl{stck ™):

void eval (stck * char int.int):

void maing )

i

char pre[MAX]:

int numl, num2 item.1,1.pr:
ctek stk:

fflush{stdin);
clrscri);

init{&stk);

Stack emply



printf{" ENTER THE PREFIX EXPRESSION ")
getsipre);
l=strienipre);

for{i=1-1:1>=0:1--)

{
iflprelil==" "||prelil=="\t")
continue:
switch({gettypelpre[11})
{ :
case OPERAND: itemepre[il-"0":
push(&stk, item):
break ;
case OPERATOR:numl=pop(&stk):
num=pop{&stk}:
eval (&stk pre[i].numl. numZ);
}
}
printf("¥d" stk.stack[0]);
getch( )
}
void initistck *st)
{
st->top=-1;
}
void pushistck *st.int num)
{
st-=topt+:
st-=stack[st->top)=num:
}
int pop{stck *st)
i
int num:
num=st->stack[st->top];
st->top--;
return num;
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vold eval(stck *st.char op,int numl,int num2)
{
int res;
switch({op)
{
case '+ :res=numl4+num?;
preak ;
case - :res=numl-num?:
break ;
case " res=numl*numz;
preak ;
case " :res=numl/numZ;
break
case "I :res=numlinum;
break
case '§':res=pow(numl. numZ);
break

}
pushist.res):

I

int gettypeichar C)
[
switchic)
I:- . '
case "+
case -
case ‘¥
case "/
case '§;
case ¥ :return OPERATOR:
default:return OPERAND:

I
!

STACKS AND RECURSION

Suppose a procedure contains either a call statement to itself or a call statement 1o a second procedure
that may eventually result in a call statement back to the original procedure. Then such a procedure is
called a recursive procedure. For example, the problem of factorial can be solved using a recursive
procedure.

Recursion may be useful in developing algorithms for specific problems. The stacks may be used o

implement recursive procedures.
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Before going to stack implementation of recursive procedures, let us discuss about subprograms. A
subprogram can contain both parameters and local vaniables. The parameters are the variables which
receive valpes from objects in the calling program, called arguments and which transmit valves back to
the calling program. The subprogram, besides the parameters and local variables, also keeps track of
return address in the calling program. This return address is essential, since control must be transferred
back to its proper place in the calling program. Once the subprogram is finished executing and control
is transferred back to its calling program, the values of local variables and return address are no longer
necded.

Suppose the subprogram is a recursive program. Then each level of execution of the subprogram
may contain different values for parameters and local variables and for the return address. Mow, if the
recursive subprogram call 1gelf, then these current values must be saved, since they will be used again
when program is reactivated.

The translation of recursive procedure into a non-recursive procedure using stack is as follows:

. Declare a stack that wall hold the active reconds consisting of all local variables, parameters called
by value and labels to specify where the function is recursively called (if it calls itself from several
places).

The non-recursive function for a4 recursive fonction starts with an initiahizaton block which
initializes the stack to NULL. The stack and the stack top pointer are defined as global variables.

2. To enable each recursive call to start at the beginning of the original function its first executable
statement after the stack initialization block is associated with a label.

MNow, inside the function the following steps should be considered, where it is recursively
called, while working with stack.

3, Push all local varables and parameters called by value into the stack.,

4. Push an integer ‘i’ into the stack if this is the i place from where the function is called recursively.

3. Set the formal parameters called by value to the values given in the new call to the recursive
function.

&. Replace the call to recursive function with a ‘goto” statement which is the first statement after the
stack initialization block. A label is associated to this statement in step 2.

7. Make a new statement label L (if this is the i place where the function is called recursively) and
attach the label 1o the first statement after the call to the same function (50 that a retum can be
made to this label).

At the end of recursive function or whenever the function retums to the calling program., the
following steps should be performed:

8. If the stack is empty, then the recursion has finished; make a normal retom.

9. Otherwise, pop the stack to restore the values of all local variables and parameters called by value.

10. Pop the integer *i" from the stack and use this (o go to the statement labelled L.

Summary
& A stack I8 a limear stroctire mplementad in LIFO (Last In First Out) manner where insertions
and deletions ke place of thie some emd.
& An inéerion in & stack i called pushing and deletion from a stack iz called popping
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& When a stack, implemented as an array, is full and no new element can be accommaodated, it is
called an OVERFLOW,

# When a stack is empty and an attempt is made to delete an element from the STACK, it is called
UNDERFLOW.

& The main application of stack can be implementation of Polish notation which refers to a notation
in which operator symbol is placed either before its operands (prefix notation) or afier 1ts operands
{postfix notation), The usual form, in which operator is placed in between the operands, is called |
infix notation,

% The other application of stack can be reversing a list and avoiding recursions in vanous programs,

Review Exercise o

Multiple Choice Questions

1. A data structure in which elements are added and removed only at one end is known as
a. queue
b. stack
C. Array
d. MNone of these

2, Sack is
a. Statc data structure
b. Dynamic data structure
. In built data structure
d. MNone of these

3. Underflow is a condition where you
a. Inseri a new node when there is no free space for it
b. Delete a non-existent node in the list
c. Delete a node in empty list
d. None of the above

4. Get the value of most recently inserted node and delete the node
a. POP
b. PUSH
c. EMFTY
d. MNone of the above

Fill in the Blanks

I. A stack may be represented by a  linked list. (linear / non-linear)

2. Aftempting to create 8 new node incmpty ___ in any dofa strociure, resulis in overflow, (freespace
I nospace)

3. Push operation in stack may result in . {overflow / underflow)

4. If TOP points to the top of stack, then TOP is —__ fincreased / decreased)
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if A [n] denotes a stack where bottom of the stack is denoded by AJl] then stack overflow condition
oceurs when an element s with TOP equal to n. (pushed / popped)

6. A programming language that sopports nested procedure call is implemented using _ .

(stacks / gueues)

State whether True or False

1.

Push operation in stack is performed at the rear end.

2. PUSH operation in stack may result in underfiow.
3. A stack may be represented by a linear linked list.
4. For a stack, arbitrary amount of memory can be allocated,

Descriptive Questions

Consider the following stack, where STACK 15 allocated N = 6 memory cells.

STACK : AAA_DDD, EEE, FFF, GGG --——-—-————-

Describe the stack as the following operations take place:

PUSH (STACK, KKK}

POP (STACK, ITEM)

PUSHSTACK., LLL)

PUSH (STACK, 555}

POP (STACK, ITEM})

PUSH (STACE, TTT)

[Mote Consider the overflow condition. ]

Write an algorithm which, epon user’s choice, either pushes or pops an element from the stack implemented
as an amray (The clements are not shified after a push or pop).

Write & program to convert an infix arithmetic expression into a postfix arithmetic expression. The algorithm
for your program shoald use the following expression:

QiA-B)y*(CD)+ E

Show in tabular form the changing status of stack.

Converl the expression (A+B) / (C-D} into posthx expression and then evaluste it for A = 10, B = M,
C =15 D = 5. Display the stack status after esch operation.

Write non-recursive versions of the exponential algorithm Power {neal x, positive integer n) where nois a
positive integer. The function x" is defined as the product of n copies of x

S

L ]
) i Hma

a. using stack,

b. without using stack.
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peue 15 a linear data structure used to

represent a linear list. It allows insertion of an

element to be made at one end and deletion of
an element 1o be performed at the other end.

This chapter starts by giving an introduction

o the basic concepts of queues. It further

discusses various kinds of gqueues which are
often used to simulate real world situations.

INTRODUCTION

Quene is a linear list of elements in which deletion of an element can take place only at one end, called
the front and insertion can take place only at the other end, called the rear. The terms ‘front’ and
‘rear’ are used while descnbing queues in a linked list.

The first element in a queue will be the first one to be removed from the list. Therefore, queues are
also called FIFO (First In First Out) lists. The common examples for queves can be a queue of people
waiting to purchase tickets, where the first person in the queue is the first one to be served.

Many examples of queues can be noticed within a computer system—there may be queues of tasks
waiting for the line printer, for access to disk storage or even, in time sharing system, for use of the
CPU. Within a single program there may be multiple requests to be kept in queue, or one task may create
other tasks which must be executed in tum by keeping them in a queue.

QUEUE AS AN ABSTRACT DATA TYPE

The definition of an abstract data type clearly states that for a data structure to be abstract, it should
have the following two characteristics—Firstly, there should be a particular way in which components
are related to each other and secondly, a statement of the operations that can be performed on elements
of the abstract data type should be specified.

Thus, a queue, as an abstract data type, can be defined as follows:
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A gueue of elements of type A is a finite sequence of elements of A together with the following
operations:

Initialize a quewe to be empty.

Determine if a quewe is emply or not,

Determine if a queuve is full or not.

Insert a new element after the last element in a quepe, if it is not full.
Retrieve the first element of a queue, if it is not empty.

Delete the first element in a queue, if it is not empty.

REPRESENTATION OF QUEUES
Quenes, being the linear data structure, can be represented by using both arrays and hinked lists.

Representation of a Queue as an Array

Array is a data structure that stores a fixed number of elements. One of the major limitations of an array
is that its size should be fixed prior to using it. Bui the size of the Queue keeps on changing as the
elements are either removed from the front end or added at the rear end. One of the solutions to this
problem would be to declare an array with a maximum size. Figure 7.1 shows the representation of a
quese as an array:

S

X[0] X[1] X[2) X[3] X[4] X[3] X[&] X[7]
48 | 95 | 62 | & | 2 4 fr

T |

Fromnt Kear
Fig. 7.1 Representation of a Queue as an Array

/* Program that implements queue as an array. */

#include <stdig.h=

#include <conio. h>

#define MAX 10

void insertgue{int *, int, int *, int *)
int deleteguelint *, int *, int *) ;

void main( )

{
int a[Max]
int front = -1, rear = -1, 1 ;
clrscrl )
insertquela, 20, &front. &rear)
insertquela. &front. &rear) ;

insertguela, &front. Arear) :

20
5,
insertque(a, 9, A&front. &rear)
7.
insertguela, 22, &front, &rear) |
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insertquela, 12, &front. &rear) :
insertque(a, 15, &front. &rear)
insertque(a, 18, &front. &rear)
insertque(a. 10, &front, &rear)
insertque(a, 30, &front, &rear)
insertquela. 35. &front. &rear) :
i = deletequela, &front. &rear)
printf{“\nltem deleted: ¥d”, 11 ;
1 = deleteque(a, &front, &rear) :
printf{“\nltem deleted: ¥d", 1) :
i = deleteque(a, &front, &rear) ;
printf{“\nltem deleted: ¥d", 1) :
getch( ) :

}

/* Adds an element to the queue */

void insertque(int *a. int item. int *pfront. int *prear)

{
if(*prear == MAX - 1)
{
printf{"nlueue is full."} :
return :
}
{*prear)++ :

a[*prear] = item :
if{*pfront == -1)
mfront = 0

)

f* Removes an element from the queue */
int deleteque(int *a. int *pfront. int *prear)
{

int data .

if{(*pfront == -1)

printf{"\nlueue is Empty.”) :
return NULL :
]
data = a[*pfront] :
a[*pfront] = 0 ;
if(*pfront == *prear)
*pfront = *prear = -1 ;
else
(*pfront)++

Copyrighted material
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return data ;
|

In the program we have taken an array a to maintain the guewe. The two vanables front and rear
have been declared to point to both the ends of the queue.

The two functions insertque() and deleteque() are used to perform the insertion and d<letion
Operations.

Before adding the elements to the gquene, a condition is checked to find whether insertion is possible
or nol. The array begins with 0 index therefore, the maximum number of elements that can be stored are
MAX-1. If these number of elements are already present in the queve then the gueue is reporied to be
full. If the elements are added then the rear is incremented wsing the pointer prear and new item is
stored in the ammay.

]
=
-
-

A B i | A H 2
Fromt Rear Fromnt Rear
(i) Before addition (i1) After addition

Fig. 7.2 Adding Elements

The fromt and rear variables are initially set to 1, which denotes that the gueuve is empty. If the item
being added is the first element, (i.e. if the variable fromt has a valoe —1) then as the item is added, the
queve front is set to O indicating that the queue is now no longer empty.

Now, the function deleteque() deletes an element from the queve. The function first checks if there
are any elements for deletion. If not, the quene 1 said to be empty otheérwise an element is deleted from

a[ *pfront].

A ] C ] E B i D E
Front Rear Front Rear
(1) Before deletion () After deletion

Fig. 7.3 Deleting Elements

Say. we have added 5 elements to the queue. The value of rear would be 4 and the value of fromt
would be 0. If we go on deleting elements from the quewe and when the fifth element is deleted, the
queve would be empty. To ensure that an ‘empty queue’ message appears when another attempt is made
to delete. the front and rear are reset 1o -1,

Representation of a Queue as a Linked List

Quene can also be represented using a linked hst. The linked list representation of a guewse does not
have any restrictions on the number of elements it can hold. The elements in a linked list are
allocated dynamically, hence it can grow as long as there is sufficient memory available for dynamic
allocation.
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/* Program that implements queune as a linked list. */

#include <stdio.h>
#include <conio.h=
struct node
{

int data :

struct node *next :

|

struct queue
{
struct node *front ;
struct node *rear ;
} o
void initqueue{struct queue *) :
void addqueue(struct queue *. int) :
int delqueue({struct gueue *) ;
void deallgueue{struct queue *) ;
void main( )
{
struct queue a ;
int 1
clrscr( )
initqueue(&a)
addqueue(&a, 15) ;
addgueueifa, 5) .
addgueueida, 16) .
addgueue(da, 20) .
addqueue(da, 12) .
addqueue(&a, 18) ;
addgueue(&a, 25)
i = delqueue(la) .
printf{“\nltem removed: ¥d", i) :
i = delqueue(da) ;
printf(“\nItem removed: 3d~. i)
i = delgueue(da) .
printf{“\nltem removed: ¥d", i) :
delqueue(Ba) ;
getch({ ) ;

}
f* Initialises data member */

vold initqueue(struct queue *q)
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g -> front = q -= rear = NULL
}
/* Adds an element to the gueue */
void addqueue{struct queue *g. int item)
{
struct node *temp ;
temp = (struct node *} malloc{sizeof{struct node)) ;
if(temp == NULL)
prantf("\nlueue 15 full.”) .
temp -= data = item ;
temp -> next = NULL .
iflg -= front == NULL)
{
q -= rear = q -= front = temp ;
FeTurn
}
q - rear -> next = temp :
q -> rear = q -> rear -> neit ;
]
f* Removes an element from the queus */
int delqueueistruct queue * q)
{
struct node *temp
nt item ;
ifigq -= front == NULL)
{
printf({"\nlueue is empty.”) :
return MULL ;
}
item = q -> front -> data ;
temp = g -> front
q «> front = q -= front -= next .
free{temp)
return tem ;
1
/* Deallocates memory */
void deallgueue{struct queue *q)
{
struct node *temp ;
ifig -> front == NULL)
return

173
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while{q -= front != NULL)

{
temp = g -> front :
q -> front = q -> front -> next
freg(temp)

}
]

The program above has a structure quewe which contains two data members—front and rear, both
are pointers to the structure node. The queue is empty in the beginning therefore, both front and rear
are set o NULL.

The addguene() function adds a new element at the rear end of the list. If the element added is the
first element, then both front and rear are made to point to the new node. If the element added is not the
first element, then only rear is made to point to the new node and front continues o point to the first
node in the list.

The delquene() function removes an element which is at the front end of the list. Removal of an
element from the list actually deletes the node to which front is pointing. After deletion of a node, front
is made to point to the next node that comes in the list and rear points to the last node,

To deallocate the memory for the existing nodes the function deallqueue() is called before main()
comes Lo an end.

CIRCULAR QUEUES

Circular queuves are the gueves implemented in circular form Rear
rather than in a straight line. Circular queues overcome the b
problem of unutilised space in linear queve implemented as an « ﬁ Front
array. In the array implementation there is a possibility that the
queue is reported full even though slots of the queve are empty .
(since rear has reached the end of array). v

Suppose an array X of m elements is used to implement a qp
circular queue. If we go on adding elements to the queue we
may reach x[n=1]. We cannot add any more elements to the Fig. 7.4 Circular Queue
queue since the end of the array has been reached. Instead of
reporting the quewe is full, if some elements in the queuwe have been deleted then there might be empty
slots at the beginning of the queuve. In such case these slots would be filled by new elements added to the

gueve. In short, just because we have reached the end of the array. the queue would not be reported as
full. The queue would be reported full only when all the slots in the array are occupied.

M Program that implements circular gueue as an array. */
#include =stdio.h=

#include =conio.h=

#define MAX 10

void insertque(int *, int, int *, int *) ;

int deletequelint *, int *, int *) .

void display(int *) ;
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vord maint )

}

int a[MAx ]
int i. front. rear ;
clrscr( )
f* Initialise data member */
front = rear = -1
for{i = 0 ; 1 < MAX : q++)
alil = 0 ;
insertquela, 10, &front. &rear) ;
insertquela., 25, &front. Rrear)
insertquela, 11, &front. &rear)
insertguel(a. B, &front. &rear) ;
insertquela, 20, &front. &rear)
printf{"wnElements in the circular queue: )
display{a) :
1 = deletequela. &front, &rear) :
printf{"[tem deleted: 34™. 1)
i = deletequela, &front. &rear) ;
printf{ wnltem deleted: %¥47. 1) :
printf{"\nElements in the circular quewe after deletion: ")
display{a) :
insertque(a. 2. &front. &rear) ;
insertquefa. 14, &front. &rear)
insertque{a. 12, &front. Arear) ;
insertquefa. 5, &front, &rear) :
tnsertque{a. 0, &front. &rear) ;
printf{"Elements in the circular queue after addition: ™) ;
display(a) ;:
insertquefa, 30, &front, &rear) ;
printf("Elements in the circular gueue after addition: ") :
display(a) :
getchi 1

/* Adds an element to the queue */
vold insertquelint *a, int item, int *pfront. int *prear)

{

iT({*prear == MAX - 1 && *pfront == 0 ) || ( *prear + 1 == *pfront})
{

printf{ "\nlueue is full.”) :

return :

178



17‘__ Data Structures Using C

if(*prear == MAX - 1)
*orear = 0
2lse
(*prear)++ .
al*prear] = item .
if(*pfront == -1)
*nfront = 0 :
I

f* Removes an element from the queue */
int deletequelint *a, int *pfront, int *prear)
ﬂ
int data ;
if(*pfront == -1)
{
printf{"\nQuewe is empty.”) ;
return NULL ;
}
data = a[*pfront]
al*pfront] = 0 :
if(*pfront == *prear)

{

nfront = -1 ;
*prear = -1 ;
}
else
{
if{*pfront == MAX - 1)
*pfront = 0 ;
else
(*pfront)++
}

return data

!
i* Di;ﬁ1ays glement in a queue */f
void display(int * arr)

{
nt 1
printf(™n") :
for{i = 0 : 1 = MAX : 1++)
printf("¥d\t”, arr[1]) :
printf{"\n"} :
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In the program given above, the array a is used (o store elements of the circular queue. The two
functions—insertque() and deletequel)}—are vsed to add and remove the elements from the queve.
The function display() displays the existing elements of the queue. Initially, the values of front and rear
are set to -1, which shows the queue is empty,

The main{) function calls the insertqued) function 5 times o insen elements in the circular queue.
The conditions that are checked before inserting the elements are outlined below:

= If the front and rear are in adjacent locations (ie. rear following front) the message ‘Queue is
Full” is displayed. '

* If the value of front is —1 then it denotes that the queue is empty and that the element 1o be added
would be the first element in the queve. The values of front and rear in such a case are set o 0
and new element gets placed at o position.

= Some of the positions atl the front end of the array might be empty. This happens if we have
deleted some elements from the queve, when the value of rear is MAX-1 and the value of front
15 greater than 0. In such a case valoe of rear is set 0 0 and the element o be added 15 added o
this position,

* The element is added at the rear position in case the value of front is either equal 1o or grealer than
0} and the value of rear is Jess than MAX-1.

Thus, if we add 5 elements, the value of front and rear becomes 0 and 4 respectively. The function
display() displays the elements in the queue.

CTo .
S

Fig. 7.5 Crcular Queve after Adding 5 Elements

The deletequei() function is called twice to remove 2 elements
from the gqueue. The following conditions are checked before b
< Q

= First it is checked whether the queuve is empty or not. The  gear
value of front in our case is 4 hence, the element at the front

position will be deleted. q
* Now, it is checked if the value of front is equal to rear. If it

is, then the element which will be deleted is the only element
in the queve. If this element 15 removed, the queue will become

empty and front and rear are set to ~1. Front
On deleting an element from the queue the value of front is ser  Flg. 7.6 Clreular Queue after
to (if it is equal to MAX -] otherwise front is simply incremented Deleting 2 Elements

by 1.
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DOUBLE ENDED QUEUES—DEQUES

A deque is a linear list in which elements can be added or removed at either end but not in the middle.
The items can be added or deleted from the front or rear end, but no changes can be made elsewhere
in the list.

There are two variations of a deque—an input restricted deque and an output restricted degue—
which are intermediate between deque and a regular queue. Specifically, an input restricted deque is a
deque which allows insertions at only one end of the list, but allows deletions at both ends of the list. An
output restricted deque is a deque which allows deletions at only one end of the list but allows insertions
al both ends of the list.

The two possibilities that must be considered while inserting or deleting elements into the gueue are:

* When an attempt is made 1o insert an element into a deque which is already full, an overflow
DCCUrs.

= When an attempt is made to delete an element from a deque which is empty, underflow occurs.

Dieletion =— =—— [nsertion
A B : [ i
Insertion ——= ¢ ; ——= Deletion
Fromt Rear

Fig. 7.7 Representation of a Deque

Representation of a Deque in an Array
/* Program that implements a deque using an array. */

Finclude =stdio_h>
#Hnolude =comio.h=
gdefine MAX 10
v01d dequeaddatbeg{int *, int, int * int *) :
vo1d dequeaddatend{int *, int, int *, int *) ;
int dequedelatbeg(int *. int *, int *} :
int dequedelatend{int *, int *, int *) ;
vold display(int *)
int count(int *} ;
vold mainl )
{

int arr[MAX] :

fnt front, rear, i. n ;

clrserd )

f* Initialises data members */

front = rear = -1 :

forfr =0 : 1 = MAX : j+4+)

arriil = 0 :
dequeaddatend{arr, 17, &front, krear) :



}

degueaddatbeg(arr,
dequeaddatendlarr,
dequedddatbeglarre,
degueaddatend(arr,
dequeaddatbeglarr,
dequeaddatendiarr,
dequeaddatbeglarr,
dequeaddatend(arr,
dequeaddatbeglarr.
dequeaddatendlarr,
dequeaddatbegiarr,

Chierees

10, &front. &rear) ;
8, Kfront, Arear)

-9, &front,
13. &front,
28. &front.
14, &front.
5. &front,

25, Afront,
6. &front.

1, &front,
11, &front,

printf(intlements in a deque: ") :

displayiarr) .
n = countiarr) :

arear)
rear)
Erear)
Erear)
Arear)
grear)
Erear)
frear)
Arear) .

pr1ntff wnTotal mumber of elements in deque: #d°

= dequedelatbeglarr, &front,

prwntfa nitem extracted: 3d°, i) ;

= gdequedelatbeqiarr, &front,

printfi{ wnitem extracted:¥d", ) :

1 = dequedelatbeg(arr, &front,
printf{ \nltem extracted.3d”,
1 = dequedelatbeglarre,

i)
&front,

printf(~\nltem extracted: %d", 1) :

printf{"\nElements 1n a deque

display{arr) :

dequeaddatend{arr,
dequeaddatendiarr,
printf{"\nElements in a deque after addition:

display(arr) ;

1 = dequedelatend(arr,
printf{“\nltem extracted: ¥d".
i = dequedelatend{arr,

16, &front.

after deletion:

arear}
&rear)
arear} ;

Grear)

&rear) :

!, &front, &rear) :

Afront,
i)
Efront.

printf("\nltem extracted: ¥d°, i) :

printf( "\nElements in a degue

displaylarr)
n = countiarr} :

after deletion:

arear}

arear)

"1

"1

"1

A | ) I

printf(™nTotal number of elements in deque: 2d”, n

getchi 1 ;

/* Adds an element at the beginning of a deque */

void dequeaddatbeg(int *arr,

{

int Ttem,

int *pfront.

int *prear)
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int i, k., © ;
if(*pfront == 0 && *prear == MAX - 1)
i

printf{~\nDegue is full.\n") .

return ;
}
if(*pfront == -1)
{
*nfront = *prear = 0 ;
arr[*pfront] = item :
return ;
}
1f{*prear != MAX - 1)
{
€ = count{arr) :
k= *prear + 1 :
for{i =1 : 1 <= ¢ : i++)
{
arrfk] = arrfk - 1] :
K-~ :
]
arr(k] = item :
*nfront = k
{(*prear)++ :
}
else
{
(*pfront)-- :
arr[*pfront] = item ;
}

/* Adds an element at the end of a deque */
void dequeaddatend{int *arr, int item, int *pfront., int *prear)

{

int i, k ;
if(*pfront == 0 && *prear == MAX - 1)
i
printf{~\nDegue is full.\n") ;
return :

}
if(*pfront == -1)
{
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*orear = *pfront = 0
arr[*prear] = item :

return
}
if(*prear == MAX - 1)
{
kE=7*pfront - 1 :
for(i = #*pfront - 1 ; 1 < *prear ; i++)
{
k=1
1f(k == MAX - 1)
arr{k] = 0 :
glse
arr[k] = arr[i + 11 ;
}
(*prear)-- ;
{*pfront)-- :
}
(*prearj++ ;

arr[*prear] = item
}
/* Removes an element from the *pfront end of deque */
int dequedelatbeg(int *arr, int *pfront, int *prear)
{
int 1tem ;
if(*pfront == -1)
{
printf(“\nbeque 15 empty.\n”) :
return 0 ;
}
item = arr[*pfront] ;
arr[*pfront] = 0 ;
1f(*pfront == *prear)
*ofront = *prear = -1 ;
else
{ *pfront J++ ;
return item
!
/* Removes an element from the *prear end of the deque */
int dequedelatend{int *arr, int *pfront. int *prear)
{
int item ;
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if(*pfront == -1)

{
printf{“\nDegee is empty.\n") ;
return  :

i

f
item = arr[*prear] ;

arrl*prear] = 0
(*prear)-- ;
17 (*prear == -1}
*nfront = -1
return item :
!
f* [rsplays elements of a degue */
void displaylint *arr)
{
L1
printf{"\n front-=") :
for(i =0 ; 1 =< MAY : i++)
printf(“\t¥d", arr[i]) :
printf(™ <-rear™} :
}
/* Counts the total number of elements in degque */
int count(int *arr)
{
int ¢
for(l

{

0. 1 :
0 -1 = MAY ; i++)

iflarr[1] = )
CH+

}

return C
!

In the program given above we have two functions—dequeaddatbeg() and degqueaddatend{}—o
add elements a1 the beginning and at the end of the deque respectively.

The function dequeaddatend() checks whether the deque is full or not. A message is displayed if the
dequene is full. The next condition is 1o check whether the element to be added is the first element. If it
15, then the value of front and rear are set to 0 and the first element is placed in the degue.

E

[

Front Eear

Fig. 7.8 Deque after Addition of First Element
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Now the dequeaddatbeg() function is called to add an element in front end of the deque. This
function, before adding an element, checks for two conditions, first whether deque is full or not and
second whether the element to be added is the first element of the degue.

Considering our deque which contains one element A, both the conditions will evaluate to false. So,
we add another element B at (0™ position. As the 0™ position is occopied by the previous clement, we
need to shaft the element A 1o the right. But the shifting 15 possible if there is vacant place available to the
right of the element. In other words, this would be possible if the value of rear is less than MAX. Since

we have only one element in the deque it would be shifted to the right and the second element B would
be added at 0" position.

[ ]

Front Rear
« Before shifting
B A
Front HRear
After shifting

Fig. 7.9 Adding an Element in Deqgue

Now, the value of front and rear would be 0 and 1 respectively. Similarly, other elements would be
added to the deque.

The function dequedelatbeg() removes an element from the fromt position. After an element is
removed, fromt stores the index of next element in the deque. Hence, the value of front is incremented
by 1. In the function dequedelatend(), on removing element at the end, rear should store the index of
the element that occupies the position 1o the left of the element being deleted. Hence, the valoe of rear
i5 decremented by 1.

Think of a situation when the value of rear has reached MAX -1 and the value of front is greater than
() say, the value of front is 4, after deleting first 4 elements. This would be the stage when deque is not
full. But at this stage it would not be possible to add an element at the rear end of the deque. To do this,
elements would be required to be shifted one position to the left. This situation is handled in the function
dequeaddatend() by the following code statements:

int 1. k:
if(*prear == MAX-1)
{
k=*pfront-1:
for(1 = *pfront-1; 1 < *prear: i++)

{
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=i :
TT{g==MAX-1)
arr[k]=0:
else
arrfkJ=arrii+1]:
|
(*prear)- -:
{*pfront)- -:

|

The value of temporary variable Kk is set to fromi-1 if the above code evaluates to troe. If the value of
front is 4 the value of k would be 3. Using the for loop the elements are shifted one position to the left.
The new element 15 added at the end of degue.

A B C D E

Front Riar
Before shifting

A B O ] E F
1 >

element

Front Rear
After shifting

Fig. 7.10 Adding of an Element at the End of Deque

Representation of a Degue in a Linked List
M Program on deque that implements a linked list. */

Finclude <stdio. he
ginclude <conio. h=
ginclude <alloc,he
struct node
{

inT data

struct node *Tink

i -

SLAUCT COueue

{
struct node *front
struct node *rear ;



o
void initdqueue{struct dgueue *} :
vold dequeaddatend(struct doueue *  int ftem)
void dequeaddatbeg(struct dqueue *, int item) :
int dequedeiatbegistruct dqueue *} :
int dequedelatend{struct dqueue *) ;
void display{struct dqueue) :
int count{struct dgueue) ;
void deletedqueue ( struct dqueus * )
void main{ )
{
struct dgueue dg
int i, n ;
clrscr( )
initdqueve(&dg) :
dequeaddatend(&dg. 10)
dequeaddatbeg(&dq, 8);
dequeaddatend(&dg. 12} :
dequeaddatbeg(&dg, 2);
dequeaddatend(&dg. 14)
dequeaddatbeg(&dg. 5) .
dequeaddatend(&dg. 19) .
dequeaddatbeg(&dg, £5) ;
display{dg) :
n = count{dq) :
printf{"\nTotal elements: ¥d™. n) :
i = dequedelatbeg(&dqg):
printf{*\nltem extracted = ¥d", i) :
i = dequedelatbeg(&dg)
printf("\nltem extracted = ¥4°. i) :
i = dequedelatbeg(&dg) :
printf("\nltem extracted = ¥d~, i} ;:
1 = dequedelatend(&dg) :
printf{“\nltem extracted = ¥d". 1) :
display(dq) :
n = count{dg) :
printf(” \nElements Left: ¥d™, n) ;
deletedqueue!&dq)
getchi ) :
}
f* Initializes elements of structure =/
void initdquese(struct dqueue *p)
{
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p-> front = p -> rear = NULL ;
]
/* Adds item at the end of dqueue */
yo1d dequeaddatend({struct dgueue *p, int item)
{ .
struct node *temp .
temp = (struct node *imalloci{sizeof(struct node));
temp -> data = item ;
temp -= link = NULL
1fip -> front == MULL)
p -> front = temp :
else
p -> rear -> link = temp :
po-> rear = temp .
]
/* Adds item at beginning of dqueue */
void degueaddatbegistruct dgueue *p, 1nt 1tem)
{
struct node *temp :
it *g
temp = (struct node *) malloc(sizeof(struct node)).
temp -> data = 1tem :
temp -> Iink = NULL :
ifip - front = NULL)
p -= front = p -» rear = temp
glse
1
temp -> link = p -= front
p -> front = temp ;
}
}

/* Deletes item from beginning of dgueue */
int dequedelatbeg(struct dgueus *p)

{

struct node *temp = p -> front ;

1At 1tem ;

if{temp == NULL)

{
printf{ \nlusue is empty.”) .
return 0

I

glse




}
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temp = p -= front ;
1tem = temp -> data
p -> front = temp -> link :
free{temp) ;
if{temp == NULL)

p -> rear = NULL
return(item) ;

|

/* Deletes item from end of dqueue */
int dequedelatend(struct dqueue *p)

{

}

struct node *temp . *rieft, *q ;
int item ;
temp = p -> front ;
if(p -> rear == NULL)
i
prointf{ "wnlueue 15 empty.” )
return 0 ;

i

plse

{

while(temp !'= p -> rear)
{
rleft = temp :
temp = temp -= link ;
}
q=p ->rear ;
item = q -> data ;
freal{q) ;
p -= rear = rleft
p -= rear -> |[ink = NULL ;
if(p -> rear = NULL)
p -= front = NULL ;
return{item) :

|

/* Displays the queus */
void display(struct dgueus dq)

{

struct node *temp = dq.front
printf{~\nfront -= *) ;
while{temp '= NULL}

187
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{
if{temp -= 1ink == NULL)
;
printf{~\t3d", temp -> data) :
printf{~ <- rear”) :
}
glse
printf{"\t¥d". temp -> data)
temp = temp -> 1ink ;
}
printf{“\n"}) ;

}
f* Counts the number of items in Qgueus xf
int count{struct dqueue dg)
{
int c =1 ;
struct node *temp = da. front

while(temp = NULL)

II
temp = temp -> 1ink ;
CHe

}

return ¢ ;
}
/* [Deletes the queus */
void deletedgueue(struct dgueus *p)

-l
struct node *temp |

ifip -= front == NULL}
return ;

whileip -= front !'= KULL)

':
temp = p -> front
p o= front = p -= front -= link ;

free(temp)
}
}
In the program above, for the linked representation of deque, two structures have been maintained:
struct node
{

int data:
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struct node *next;
}:
The above structure maintains the linked list and the other siructure dqueue contains the structure
node type two vanables *front and *rear to maintain the queve.

struct dqueue

{
struct node *front:

struct node *rear;
b:

The initdguene() initializes elements of structure. The dequeaddatbeg() and the dequeaddatendi)
functions, again do the same work in array—the functions add the elements at the beginning and end of
the deque.

Similarly, the functions dequedelatbeg() and dequedelatend(} delete the elements from the beginning
and end of the deque.

The hnked hst representation 18 probably used when we want to allocate the memory for elements
dynamically.

Input-Restricted and Output-Restricted Deques

In an input restricted deque, the insertion of elements is restnicted to one end only, but the deletion of
elements can be done at both the ends.

MInput-restricted deque program using an array®*/

#Finclude <stdio h=
#Finclude <conio b
ginclude <alloc. h>

#define MAX 10
struct dgueue
{

int arr[Max] :
int front. rear :
b
void initdqueue(struct dgueus *) :
void degueaddatend(struct dgueue *. int item) ;
int dequedelatbeq(struct dqueue *) ;
int dequedelatend(struct dqueus *}
void display(struct dqueue} ;
int count{struct dqueue} .
void mainl )
{
cstruct dqueue dq :
int 1, n ;
clrscr{ ) ;
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initdqueus &dg) :
dequeaddatend(&dg, 1) :
dequeaddatend(8dg. 2) :
dequeaddatend(&dg, 3) ;
dequeaddatend(&dg. 4) :
dequeaddatend(bdqg. 5) :
dequeaddatend(hdg. &) :
dequeaddatend{&dg, 7)
dequeaddatend{&dg. 8} :
dequeaddatend{&dg. 9) ;
dequeaddatend{&dq. 10) :

display(dg) :
n = count{dq) :
printfi“\nTotal eTements: ¥d™. n) :
i = dequedelatbeg(&dg) :
printf( \nltem removed = &d”, i) :
i = dequedelatbeg(&dg) :
printf{"nltem removed = ¥d", i} :
i = dequedelatend(&da) ;
printf{ \nitem removed = ¥d~, i) :
i = dequedelatend(&dg)
printf{"\nltem removed = 3¥d". 1) :
n o= countidg} :
printf{ \nElements Left: ¥d™. n) :
display{dq) :
dequeaddatend(&dg. 19)
dequeaddatend(&dq, 16) .
dequeaddatend(&dg. 11)
dequeaddatend(&dq. 15) ;
dequeaddatend(&dg, 24) .
dequeaddatend(ddg. 25)
displayidq) :

getchl )

f* Initializes elements of structure */
vold initdgueve(struct dqueue *p}

{
int i ;
p-> front = p -> rear = -1 ;
for{i =0 ; i < MAX ; i++)
p == arr[i] =10 ;
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/* Adds dtem at the end of dqueue */
void dequeaddatend(struct dqueus *p, int item)

{
nt i, k :
if(p -> front == 0 8& p -> rear == MAX)

printf{“\nQueue is full.\n"} ;

return ;
}
ifip -> rear == -1 && p -> front == -1}
{
p->rear =p -> front = 0 ;
p -=arr[p -> rear] = item ;
(p -> rearj++ ;
return ;
}
iflp -> rear == MAX)
{
for{fi =k=p->front - 1 ;1 <p ->rear : i++)
{
k=1
iflk == MAX - 1}
p->arrfk] =0 :
else
p == arr[k] = p -> arr[1 + 1] :
i
{p -> rear)-- ;
{p -> front)-- :
}
p -> arr[p -= rear] = item :
(p -= rear}+ ;

}
/* Deletes item from beginning of dqueue */

int deguedelatbeg{struct dqueue *p)

{
int item ;
ifip ->» front == -1 && p -> rear == -1)

printf{“\nfueue is empty.\n”) :
return 0 ;

}
item = p -> arr[p -> front] :
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p ->arr(p -» front] = 0 ;

(p -> front)+

if(p -> front == MAX)

p -> front = -1 :

return item :
}
/* Deletes item from end of dqueue */
int deguedelatendistruct dqueus *p)

|
int item ;
tflp -= front == -1 &4 p -> rear == -1)
{
printf{"\nlueue 15 empiy_‘n")
return 0 :
}
{p == rearj}-- ;
item = p -= arr(p -= rear] ;
p -=arr(p -= rear] = 0 ;
ifip->rear==1{)
p == rear = -1 ;
return item ;
b

/* Msplays the queua */
void displayistruct dqueue dq)

L
mt 1 ;
printf{"\n front -= ") .
for(l =0 ; 1 < MAX ; 1++)
printf(“¥dit”. dg.arr[i]) ;
printf{~ =- rear”)
}

f* Counts the number of items in dqueuwe */
int count(struct dgueue dqg)

far{i = c =0 ; 1 = MAX ; i++)

if{dg.arrf[i] !'= 0)

CH

}

return C ;
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The program for input-resiricted deque would not contain the function dequeaddatbeg() as the
mput-restricted deque restricts the insertion of elements at one end only.

r

Deletion =—+A | B | C | D | E F-h.,

I I T~ Deletion
Fromt Rear

Fig. 7.11 Representation of an Input-Restricted Degue

Similarly, the program for output-restricted deque would not contain the function dequedelatbeg().
/*QOutput-restricted deque using an array*/
ginclude <stdio. h>
#include <conto.h=
#include <alloc. he
wdefine MAX 10
struct dgueue
I

int arr[Max]

int front, rear ;

b
void initdqueue(struct doueue *) .
void dequeaddatbeg{struct dqueue *, int) ;
void dequeaddatend(struct dgueue *, int)
int dequedelatend{struct dqueue *) .
void display{struct dqueue) :
int count{struct dqueue) :
void maini )
{
struct dqueue dg :

int 1. n ;

clrscr{ } :

initdqueve(&dq) .

dequeaddatend{&dg. 11) ;

dequeaddatbegli&dg, 1)

dequeaddatend(&dg. 17)

dequeaddatbeg(idq. 100

dequeaddatend(&dq. 11)

dequeaddatbeg(&dg, B)

dequeaddatend(&da. 18)

dequeaddatbeg(fdg, 5)
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degueaddatend(&dg, 19) ;
dequeaddatbeglidg, &)
gequeaddatend(&dg, 151 .
degueaddatbeg(idg, 3) ;

display{dq) :

n = countidg) ;

printf{™ynTotal elements: Id™. n) ;
1 = deguedelatend(&daq) ;

printf{™\nltem removed = ¥4, 1)
1 = dequedelatend(&dq)
printf("\nitem removed = 3d™, 1)
1 = deguedelatend(&dg)
printf{"\nltem removed = Id™, 1} .
1 = deguedelatend(&da) ;
printf("inltem removed = ¥d™, 1) ;
n = count{dg} :

prantf{"\nElements Left: 3d", n} ;
display{dq) :

dequeaddatbeg(&dg. 4)
dequeaddatbeg(&dg, 3)
dequeaddatbeg(&da. 2) .
dequeaddatbeg(&dg, 1)
display{dqg) :
getch{ ) ;
}

f* Imitializes elements of structure =/
woid initdqueselstruct dgueues *p)

{ . .
int i ;
p-= fromt = p -> rear = -1 :
for{d =0 ; 1 < MAX ; 1++)
p->arr[i] = 0 ;
}

/* Adds item at beginning of dqueus */
void degueaddatbeg(struct dqueue *p. int item)
{
mt c, 1, ko
iflp == front == { & p -> rear == MAX)
{
praintf(“Wnlueue is full.\n") ;
return

}
ifip -= front == -1 && p -> rear == -1}



{
po->front = p -> rear = 0 ;
p -=arr[p -> front] = item :
return
}
if{p -= rear != MAX)
{
c = count({*p) :
k= p ->rear :
for(1 =1 : 1 == ¢ : j++)
{
po-=arr[k] =p -=arrk - 1] :
k--
}
p -> arr[k] = 1tem :
p -= front =k
(p -= rear)++ ;
}
glse
\
(p -> front)-- .
p == arr[p -> front] = item :
}
}

f* Adds item at the end of dgueus */
void degueaddatend{struct dgueus *p. int item)
|
int 1, k ;
ifip -» front = 0 && p -> rear == MAX)
{
printf{ " \nlusue is full.\n") ;
return ;

]
if(p -> rear == -1 && p -= front == -1}

{
p->rear =p -> front = 0 :
p -> arr(p -> rear] = item :
(p - rear)++ |

return ;

}

iflp -= rear == MAX)

{
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k=p -»front -1 :
for(i=p->front -1 ;1 <p -> rear ; i++)

{
k=1
if(k == MAX - 1)
p->arrfk] =0 :
else
p ->arr[k] = p -= arr[i + 1] :
}
{p -» rear)-- ;
(p -» front)-- ;
}
p == arrlp -> rear] = item ;
(p -> reari++
}

/* Deletes item from end of dqueue */
int dequedelatend(struct dqueue *p)

{
int item :

if{p -> front == -1 84 p -> rear == -1)

{
printf{“\nlueue 15 empty.\n"™) ;
return 0 ;

}

{p -= rear)-- .

item=p -> arr[p -> rear] :

p == arr[p -= rear] = 0 :

if(p -» rear == 0)
p -= rear = -1 ;

return item :

}
/* Displays the queue */
void display(struct dqueue dg)

{
int 1 ;

printf{“\n front -= °) ;
for{i = 0 ; i < MAX ; i++)

printf{"\t¥d", dg.arr[1]) :
printf(" <- rear "} .

}
/* Counts the number of items in doueue */
int count{struct dqueue dq)

{
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it ¢, 1 ;
forii=c =0 ;1 < MAX ; i++)
{

if(dg.arr[i] != D)

O+t

]

return ©
!
The output-restricted dequene, restricts the deletion of elements at one eénd only.
_,.-f"""'r Insertion
Insertion —~A | B | C | D | E | F]
T I T Deletion
Front Rear

Fig. 7.12 Representatlon of Quiput-restricted Degueue

PRIORITY QUEUES

A priority queue is a collection of elements where each element is assigned a priority and the order in
which elements are deleted and processed is determined from the following rules:

* An element of higher priority is processed before any element of lower priority.

* Two elements with the same priorty are processed according to the order in which they are added
to the queue.

An example of a prionity quene can be a timesharing system: programs of high prionty are processed
first, and programs with the same priority form a standard queue.
One way 1o represent a priorily queue in memory is by means of one-way list:

= Each node in the list contains three items of information—an information field INFO, a prionity
number PRNO and the link NEXT.

* MNode A will precede Node B in the hst when A has higher priority than B or when both the nodes
have same priority bul A was added to the list before B. This means that the order in one-way list
commesponds to the order of priority queue.

Figure 7.13 shows priority queue with 7 elements where element B and C have same priority numbers.

Start

All]. Bl2. Cla. ) 4

El4]. Fi4d]. G5 | =
Fig. 7.13 Priority queue
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Array Implementation of Priority Queue

Another way 1o represent prionty queve is through arrays.

If an amray is wsed (o store the elements of prionty queve then insertion is easy but deletion of
elements would be difficult. This is because while inserting elemenis in the priority guewse they are not
inserted in an order. As a result, deleting an clement with the highest priority would require examining
the entire array to search for such an element. Moreover, an element in a quene can be deleted from the
front end only.

The array element of a priority queue can hive the following structure:

struct data

{
int item:
int priority;
int order;

S

The structure holds the type of data item, priority of the element and the order in which the element
has been added.

Another structure pque has been defined which contains an array d 1o hold the elements of priority
guene. The clements in the amray are of struct data tvpe holding information about the job o be
processed, priority of the job, and the order in which the elements will be added.

The function add{) adds the element to the priority queve whereas delete() removes an element from
the prionty queue.

In main() function. 5 elements are added using the for loop. In add() function, the element dt gets
added to the queue at the rear end. Suppose the first element 10 be added holds data as {A, 4. 1}. After
adding this element the value of front and rear would be (). The elements in this function are arranged
in ascending order of their priorities.

Suppase the second element o be added to queve is {B, 3. 2}. The priority of second element is lower
than the element at the O™ position in the queve. Hence, the second element would get placed at o
position and the element at 0™ position would occupy the first position. Figure 7.14 illustrates the same.

B 312 A4, 1

I

Front Recar

Fig. 7.14 Priority of elements

MNow if there are two ¢lements with the same priority, then the elements are arranged according o
their order number in which they are entered. Thus, the elements in the priority quewe are ammanged
prioritywise and within the same priority as per the order of entry. Figure 7.15 shows a priority queue
with 5 elements.

|

A4 ] D53

C. 1.4 B.32 B, 3.5
Fig. 7.15 Priority queue with 5 elements
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Next, in order to process the information with the highest priority the remowve() function is called. In
this function the element at the front is removed.

/* Program that implements a priority quene using an array. */

finclude <stdio.h=
¥inclode <conio. h=
#define MAX &
struct data
[
char job[MAX]
int prno
int ord ;
b
struct pque
]
struct data d[MAX]
int front
nt rear
b
vold initpquelstruct pgue *) .
vold add(struct pgue *, struct data)
struct data delete{struct pque *) :
void main{ )
i
struct pgue g :
struct data dt. temp ;

int 1, j=10 ;
clrscr( )
initpquel &gl

printf{“tnter Job description(max 4 chars)and its priorityin™}
printf{“Lower the priority number. higher the priorityin™) ;
printf{~“Job Priority\n™)

for{d = 0 1 < MAX : i++)

{
scanf("%s 3d . &dt.job. &dt.prno)
at.ord = j++
addi &g, dt) .

}

printf{"\n"}

printf{ Process jobs prioritywisewn™} :
printf("Job\tPrioritywn™) ;

for{i =0 ; i < MAX ; i++)

{
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temp = delete(dq) ;

prinmtf ("% s\t¥d\n", temp.job. temp.prno) ;
}
printf("\n”) ;
getch{ ) :

/* Initialises data members */
void initpgue(struct pque *pg)
{
int 1
pgq -> front = pg -> rear = -1 ;
for(i =0 ; i < MAX ; i++)
{
strepy(pg -= d[4].job, "\O°)
pq -> d[i].prno = pg -> d[i].ord = 0 :
}}
/* Adds item to the priority queue */
void add(struct pque *pq. struct data dt)
{

struct data temp ;
int i, j :
if(pg -> rear == MAX - 1)
{
printf( \nlueve is full.”) :
return ;
}
pq -> rear++ ;
pg -> dlpg -> rear] = dt :
if(pg -> front == -1)
pq -> front =0 ;
for{i = pg -= front ; i == pq -> rear . i++)
{
for(j=1+1: J<=pq->rear ; j+)
{
ifipg -= d[il.prno = pg -> d[j].prno)
{
temp = pq -= d[i] ;
pg -> d[i] = pq -= alj] :
pg -> d[j] = temp :

e
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ifipg -> d[i].prno == pg -> d[j]1.prno)
{
ifipq -> d[i].ord > pg -> d[j].0rd)
{
temp = pq -> d[i] :
pg -> dfi] = pg -> d[Jj] :
pq -> dlj] = temp ;

}
}
/* Removes item from priority queus */
struct data delete{struct pgque *pgq)
]
struct data t
strepy(t. job, 70
t.prno =0 ;
tord=10 ;
ifi{pg -= front == -1)
{
printf{"\nlueue is Empty.\n") :
return t '
)
t =pg -= dlpg -= front] :
pg -> dlpq -> front] = t
if(pq -+ front = pq -> rear)
pg -> front = pg -> rear = -1 ;
else
pg -> front+ ;
return £

)

APPLICATION OF QUEUES

Simulation is the use of one system to initiate the behaviour of another system. Simulations are often
used when it would be too expensive or dangerous to experiment with real systems, There are physical
simulations such as wind unnels used to experiment with designs for car bodies and flight simulators
used to train airline pilots. Mathematical simulations are system of equations used to describe some
system and computer simulation uses the sieps of a program to initiate the behaviour of system under

study.
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In computer simulation, the objects being studied are wsually represented as data, often as data
structures, like lists or arrays whose entries describe the properties of the objects. Actions in the system
being studied are represented as operations on the data. and rules describing these actions are translated
o computer algonthms. By changing the value ol data or by modifying these algorithms, we can
observe the changes in the computer simulation, and then we can draw inferences about the actual
SYEIem.

While one object in a system is involved in some action, other objects and actions will often need to
witlt. Hence gueues are important data structures for use in computer simulations.

Alrport Simulation

As an example, let us consider o small but busy airport with only one runway. In each unit of time, one
plane can land or take off, s0, 3t any given unit of time, the runway may be wle or a plane may be
landing or taking off and there may be several planes waiting either to land or take off. We, therefore,
need two queves which are used for landing and takeof! to hold these planes. It 15 betier o keep a plane
waiting on land than in the air, so, a small airport allows a plane to take off only if there are no planes
wanting to land. Hence, after receiving request from new planes to land and take off, our simulation will
first service the head of the queuve of the plane waiting to land, and only if the landing queue is empty will
it allow a plane to take off. We shall wish to run the simulation through many units of time and therefore
we embed the main action of the program in a loop that runs for current time (curtime) from 1 to a
variable end time.

The main() functon in simulation program will make use of quenes 1o keep track of all the relevant
statistice concerning the problem, such as the number of planes processed, the average ime spent
waiting, and number of planes {if any) refused service. These details are reflected in the declaration of
constants, types and variables o be inserted into the main program. We shall then need to write the
subprograms 1o specify how this information is processed.

The steps for simulation are as follows:

Initializing the parameters and printing messages.
Accepting a new plane.

Handling a full queue.

Processing an amving plane.

Processing a departing plane.

Marking an idle time unit

Finishing the simulation,

Random Numbers

A key step in this similation s o decide, at each unit, how many new planes are ready to land or take
off. Although there are many ways in which these decisions can be made, one of the most interesting
and useful is to make random decisions. When the program is run repeatedly with random decisions, the
results will differ from run w run, and with suthicient expenmentation, the simulatton may display a
range of behaviour not unlike that of the actual svstem being studied.

Many computer systems include random number generators and, if one is available on your system,
it can be used in place of one developed here.

YhoEs LW

= e
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The idea is to start with one number and apply a series of arithmetic operations that will produce
anocther number with no obvious connection to the first. Hence, the numbers we produce are not truly
random, as each one depends in a definite way on its predecessor, and we should more properly speak
of psendorandom numbers. If we begin the simulation with the same value each time the program is
run then whole sequence of pseadorandom numbers will be exactly the same, so we normally begin by
setting the starting point for the psendorandom integers to some random value, for example, the time of
day.

The function time returns the number of seconds elapsed since 00 : 00 : 00 GMT, January 1970. The
expression time (NULL) % 10000 produces an integer between 0 and 9999 the number of seconds
elapsed modules 10000. This number provides different starting point for the function Randomize{)
each time it is run.

We can then use the standard system function rand for producing each pseudo random number from
its predecessors. The function rand produces as its result an integer number between 0 and INT-MAX.
For this simulation we wish to obtain an integer giving the number of planes armiving ready 1o land (or
take off) in a given time unit. We can assume that time when plane enters the system is independent of
that of any other plane.

The number of planes amving in one unit of time then follows what is called a Poisson distribution
in statistics. To calculate the number we need 10 know expecied value that is average number of
planes, arriving in one unit of time, ¢.g. if on an average one plane armives in each four time units, then
the expected value is .25, Sometimes several planes may arrive in same time unit, but often no planes
arrive for a long time, so taking the average over many units gives 0.25.

Program for Airport Simulation
/* Ajrport simulation */

#include <stdio.h=

#include =conio.h>

#include =<stdlib.h=

#include =ctype.h>

#include <math. h>

#Finclude <time.h>

#include <1imits.h=

#define MAX 3

#define ARRIVE 0

#define DEPART 1

struct plane

{
int id f*Identification number of airplane*/
int tm . {*Time arrival in queue*/

} o

struct queue

[

int count
int front
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int rear .
struct plane p[MAX] .
}
void initgueue({struct queue *)
void addqueuelstruct queus *, struct plane) ;
struct plane delqueuel(struct queue *) :
int size{struct queue) :
int emptyistruct queus)
int full(struct queus) ;
void initqueve(struct queue *pg)
{
pq -» count = 0
pq -= front = 0 :
pg - rear = -1 ;
1

void addqueue(struct gqueus *pq. struct plane item)

{
iT{pg -> count >= MAX)

{
printf{"\nlueus 15 full_ \n"} :
return .
]
(pQ -> count)++
pgq -> rear = (pg -> rear + 1) T MAX
pq - plpg -> rear] = item ;
1
struct plane delqueve(struct gqueus *pg)
{
struct piane pl
ifipg -> count <= {})

{
printf({“\nlueue 15 aempty.\n”) :
pl.id = 0
pl.tm = 0 ;
}
plse
{
{pq -=> countl-- ;
pl = pq -> plpq -> front] ;
pg -= front = (pq -> front + 1) ¥ MAX ;
}
return pl



int size(struct queue q)

{

return q.count ;
}
int empty{struct gqueue q)
{

return{g.count <= () :

}
int full(struct queue q)

{
)

struct airport
{
struct queue landing .
struct queue takeoff ;
struct queue *pl :
struct gqueus *pt
int idletime ;
int landwait:
int takeoffwait :
int nland:
int nplanes;
int nrefuse;
int ntakeoff .
struct plame pin :

)

return{g.count == MAX)

f*Humber of units when runway is idle*/
M*Total waiting time for planes landed*/
{*Total waiting time for take of f*/
/*Number of planes landed*/

{*Number of planes processed so far®/

M Number of planes refused of airport®/
{*Number of planes taken off*/

void initairport{struct airport *) :
void start(int *. double *. double *) :

void newplane(struct airport *,
void refuse(struct airport *,

int, int) :

int) :

void land{ struct airport *, struct plane, int) :

vaid fly(struct airport *.
void jdlelstruct airport *.
void conclude(struct airport *.
int randomnumber{double) :

struct plane. int) :
int)

int)

void apaddqueus(struct airport *, char) ;

struct plane apdelqueuel(struct airport *, char) :
int apsize(struct airport. char) :

int apfull{struct airport, char) ;:

int apempty(struct airport. char) ;

void myrandomize( ) :

void initairport(struct airport *ap}



}
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initquewe(&{ap-> landing)) :
initqueue(&(ap -> takeoff))
ap -> pl = &lap -= landing) ;
ap -> pt = &l(ap -> takeoff) :
ap -> nplanes = ap -> nland = ap -> ntakeoff = ap -> nrefuse = 0 ;
ap -> landwait = ap -> takeoffwait = ap -> idletime = 0 :

void start(int *endtime, double *expectarrive, double *expectdepart)

{

int flag = 0 :

char wish :=

printf{"\nProgram that simulates an airport with only one rumway.\n") :
f*Instruct user*/

printf{"0ne plane can land or depart in each unit of time.\n") :

printf{"Up to ¥d planes can be waiting to land or take off at any time.\n", MAX) :

printf{"How many units of time will the simulation run?”} :
f*Input parameter®/
scanf{ "¥d”. endtime) :
myrandomize{ ) :
do
{
printf({“\nExpected number of arrivals per unit time? °) ;
M*Error checking®/
scanf(“%1f", expectarrive) ;
printf{“\nExpected number of departures per unit time? ")
scanf("X1f", expectdepart) :
if(*expectarrive < 0.0 || *expectdepart < 0.0)

{ printf(“These numbers must be nonnegative.\n™) :
flag =0 :

}

else

{

if(*expectarrive + *expectdepart > 1.0)
{

printf({"The airport will become saturated. Read new numbers? “)

fflush{stdin) :
scanf{"%c™. &wish) ;
if(tolower { wish )} == "y')
flag = 0 ;
glse



flag = 1 ;
!
else
flag = 1 ;

}
} while(flag = 0) ;
}
void newplane(struct airport *ap. int curtime. int action)
/*Newplane :make a new record for a plane.update nplanes*/

{
{ap -> nplanes)++ :
ap -> pin.id = ap -> nplanes :
ap -= pin.tm = curtime :
switch{action)
d
case ARRIVE:
printf(“\n") .
printf(“Plane ¥d ready to land.\n". ap -= nplanes) :
break :
case DEPART:
printf(“\nPlane Id ready to take off.\n"~., ap -> nplanes) :
break

}
}

void refuse(struct airport *ap, int action)
/*Refuses: processes the plane when gqueue is full*/

{

switch{action)
{
case ARRIVE:
printf(~\tplane ¥d directed to another airport.\n™, ap -> pin.id) ;
break
case DEPART:
printf{“\tplane ¥d told to try later.\n", ap -> pln.id) :
break ;
}
(ap -> nrefusel++ ;

}

void land(struct airport *ap, struct plane pl, int curtime)
f* Land: process a plane p that is actually landing */

{

int wait ;
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wait = curtime - pl.tm
printf("%d: Plane id landed °. curtime, pl.id) :
print i in queus ¥d units \n™, wait) ;
{ap -= nland} ++ :
(ap -= landwait)} += wait ;
}
votd fly(struct airport *ap, struct plane pl. int curtime)
/* Fly: process & plane p that is actually landing®/
1
int wait ;
wait = curtime - pl.tm :
printf{"%d: Plane Id took off ~, curtime, pl.id)} :
printf(™in queus Id units \n™. wait)
{ap -= ntakeoffi++ ;
{ap -> takeoffwait) += wait ;

f
void idle(struct airport *ap. int curtime)

f*1dle:updates variables for idle runaway*/
{
printf(“%d: Rumway is idle.\n”. curtime) :
ap =-> idletimg++ ;
!
void conclude(struct airport *ap. int endtime)
f* Conclude: write out statistics and conclude simulation®/
{
prantf{"vtSimulation has concluded after £d wnits.\n”. endtime) :
printf{"\tTotal number of planes processed: ¥d\n™, ap -> nplanes) :
printf{ "\tNumber of planes landed: %¥d'n™., ap -> nland) :
printf{"\tNumber of plames taken off: ¥d'\n", ap -> ntakeoff) ;
printf{"\tNumber of planmes refused use: ¥d\n™. ap -> nrefuse) ;
printf{ \tNumber left ready to land: Id\n", apsize ( *ap. "1°)) :
printf{ \thNumber left ready to take off: ¥d\n", apsize(*ap. "t"})) ;
iflendtime = 0)
primtf{"\tPercentage of time runway idle: ¥1f \n". ({double) ap -= idletime /
endtime) * 100.0% .
if{ap -> nland > 0)
printf("\tAverage wait time to land: ¥1f ‘\n", (({double} ap -» landwait / ap -
= nland}} ;
iflap -= ntakeoff > 0)
printf(“\tAverage wait time to take off: ¥1f \n™, ((double} ap -> takeoffwait
[ ap -> ntakeoff}) :

}

int randomnumber(double expectedvalue)
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/*Randomnumber : generates a pseudorandom integer according to the Poisson distribution®/
{
intn=120 ; *Counter of iterations®/
double em -
double x : /*Pepudorandom number */

em = expl-expectedvalue) ;
x = rand( ) / (double) INT_MAX ;
while(x > em)

|
n++
¥ *= rand{ ) / (double) INT MAX :
}
return n
}
void apaddqueue({struct airport *ap. char type)
switch(tolower(type))
{
case '1° :
addqueueiap -> pl, ap -> pin} :
break
case ‘t°
addoueue{ap -= pt. ap -> pin) :
oreak
}
}
struct plane apdelqueue(struct airport *ap, char type)
{
struct plane pl ;
switch{tolower(type))
{
case "1°
pl = delgueuelap -= pl) :
break
case 't°:
pl = delgueuelap -> pl) ;
break
}
return pl ;
)
int apsize(struct airport ap. char type)
{

switchitolower(type))
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case ‘17

return{size{*ap.pl})) :
case 't

return{size(*(ap.pt}}) :

!

return [

}
int apfull{struct airport ap. char type)

{

switch{tolower{type))
{
case "1
return{ful 1{*{ap.pl1)) :
case 't
returnd ful 1{*(ap.pt))) ;
}

return 0

}

int apempty(struct airport ap. char type)

i
switch{tolower{type))

4
case "1°:
return{empty(*(ap.pll}} :
case ‘t’:
return{empty (*(ap.ptli} .

I

return 0 ;
}
void myrandomize{ )
/*Sets starting point for pseudorandam numbers*/

[
srand{{unsigned nt) (time{NULL) ¥ 10000} :

}
void mainl )

'i

struct airport a ;

int i;
int pri; /* Pseudo random integer®*/
int curtime: f*Current time ; one unit = time for take off and landing*/

int endtime f*Total number of time units to run */
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double expectarrive: /*Number of planes arriving in one unit*/
double expectdepart : /*Number of planes newly ready to take off*/
struct plane temp ;
clrscrl )
initairport(&a);

start{&endtime. &expectarrive, &expectdepart) ;
for{curtime = 1 : curtime <= endtime : curtime++)

{
pri = randomnumber{expectarrive) :
for{i =1 : 1 == pri ; i++) /*Add to landing quue*/
{

newplane(&a, curtime, ARRIVE)
iflapfullia. “1°})
refuse(&a. ARRIVE) :
else
apaddqueve(&a, "1°) ;
}
pri = randomnumber(expectdepart)
for{i = 1 : 1 <= pri : i++) f*Add to takeoff queue*/
\
newplane(&a, curtime, DEPART) ;
iflapfullia, "t'))
refuse(&a, DEPART) ;
else
apaddqueue(fa, "t') :

}
ifi! (apempty(a. "173)) /*Bring plane to land */
{
temp = apdelqueue(da, "1°) :
land{fa. temp. curtime) :
}
alse
{
if{!{apempty(a. "t ))) /*Allow plane to take off */
{
temp = apdelqueue(&a, ‘t°)
fly(ka, temp, curtime) :
}
else
idle(&a, curtime) . f*Rurway idle*/
}
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conclude{&a, endtime) : f*Finish simulation®/
getch{ ) :
t
Summary

| & Queue is a linear data structure that permils insertion of new element at one end and deletion of
an ¢lement at the other end. Queue is also referred 1o as frst-in-first-out (FIFOQ) list,
# Circular quenes are the queves implemented in circle rather than a straight line,
# Degques are the queues in which elements can be added or removed at either end but not in the
mddle.
£ An input-restnicted deque is a deque which allows insertions at only one end but does not allow
deletions at both the ends of the list. |
# An output-restricted deque is a deque which allows deletions at only one end of the list but allows. |
! insertions at both the ends of the list. |
* A gueue in which it is possible 1o insert an element or remove an element at any position depending |
on some priority is called priority gueue.
A Queue 15 a data structure used in many applications like event simulation, job scheduling, etc.

Review Exercise —

Multiple Choice Questions

1. "FRONT = REAR" pointer refers io empty
a. stack
b. queue
©. array
d. Mone of the above

2. A data structure in which insertion and deletion can take place at both the ends ix called
a. degue
b. stack
¢. circular quene
d. Mone of the above

3. Using arrays, most efficient implementation of quese is on
a. Lincar queue
b. Priority quene
¢. Circular quene
d. None of the above

4, Lei P be the queve of integers defined as follows:

# define MAXQ 500
struct queue
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int items[MAX]];
int front, rear:
boa:
To insert an element in the guewse we can use;

i Agaitems|q.rear] = x;

b. q.atems]+g.rear] = x;

€. {.items[q.rearl++ = x:

d, Mone of the above, .

Fill in the Blanks

1.
2,
3.
4.

A gueue can be defined as a . [data type / data structure)

The term head of the quene 15 same as the term . (froot [ rear)

FRONT = REAR pointer refers 1o queue, (empty § full)

AlAn is a quepe in which insertion of an element takes place at boih the ends bui
deletion occurs at one end only. (mput-restncted [/ output restricted )

State whether True or False

2.
5
4
5.

A queue can be implemented using a circular array with front and rear indices and one position left
VACAnt,

Cueoe is a vseful data structure for any simulation application.

A prionity quewe 1s implemented osing an amay of stacks,

Queues are often refermed o as Last In First Cot (LIFD) data siructore.

A deque i3 a generalization of both a stack and a queue.

Descriptive Questions

2,

Show how a sequence of insertions and removals from o gueve represented by a linear array can cause
overflow to OCCur upon an attempt 10 insert an element into an emply gueve.

How would you implement a quene of stacks? A stack of queves? A quewe of queues? Write routines 10
implement the appropriate operations of each of these data stroctures.

A degue is an ordered set of items from which flems may be deleted at either end and into which items may
be inserted &t either end. Call the two ends of the deque left and nght. How can a deque be represented
as o C array? Write four routines; remvleft, remvright, insertleft, insertright fo remove and insert elements
at the left and nght ends of the deque such that they detect overflow and underflow.

What is a circular quese? Write a C program to insert an item in the circular queone, Write another C
function for printing elements of the queve in reverse order.

Can a gqueue be represented by a circular linked list with only pointer pointing to the tail of the quene?
Write "C" functions for “add” and “delete” operations on such a gueue.

Define an input-restricted degue as a deque for which only the operation remvlefi, remvright, insertieft
are valid and an putput-restricted deque as a degue for which only the operations remvieft, inserright,
insertlefl are valid. Show how each of these can be used to represent both a stack and a queue.

Show how 1o sort a set of input numbers using priority queue and the operation pginsert, pgmindelete
and empiy.

Represent N gueves in a single one-dimensional array. Write functions for “add’ and “delete’ operations

on the i™ gueve.



CHAPTER

Binary Trees

Key This chapter explores one of the most
% Introduction to Non-Linear Data Structures important non linear data structures, Le. rees.
g mm Binary Trees Various kinds of trees have been discussed.
We begin with the most important tree struc-
% Basic Definition of Binary Trees ture—Binary tree—which is a finite set of ele-
% Properties of Binary Tree ments that is either empty or further divided
"J’f' Representation of Binary Trees | into subtrees. The two ways to represent bi-
% Operations on a Binary Search Tree nary trees are through arrays and linked lists.
':"” Binary Tree Traversal This chapter gives a detailed account of the
_ % Reconstruction of Binary Tree various operations that can be performed on a
% Counting Number of Trees binary search tree.
& Applications of Binary Trees

INTRODUCTION TO NON-LINEAR DATA STRUCTURES

The data structures we have discussed so far were mainly linear—strings, arrays, lists, stacks and
I'.ll.IE'LIE!i-

This chapter discusses a non-linear data structure called tree. Trees are mainly used to represent
data containing a hierarchical relationship between elements, for example, records, family trees and
table of contents. Consider the following parent—child relationship:

In Fig. 8.1, each node represents a person whose name is written in that node. Each line connecting
two nodes in the figure denotes a relation, namely *parent—child’ relation between the connected nodes.

INTRODUCTION TO BINARY TREES

A tree may be defined as a finite set “T" of one or more nodes such that there is a node designated as the
root of the tree and the other nodes (excluding the root) are divided into n20 disjoint sets T, T, ... T,
and each of these sets is a tree in turn. The trees T, T, ..., T, are called the sub-trees or children of the
el
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Fig. 8.1 A Hypothetical Family Tree

Generally, it is a convention to draw root node at the top and let the tree grow downwards.
Binary tree is a special type of tree in which every node or vertex has
either no children, one child or two children. A binary tree is an important o
class of tree data structure in which a node can have at most two children
{which are subtrees). Child of a pode in a binary tree on the left is called the e G
“left child” and the node in the right s called the “right child”. An example of
binary tree can be seen in Fig. 8.2,
In Fig. 8.2, A is the root node which has two children B and C. The nodes (0)(E) (F)
B, Id and E have only one child—D, H and G respectively. Every node in the
tree 15 root of some other subtree. B and C are the roots of the subtrees of
node A. In Fig. 8.2, node E has a right subiree rooted at G and node B has the g @
right subtree rooted at D). The nodes H, G and F have no subtrees and they are
the leaf nodes in the tree given above. Fig. 8.2 Binary Tree
Similarly, a binary tree may also be defined as follows:

* A binary tree 15 an cmpty ree.
= A binary tree consists of a node called root, a left subtree and a right subtree both of which are
binary trees once again.

Some of the examples of binary tree are given in Fig. 8.3

In Fig. 8.3, (i1} and (iii) are distinct since the root of a binary tree of {ii) has an empty right subtree
while the root of the binary tree of (iii) has an empty left subtree. But both the trees in (ii) and (ii) are
same as the ordering of the subtrees of the root is not important for trees. The two trees are said to be
identical if they have same structure or, in other words, if they have the same shape, The trees are said
to be copies if they are similar and if they have the same contents at corresponding nodes.
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(i) (iii)

(iv)

Fig. 8.3 Examples of Binary Trees
Applications of Binary Trees

Binary trees are used to represent a non-linear data structure. There are various forms of Binary trees.
Binary trees play a vital role in software applications. One of the most important applications of Binary
trees 15 in the searching algorithms. Most efficient and commonly used search known as Binary search
uses a special form of binary tree known as Binary Search tree. A binary search tree always has two
children and the left child node is always lighter than the root node, right child node is always heavier
than the root node. Binary search tree brings down the time complexity of algorithm to less than 50%.

Another application of binary trees may be seen in populating a voluminous, relational and hierarchical
data, into the memory. This increases the efficiency of the algorithm which manages this data. This is
because Binary trees allow the algorithms to access a particular node at low cost and Binary trees also
help 1o insert a new node easily.

Similarly, Binary trees are used in decision making, artificial intelligence, compilers, expression
evaluation, etc,

TYPES OF TREES
General Trees

A general tree (sometimes called a ree) is defined as a non-empty finite set T of elements, called nodes,
such that:

* The tree contains the rool element.

* The remaining e¢lements of the tree form an
ordered collection of zero or more disjoint trees
Ty Ty o T,

The trees T, T, ... T, are called subtrees of root
and the roots of Ty, T, ... T, are called successors of
the root. For example, we assume that the general tree
T is rooted, that is, the tree has a distinguished node R
called the roat of T and that T s ordered, 1,e. children
of each node N of Tree T has a specific order.

Figure 8.4 depicts a general tree—A, B, C, D, E. E
G HLILEK L M, N Fig. 8.4 General Tree Representation
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Binary Search Tree

When we place constraints on how data elements can be
stored in the tree, the items must be stored in such a way
that the key values in left subiree of the root are less than
the key value of the root, and the key values of all the
nodes in the right subtree of the root are greater than the
key value of the root. When this relationship holds in all
the nodes in the tree then the tree is called a binary search
tree.

The binary search tree is one of the most important
data structures in computer science. This structure enables
one to search for and find an element with an average
running time = log,n). Figure 8.5 depicts a binary
search tree,

Extended Binary Tree or 2-Trees

Fig. 8.5 Binary Search Tree

A binary free can be converted to an extended binary tree by adding new nodes to s leal nodes, and to
the nodes that have only one child. These new nodes are added in such a way that all the nodes in the
resultant tree have either zero or two children. The extended tree is also known as a Z-tree. The nodes
of the original tree are called internal nodes and the new nodes that are added to binary tree, to make

it extended binary tree, are called external nodes.
For example, consider the binary tree given in Fig. 8.6,

Fig. B.& Binary Tree Converted to an Extended Blnary Tree
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In Fig. 8.6, the nodes with circular shape are internal nodes and the nodes with square shape are
called external nodes.
Few points to be remembered about extended binary trees are:

= Il a tree has o nodes then the number of branches it has is n—1.

* Every node in a tree has exactly one parent except the rool node.

* A single path connects any two nodes of a tree.

* For a binary tree of height h the maximum number of nodes can be 21— 1.
* Any binary tree with n internal nodes has (n+1) external nodes.

Threaded Binary Tree

When a binary tree is represented using pointers the empty subtrees are set 1o NULL. i.e., ‘left’ pointer
of a node whose left child is an empty subtree is normally set to NULL, Similarly, the ‘right’ pointer of
a node whose right child is empty subtree is also set to NULL. Thus, a large number of pointers are set
to NULL. These null pointers can be used in different ways. Assame that the ‘left” pointer of a node ‘o’
is set to NULL as the left child of ‘n’ is an empty subtree, then the ‘left” pointer of 'n’ can be set to point
o the inorder predecessor of ‘n’. Similarly, if the ‘Aght’ child of a node ‘m° is empty the “right’
pointer of ‘m’ can be set to point to the inorder successor of “m’. In Fig. 8.7 links with arrow heads
indicate links leading to inorder predecessors or inorder successors.

Fig. 8.7 Threaded Binary Tree

AVL Trees

If the heights of both left and right subtrees are given then the searching in binary tree is efficient. When
we frequently make insertions and deletions in a binary search tree, it is likely to get unbalanced . The
efficiency of searching is ideal if the difference between the heights of left and right subtrees of all the
nodes in a binary search tree is at the most one. Such a binary tree is called an AVL tree or Height
Balanced Tree. Figure 8.8 shows some of the AVL trees.
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(a) (A)
(B) OO OO
@ ® ® © (0)
a) (b} (c)

Fig. 8.8 AVL Trees

2-3 Trees

The insertion and deletion in an AVL tree involves many rotations 10 make it a balanced tree. This makes
the entire operation complicated. To eliminate this complication, a data structure called 2-3 tree can be

used. Figure 8.9 shows a 2-3 iree.

Fig. 8.9 2-3 Tree

B-Trees

A node of a binary search tree or an AVL tree can hold only one value: on the other hand, 2-3 tree can
have at most two values per node. To improve the efficiency of operations performed on a tree we need
to reduce the height of the tree. Therefore, B-tree is a balanced search tree data structure designed for
use with large data seis in secondary storage. Figure B.10 shows a B-tree of degree 4:

15 47 67

_

1 20 27 40 56 72 9
ploafefe] [gfefe]y -\I‘-I- efefs]e
[2 3 7 o][10 14] [15 18] [39 a3 45 50 S5 90 99

Fig. 8.10 B-tree of Degree 4
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Heap

Heap is a complete binary tree. There are two' types of heaps, If 9

the value present at any node is greater than all its children, then

the tree is called the max-heap or descending heap. In the case @ @

of min-heap or ascending heap the value present at any node is

v rTvpney G, @ C)

Forest @ @@

Forest is a set of several trees that are not linked (o each other.
Forest can be represented as a binary tree. The Fig. 8.12 shows a Fig. 8.11 Max-heap
hinary tree built from a forest.

Fig. 8.12 Forest

Red Black Trees

In a red-black tree data structure, we adopt a colouring convention for the vertices in a binary search
tree, Specifically, each vertex in a red-black tree is coloured with either red or black.

A red-black tree is an augmented binary search tree in which the arrangement of vertices obeys the
following constraints:

* {Black rule) : Every leaf is coloured black.
* (Red rule) : If a vertex 15 red, then both of its children are black.
* (Path rule) : Every path from the root to a leaf contains the same number of black vertices,
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Figure 8.13 shows a red black tree in which black vertices are shown darkened, the red vertices
are not darkened, and the external vertices are drawn as boxes.

Black vertices

Red vertices

Fig. 8.13 Red Blck Tree

BASIC DEFINITION OF BINARY TREES
Consider the tree given in Fig. 8.14 where A is the root of a binary

aee @

* Father Asin Fig. 8.14, tree A is the root and B is the root of
its left and right subtree, then A is said to be the father of B (B) (C)
and B is said to be the left or right son.
* Leaf Nodes A node that has no sons such as (D, G, Hor I)
is called a leaf node. G o o
* Ancestor and Descendant A node n is an ancestor of node
n, (and n, is descendant of m,) if m, is either the father of n, @. @ o
or the Father of some ancestor of n,, eg. in the tree shown in
Fig. 8.14, A is an ancestor of C. Fig. 8.14 Binary Tree
* Left descendant and right descendant A node n, is a lefi
descendant of node ny il n, is either a left son of n; or a ﬁ
descendant of the left son of m;. A right descendant can be
defined similarly as left descendant.
* Siblings All the children of a given vertex or node are known e G
wi siblings.
= Strictly binary tree [f every non-leaf node in a binary tree G e
has a non-empty left and right subtrees, the tree is known as
strictly binary tree. The binary tree shown in Fig. 8.15is a
strictly binary tree. ﬂ @
» Degree of a node is the number of nodes connected to a
particular node. For example, in Fig. 8.15 the node containing Fig. 8.15 Strictly Binary Tree
the data ID has a degree 3. The degree of a leaf node is always one.
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* Level of a node The level of a node in a binary tree is defined as follows: the root of the tree has
level 0, and the level of any other node in the tree is one more than the level of its father. For
example, consider Fig. 8.16. Node that E is at level 2 and node H 15 at level 3.

e —— e —— S

S O N N NN N N R M SRR MR SR S m e e e e

Fig. B.16 Level of a Node

* Depth/Height of a Tree The height of a binary tree "T", denoted by 9
Heldght (T), is defined as follows:

Height(T) = maximum level of any node of a binary tree T. G 9

Consider the binary tree in Fig. £.17. The maximum level of any node
in this tree is 4. Therefore, height of this tree is 4. @

If all non-leaf nodes of a binary tree have exactly two non-empty children
and levels of all leaf nodes of a binary tree is same then the tree is called 0 e
complete or Tull binary tree. The tree shown above is not a full binary
tree as the levels of leaf nodes “B* and ‘I are not the same and there isa  Fig. 8.17 Binary Tree
node “C' which has only one non-empty child.

An example of complete binary tree can be seen in
Fig. 8.18.

PROPERTIES OF BINARY TREE

= A tree with “n” nodes has exactly (n—1) edges or
branches.
This property can be proved by induction on the
number of nodes in a tree. [fn=0 then the tree contains
only one node and the number of edges or branches
is 0. Therefore, the induction base is proved.
Consider any tree with “n™ nodes. It must have a root
and a root must have K children (K>0). Let n, depict Fig. 8.15 ﬂmm g U
the number of nodes in the i™ child for i=0 o K-1.
MNaturally, m=1+ E_, . ,(im;). Each child is itself a tree with fewer than n nodes. Hence, the
induction hypothesis can be assumed 1o be valid for these trees. Therefore, the number of branches
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if{treeli-1].data=num}

{
i=2*tree[i-1].k:
}
else
{
1=2*tree[1-1].k+1:
I

}

tree(i-1].k=1;

tree[i-1].data=num:
]

void display({void}

{

}

int row=0,col=0,root = 0;
int i=0;
for{i=0;i<=MAX;1++)

{

}
ffgetchi):

printf{"\n 2d°.tree(i].datal;

void main()

{

int length=10:
char ch="y":
int chotce = 0:
int key = 0:
clrscri);

do

{

cirscril:

printf{ \nit <<< ARRAY REPRESENTATION OF BINARY TREE ===\n"):

printf(~wn 1. Initialize.”):
printf{~\n 2. Insert.”):
printf({"wn 3. Delete,”);
printf(*\n 4. Display.”);
printf{™\n 5. Exit.\n");

printf{"\n Enter Your Choice : 7):

scanf("xd” . &choice):

Copyrighted material
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switch{choice)
{
case 1:
fINITIALLZE
imitialize{tree, length):
printf(“\n Binary Tree Initialized.'n");
break ;
case 2:
A TNSERT
printf("\n Enter The Key : ");
scanf("8d”  &key):
create(tree key):
break ;
case 3:
ffDELETE
preak ;
case 4:
fDISPLAY
display(}:
break ;
case h:
MEXIT
exitil):
default:
printf(™sn Imvalid Choice, Try Again... ).
}

fflush(stdin);
printf(~'n Do You Wish to Continue [y/n] : 7);
ch=getch().
iwhile(ch=="y"}:
getch();
}

Consider the binary tree in Fig. 8.19, if we index each node in the
tree in the order of their levels and their position at the particular level
then each node will occupy its unigue index number. Strting from
root having index 0 then the left child of the root that is node having
key value 3 will have index 1 followed by the right child of root with Fig. 8.19 Binary Tree
index 2 and so on.

In a binary tree let K to be the index of any node then left child of the node is at position 2K and the
right child of the node is a2 the position ZK+1. Thus, we conclude that any node with index K has a left
child at position 2K or with index 2K and the right child at position 2K+1 or with index 2K+1. Similarly,
in the array representation of binary trees, the root of the tree is stored in the first element of the array




Hidden page



Binary Trees

For example, consider the following binary tree.

NULL

Lo E F

NULL H \_L HL*LL N'L+1.L H

G H l

| Voo b

|

NULL NULL NULL NULL WNULL HNLULL
Fig. 8.20 Linked List Representation of Binary Tree

OPERATIONS ON A BINARY SEARCH TREE

Searching, insertion and deletion of a node are the most basic operations
that are required to maintain a tree.

Searching a Node

To search any node in a binary tree, first of all the data 1o be searched
is compared with the data of the root node. If the data is equal to the
data of the root node then the searching is successful. If the data is
found to be greater than the data of the root node then the searching
proceeds in the right subtree of the root node, otherwise, searching
proceeds in the left subtree of the root node.

Same procedure is repeated for left and right subtrées until the data
is found. While searching the data if the leaf node of tree is reached
and data 15 not found then it is concluded that the data is not present
in the tree.

Fig. 8.21

(19

Searching Node
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For example, consider the binary search tree T. Suppose item to be searched 15 9.

1. Compare ITEM =9 with the root 21 of the tree T, since 9 < 21, proceed to the left child of the tree.

2. Compare ITEM = 9 with 18 since 9 < 18 proceed to the left subtree of 18, which is 7.

3. Compare ITEM = 9 with 7 since 9 > 7 proceed in the right subtree of the node which holds a
value 7.

4. Now 9 is compared with the node which holds the value 9 and since Y is found the searching
process ends here,

Insertion of a Node in a Binary Tree

For node insertion in a binary search tree, initially the
data that is 1o be inserted is compared with the daw of
the root node. If data is found 1o be greater than or equal
to the data of the root node then the new node 15 inserted
in the right subtree of the root node, otherwise, the new
node is inserted in the left subtree of the root node.

The root node of the right or left subtree 15 considered
and its data is compared with the data that is 1o be insened
and the same procedure is repeated. This is done till the
left or right subtree where the new node is to be inserted
is found to be empty. Finally, the new node is made the
appropriate child of this current node.

0

4
4
-

#

[

g -

For example, consider the binary search tree T in

Fig. 8.22. Suppose ITEM = 20 is given to insert. Fig. 8.22 WNewly inserted node

. Compare ITEM = 20 with the root 38 of the tree T, Since 20 < 38 proceed to the left child of 38,
which is 14.

Compare ITEM = 20 with 14, since 20 > 14 proceed to the right child of 14, which is 23,
Compare ITEM = 20 with 23 since 20 < 23 proceed to the left child of 23 which is 18.
Compare item = 20 with 18 since 20 = |8 and 18 does not have right child, 20 is inserted as the
right child of 18.

Deletion from a Binary Tree

In deletion process there are four possible conditions we need to take into account:

(i} No node in the wee holds the specified data.

(i1} The node comtaning the data has no children.
() The node contmning the data has exactly one chald.
(iv) The node comaining duta has two children.

Ll

-

Condition (i) In this case we simply print the message that the data item is not present in the tree.

Condition (ii) In this case since the node 1o be deleted has no children the memory occupied by this
should be freed and either the left link or the right link of the parent of this node should be set to NULL.
Which of these is to be set to NULL depends upon whether the node being deleted is a left child or right
child of its parent.
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copied into the node 1o be deleted and a pointer should be set up pointing to the inorder successor
inode 100, This inorder successor would always have one or zero child. It should then be deleted using
the same procedure as for deleting one child or a zero child node. Thus, the whole logic of deleting a
node with two children is to locate the inorder successor, copy its data and reduce the problem to a
simple deletion of a node with one or zero chald. This 15 shown in Fig. 8.24.

Before deletion

Afer deletion
Fig. 8.24 Deletion of Node that has Both Left and Right Child (i.e. Node ?)
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inorder(ot) :

getchi( ):
}
f* inserts a new node in a Dinary search tree */
void inserti{struct btreengde **sr. int num)

{

if{*sr == NULL)

{
*sr o= malloc(sizeof (struct Dtreenode)) ;
(*sr) -> leftchild = MULL ;
(*sr) -> data = num ;
{(*sr3 -= rightchild = NULL ;

!

etse /¥ Search the node to which new node will be attached */
{
[* If new data 15 less, traverse to left */
if(aum < (*sr) -= data)
insert{&{{*sr) -> leftchild). num) ;
glse
f* Else traverse to right */
insert{&{(*sr) -> rightchild). num) :

}
}

f* Deletes a node from the binary search tree */
void delete{struct bbtreemode **root. int num)
{
int found ;
ctruct bDtreenode *parent, *x, *xsucc ;
M I tree is empty */
1f{*root == NULL)
i
printf{ \nlree is empty )} ;
return ;
}
parent = x = NULL
/* Call to search function to find the node to be deleted */
searchiroot, mam, &parent, &x, &found) .
/% If the node to be deleted 15 not found */
if(found == FALSE)
{
printf(“\nData to be deleted. not found™) :
return |
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}
f* If the node to be deleted has two children #/
iflx -> leftehild !'= NULL && x -> rightchild !'= NULL)
{
parent = x ;
gsuce = x -= rightchild ;
whilel(xsuce -» leftchild '= NULL)
{
parent = XSUCC ;
Xsuce = xsucc -= leftchild ;
}
¥ == {data = Asucc -= data :
Moo= MSUCT
}
f* If the node to be deleted has no child */
iflx -= leftchild == NULL A& x -= rightchild == NULL)
|
iflparent -> rightchild = x)
parent -> rightchild = NULL .

else

parent -> leftchild = NULL :
free { x ) ;
return ;

}
/* If the node to be deleted has only right child */

if(x -= leftchild == NULL && x -> rightchild != NULL)
1
if{parent -= leftchild == x)
parent -= leftchild = 2 -> rightchild :
else
parent -> rightchild = x -> rightchiild ;
free{x) ;
return ;
!
f* 1f the node to be deleted has only left child */
iflx -=> leftchild !'= NULL && x -> rightchild == NULL)
|
if{parent -= leftchild == x)
parent -> leftchild = x -> leftchild ;
else
parent -> rightchild = x -> leftchild :
free(x) ;
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return ;
}
1
M*Returns the address of the node to be deleted, address of its parent and
whether the node is found or not */

vaid searchistruct btreenode **root. int num, struct btreencde **par, struct
btreenode **x, int *found)

{
struct btreenode *q
g = *root
*found = FALSE :
*par = NULL :
while{q = NULL)
{
/* 1f the node to be deleted is found */
ifiq -> data == num)
{
*found = TRUE :
ir_;.:_q-_-
return ;
}
*par = Q.
iflq -= data = num)
q=9q -> leftchild ;
else
Q=g -> rightchild ;
}
i

f* Traverse a binary search tree in an LOR {(Left-Data-Right) fashion */
vixid inorder(struct btreenode *sr)

{
if(sr = NULL)

{
inarder{sr -> leftchild) ;
/* Print the data of the node whose left child is NMULL or the path has
already been traversed */
printf("§d\t™. sr -> data) ;
inorder (sr -> rightchild) .

In the above program the working of the function insert() and inorder() is exactly the same as what
we saw in other program. The function search() searches for the given number in the tree and returns
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the address of its parent and an integer value which holds either TRUE or FALSE {0 or 1) depending
upon whether the number 18 found or not.

The function search() receives five parameters. The first parameter s is the address of the root
nodde of the tree, second parameter num is the number that is to be searched and the third and fourth
parameters (par and x) are the pointers to the addresses of the parent of the node where data is found
and the address of the node itself, respectively, and last parameter found is the integer value indicating
whether the element is found or not.

In the insert{} function, initially the variable peinted to by found is set to FALSE value and the value
of par is set to NULL, because if the node is not found then the pointer pointed by par should hold a
NULL value. Then a while loop is executed with a condition q!=NULL where q holds the address of the
root node. Inside the while loop a condition is checked for the data to be searched, If the data is found
then a TRUE value is stored in the variable printed by found and the address of current node is stored in
x. If the data is found in the first iteration then the value of par is NULL, since it has no parent.

If the data is not found in the first iteration then inside the while the address of current node is stored
in par and then the data is compared with the data present in the current node. If the data of the current
node is greater than the data which is to be searched then q will hold the address of the left subtree of the
current node otherwise it will hold the address of the right subtree of the current node. This way any
function that calls search() gets the address of the node where the node is present and the address of its
parent,

The function removes() calls the function rem{) to delete the node that contains the given nomber.
In the function rem() two parameters are received. The first is the address of the root node and other
is the number that is 10 be deleted. Initially, a condition is checked whether a new node is empty. If it is,
then the message is displayed and the control is returned, otherwise the function search() is called with
NULL values stored in the two pointer variables parent and x.

If the data that is to be deleted is not found then the last argument passed to function search() holds
a value FALSE. Hence, after the call 1o function searchi) a condition 15 checked whether found =
FALSE. If it is equal to FALSE then it indicates that the data is not present in the tree. So far appropriate
message will be displayed and control will be retumed back.

If the data that is 1o be deleted is found then the following four conditions would arise:

Condifion (i) Node o be deleted has two children.

In this case, initially the address of the node that is to be deleted 1s stored in the pointer parent. But by
doing so the address of the parent node that is to be deleted is lost. We do not mind doing so, because we
are not interested in storing any or the NULL value in the left and nght child of the parent node. What we
need to do is to find out the in-order successor of the node that is to be deleted. For this the address of
the right child of the node that is to be deleted is stored in pointer variable xsuce. Then a while loop is
executed where a condition is checked whether the left child of xswee, is NULL. IF it 13 not then the
address of xsuec is stored in the parent and the left child of the xsuce is stored in xswee. As a result at
the end of while loop the value present in xsuce is the address of the inorder successor of the node that
is 1o be deleted and will always either have one child or no child.

After the while loop the value present in the inorder successor is copied into the data that is 1w be
deleted. Finally the address of inorder successor is stored in x which is the node that is to be deleted. So
the logic of deleting the records which have two children is converted to the case of deleting the node
which has only one child or no child as discussed below.
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Condition (i) Node 1o be deleted has no child.

Since both the children of the node that is to be deleted hold the NULL value, is stored a NULL value in

the respective child of the parent. This is done by checking the condition parent — rightchild==x.
If the right child of the parent node is equal to the value in the node to be deleted, then a NULL value

15 stored in the nightchild of the parent, otherwise it is stored in the lefichild. Finally, the memory
occupied by the node to be deleted is released and control is retumed.

Condition (i} Node to be deleted has only night child.
Here a condition is checked whether the node that is to be deleted is the left child of its parent, this is
done through the following statement:

If (parent — lefichild = = x)

If this condition is true then the address of the right child of the node that is to be deleted is stored in
the left child of the parent node, otherwise in the right child of the parent node. Then the memory 0
occupied by the node to be deleted is released and the control is retumed.

Condition (iv) Node to be deleted has only left child.
The functiom for this works exactly as for the node which has only right child.

BINARY TREE TRAVERSAL

Recursive Traversal of Binary Tree

Traversal of a binary tree is one of the most important operations required to be performed on a binary
tree. Traversing 15 the process of visiting every node in the ree exactly once. Therefore, a complete
traversal of binary tree implies visiting the nodes of the tree in some linear sequence.

There are three standard ways of traversing a binary tree T with root R:

* Preorder or depth-first order
* Inorder or symmetric order
* Postorder

Inorder Traversal In the inorder traversal we follow the following three steps:

* Traverse the left sobtree in inorder.
= Vst the roof.
* Traverse the right subtree in inorder.

For example, consider the binary tree given below:
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#include<alloc.he
struct NODE
{
int gata;
struct NODE *Left Child:
struct NODE *Right Child.
}:
struct NODE *Binary Tree(char *. int. int):
void display(struct MNUDE *, int):
void Pre orderi{struct NODE *):
void In_order(struct NODE *}:
void Post_order(struct NODE *):
f* Function to create a binary tree */
struct NODE * Binary Tree (char *List. int Lower, int Upper)
{
struct NODE *Node:
int Mid = (Lower + Upper)/2;
Node = (struct NODE*) mallocisizeof(struct NODE));
Node-=data = List [Mid]:
iTiLower=>= lipper)

{
Node->Left _Child = NULL:
Hnde-}ﬁight_l:h'i'l-:l = MULL:
returniNode) ;

}

ifilower == Mid - 1)
Node->Left Child = Binary Tree(List, Lower, Mid - 1):
elge
Node->Left Child = NULL:
if(Mid + 1 <= Upper)
Node-=Right Child = Binary Tree(List, Mid + 1. Upper):
else
Node-=Right Child = NULL:
return{Node)
}
/* Qutput function */
void displayistruct NODE *T. int Level)
—
int 1i;
1F(T)
{
display(T->Right_Child, Level+l}:
printf{™wn"):



Hidden page



Hidden page



Binary Trees

The description given above can be explained by the function given below:
void inorder(struct btree *root)

\
whilel(l)
i
while{root! = NULL)
{
push{fstk, root — left):
root = oot = left;
]
iflemptyl&sti))
return:
root = pop(&stk):
print? ("kd", root — data):
root = root — right:
}
H

For preorder and postorder traversals change the position of printf function accordingly.
/* Program to non-recursively traverse a binary tree */

# include<stdio.h>
# include<conio. he
# includesstdlib. h=
struct btree
{
int d:
struct btree *1:
struct btree *r:
b o*p.Fstk([50];
int top=-1.x.
void insert(struct biree *.int):
void delete(int):
void inorder(struct btree *);
void preorder(struct btree *);
void postorder(struct bitree *);
void showtree(struct btree *,int.int);
void disptreeistruct btree *);
void mainivoid)
|
int n.ch.val.i=1,x.nd;
p=NULL ;
clrscri);
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while(l)
{
clrscril):
prinkf{"Binary Tree Strwucturein);
printt{"1l.enter the data\n }:
printf{"Z.want inorder traversingin”™);
printf{“3.want preorder traversingin”l;
printf{ 4. .want postorder traversingin®);
printf{ 5. delete\n™):
printf{ &.show tree\n"):
printf{"7.exit\n\n");
printf{"\n Enter your choice: \n\n™ };
switchich)
{
case l:printf(" Insert the data :"):
scanf{"&d" . &val};
insertip,val);
showtree(p, 38,9);
getchi):
break
case 2:printf("Inorder Traversal:\n"):
inorder{p):
break ;
case J:printf( “Preorder Traversal:\n™};
pregrder(p);
break ;
case 4:printf("Postorder Traversal:\n");
postorder{p).:
break:
case S:printf("Enter the value you want to delete:"):
scant("¥d™, &nd)
deletelnd).
for{ i=9; j<=23;1++)
printf(" A
showtree(p, 38,9}
getch();
break
case 6:showtree(p,38.9):
getch();
break ;
case Trexit(l);
break ;
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default:
printf{ “enter your choice again”);
continue;
I
}

!
void insertistruct btree *g.int v}

{ struct btree *temp.*pr;
temp=malloc{sizeof(struct btree)):
temp->T=temp->r=NULL :
temp-ad=v;
1f (p==NULL)

p=temp:
else

while(q!=NULL)
{
pr=q:
ifly =g->d)
a=q->1;
else
q=q->r:
i
gtemp,
if(v <pr->d)
pr-=]=temp:
else
pr->r=temp;
¥
}
void inorder{struct btree *g)

{
do

{ while(q!=NULL)
{ stk[++topl=q:
q=q->1;

}
if (top!=-1)

{ g=stk{top--]:
printfi"\tid™, g-=d);
q=q->r:

}

Copyrighted material
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}
} whilel{g!=NULL || top!=-1};
getchi);
}
void delete{int dd)
{
struct htree *q, *cur.*par:
g=p:
while{g!=NULL)
{
if(q->d=ad)
{
par=q.
q=q-=1:
comt inue;
1
if{q->dedd)
{
par=q;
g=q->r.:
COTLIne ;
1
1F(g->d==dd)
break ;
else
{
printf("Value not found. press any key..."):
getch{):
return:

1
!
cur=q:
FiCase when current node 1s Teaf node
iflcur->1==NULL &% cur->r==NULL)
{

if(par->d<dd)

par-=r=NULL ;

else

par-=1=NULL:

free(cur);

return:

}
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gotoxy({col-2). (row+l));
primtfi™/");
IF({rowt2)==q()

showtreel{q-=1 {col-3), (row+d));
else

showtreelq-=1,(col-4), {row+sd));

!
1T (g->r!=NULL)

{

gotoxy({col+2), (rowsl) ),

printf{"\\");

1T rowk2)==0)
showtree(g->r, (col+3) . {rowsd});

glse
showtree(g->r, (col+d), (rowed)):

}

return;

}

RECONSTRUCTION OF BINARY TREE

The postorder, preorder and inorder traversal of binary trees may result in same sequence of nodes. As
a result origingl tree cannot be reconstructed, given its inorder or preorder or postorder traversal alone.
However. if sequence of nodes produced by inorder and postorder traversal of a binary tree are provided
then a unigue binary tree can be reconstructed, Consider the following example which illustrates the
reconstruction of a binary tree given its inorder and postorder traversal.

Inorder :HDIJEKBALFMCNGO
FPostorder : HIDJKEBLMFNOGUCA

Since the first node visited in postorder traversal of a binary tree is the left node, the root of the binary
tree becomes *A’. In reconstroction of binary tree from inorder and postorder, the first node is taken

from the right hand side of the postorder sequence, i.e. A.

N

HDIJKEDB LFMCNGO
HIDJKEB LMFNOGC

Fig. 8.27

Therefore the nodes to the left of *A” in the given inorder sequence belong to the left subtree and
nodes to the right of *A° belong to the right subtree of the tree. Moreover, the order in which the nodes
to the left of *A’ occur in the given inorder sequence is the same as the inorder sequence of the left
subtree.
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Now the same scheme outlined earlier can be applied to both
the left and the right subtree once again. Now, from the figure
above consider the left subtree, ie. [.S. HDLJKEB and P.S.
HIDJKEB. From the postorder sequence the root of this subtree
is *B". The inorder sequence of the left and right subtree of the
subtree rooted at B are HDIJTKE and HIDIKE.

(A
(B) (C;

HDIJEK LFM NGO
HIDJKE LFM NOG
Fig. 8.28

Continuing the same set of operations in each subtree, the
tree can be reconstructed. Further again from the postorder
sequence, the root of this subtree is E. The position of E in
inorder sequence determines its position on the left subtree rooted
at B whereas again, looking in the postorder sequence we find K
as the next root and its order in inorder sequence determines its
position in the right subtree rooted at E. Similarly, the steps are
repeated for all the remaining left and right subtrees. Therefore,
the reconstruction of the tree can be seen in Fig. 8.29.

/* Program to reconstruct a binary search tree. */

#include <stdio.h>
#include <conio.h>
#include <alloc.h=
#define MAX 101
struct node
{
struct node *left :
int data -
struct node *right ;
|
void insert{struct node ** int} ;
void preorder{struct node *) ;
void postorder{struct node *) .
void inorder{struct node *) ;
struct node * recons{int *, int *, int) .
vold deltree{struct node *) .
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int in[MAX], pre[MAX]. x ;

void main( )
{
struct node *t, *p, *q :
int reg, 1, num :
t = NULL ; /* Empty tree ¥/
clrser( )

print f{"Specify the number of items to be inserted:”) :
while(l)
{
ccanf{"%d", &req) :
if (regq == MAX || reg == 0)
printt (“\nEnter number between 1 to 100.'n")
elge
break ;
}
for{i =0 : 1 < reg : j++)
[
printf("Enter the data:”) :
scanf("%d”. &num} :
insert{&t, num) .
}
printf("wnln-order  Traversal:\n™)
x=10;
inorder(t) ;
printf{"\nPre-order Traversal:\n")
=10
preorder(t) |
printf(“\nPost-order Traversal:\n") .
x=10:
postorder(t} ;
deltres(t) .
t = NULL ;
t = recons(in, pre. reg) ;
printf{"\n\nATter reconstruction of the binary tree.\n”) ;
=0
printf{“\nln-order  Traversal:\n") :
inordar{t) .
x=0:
printf("\nPre-arder Traversal:\n")
preorder(t)
=10
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printfi{ \vnPost-order Traversal:\n") ;
postorder(t) ;
deltree(t) :
getch( )

}

/* Inserts a new nade in a binary search tree */
void insert{struct node **sr, int num)

{

if(*sr == NULL)

{
*cr = (struct node *) malloc{sizeof (struct node))
(*sr) -> left = KULL :
{*sr) -> data = num ;
(*sr} -> right = NULL ;
return ;

}

else /* Search the node to which new node will be attached */

/* 1f new data is less, traverse to left ¥/
ifinum < {*sr} -> data) '
insert(&{{*sr) -= leftl}, num) :
glse
/* Else traverse to right */
insert(&({*sr) -> right}, num) ;
1
}
void preorder(struct node *t)

if(t = NULL})

printf("¥d\t”, pre[x++]=t -= data) ;
pregrder(t -> left) :
pregrderi{t -= right} :

}

}
void postorder(struct node *t)

if(t 1= NULL)

{
postorder(t -> left) :
postorderi{t -= right} :
printf("¥d\t™, t -> data) :

Copyrighted maierial
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}

void inorder{struct node *t)

{
if (t 1= NULL)

|
inorder(t -» left)
prantf{ Edvt”, in[a++]= t -= data) :
inorder(t -= right) :
}
}
struct node * recons(int *inorder, int *preorder, int noofnodes)
1
struct node *temp, *left. *right
int tempin(100], temppre[100]1, 4. J :
if{noofnodes == 1)
return NULL ;
temp = (struct node *) malloc({sizeof{struct node))
temp -=> data = preorder[0] ;
temp -> left = NULL :
temp -= right = NULL ;
if{noofnodes == 1)

return temp ;
for(i = 0 : inorder[i] != preorder[0] :)
T
ifi1 = 0}
{
for{j=0: J==1 : j#)
tempin[j] = inorder[j] :
for(d =0 : 3 <13 1 j++)
temppre[ j] = preorder(j + 1] ;
}

left = recons(tempin, temppre, i) ;
temp -> left = left
iT{1 < noofnodes - 1)

{
for(j =1 : J < noofnodes - 1 ; j++)
{
tempin[j - 1] = inorder[j + 1] :
temppre[j - 1] = preorder[j + 1] :
}

}
right = recons(tempin, temppre, noofnodes - § - 1) :
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Summary
Tree is the most important linear data structure.
A tree consists of a root node and a number of subtrees.
There are different types of trees showing different types of properties.
There are many terms associated with a binary tree like its right and left child, subtrees, brothers,
elc.
A binary tree can be implemented as a self-referential structure using pointers or armmays.
The operations that can be performed on a binary tree are searching, insertions and deletions.
A fundamental operation on a binary tree is traversal. Traversal of a binary tree implies visiting
every node of that tree exactly once in some sequence. There are three standard types of tree
traversal—preorder, inorder and postorder.
We can reconstruct a binary tree from its inorder and preorder traversal.

Reviow Exercise s

Multiple Choice Questions

1.

The inorder traversal of some binary ree produced sequence DBEAFC, and the postorder traversal of
the same tree produced the sequence DEBFCA, which of the following is a correct preorder traversal
Seguence:
a. DBAECF
b. ABEDFC
¢. ABDECF
d. MNone of these
A balanced binary tree is a binary tree in which the heighis of two subtrees of every node never differ by
more than
a. 2
b. 1
. 3
d. Mone of these
Which of the following statements is TRUE in view of a complete binary tree?
a. The number of nodes at each level 15 1 less than some power of 2.
b. The outdegree of every node is exactly equal 1o 2 or 0.
c. The total nombser of nodes in the tree is always some power of 2.
d. Mone of these
Level of any node of a tree is
Itz distance from the root,
b. Height of its lefit subtree minus height of its right subtree.
c. Height of its right subtree minus height of its left subtree.
d. Monz of the above
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CHAPTER

Advanced Trees,
Forests and Orchards

Key Features e | .
) . ree 15 one of e most LM LT M-
% AVL Trees or Height-Balanced Trees hinear dats stroctores which 15 osed for efif-

% Representation of AVL Trees
Oiperations on AVL Trees
Threaded Binary Trees
Forests and Orchards
Expression Trees

crently performung operntions like msertion,
deletion and searching.

However, while working with laree volufnes
of data, constmction of a well balanced tree
for stoving all data is not feagible, Thus, onfy
uselul data is stored as a tree and actual voleme
of data being used constantly changes through insertion of new data and deletion of exisung data.
Therefore, the advanced trees like AVE trees are used,

Due to the imporntance of threaded binary trees, it is worthwhile o develop non-recursive algonthmes
to manipulate them and o stody the time and space requiremoents of these algorithims, We will find that,
by changing the NLULL link in a binary tre¢ to special Boks called theeads, it is possible 1o perform
traversals, insertions, deletions withoot using either stacks or recursions.

The other kinds of rees which have been discussed m this chapler are foresis, orchands and expoession
irees.

=&

AVL TREES OR HEIGHT-BALANCED TREES
Definicion of AVL Tree

An AVL tree is a binary search tree in which the difference of heights of left and right subtrees of any
pode is less than or equal to one. The fechnigue of balancing the height of binary trees was developed
by Adeison-Vel=kii and Landi. Therefore, these trees are known a8 AVL Trees or Balanced Binary
Trees.

In a full binary search tree, the heaght of he lelt and night subtrees ol any node are equal. Such trees
are ideal for efficient searching because the height of such a tree with “n” nodes is O(logyn). Bin when
inserfions and deletions are pertormed rmadomly on a binary search tree, the binary tree often becomes

unbalanced.
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An AVL tree can be defined as follows—Let T be a non-empty binary tree with Ty and Ty as its left
and right subtrees. T is height halanced if:

* T, and T, are height balanced.
* hy - hy = | where b, and hy are the heights of T, and Ty respectively.

Let us define more precisely the notation of a “balanced™
tree. The height of a binary tree is the maximum level of
15 leaves (this 15 also sometimes known as the depth of
tree). The height of null tree is defined as =1. Thus, a
balanced binary tree or AVL tree 1s a binary tree in which
the heights of two sobtrees of every node never differ by
more than 1.

The balance factor of a node in a binary tree can have
value 1, -1 or 0 depending on whether the height of its lefi
subtree is greater than, less than or equal to the height of
its right subtree. The balance factor of each node is
indicated in Fig. 9.1.

Advantages of an AVL Tree

Since AVL trees are height balanced trees, operations like insertion and deletion have low time complexity.
Let us consider an example. If we have the lollowing tree with keys 1, 2, 3,4, 5, 6, 7 then a binary tree
would look like this:

Fig. 9.1 Balance Factors in Binary Tree

{a) Binary tree (b) AVL tree
Fig. 9.2

In order to insert a node with a key ) in the binary tree (a), the algorithm requires 7 comparisons, but
if we insert the same key in AVL tree (b), the algorithm will just require 3 comparisons, which is less
than half of the binary tree. Thus, we see that use of AVL trees will increase the efficiency of the
Programs.
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Before insertion After inserting 13
Fig. 9.6 Addition of 2 New Node to a Leaf Node of Taller Subtree

, - , -1
Consider the tree given in Fig. 9.7 with balance factors:
Here, the balance factor of P is =1 and that of ) is 0. Le, is the
left child of P and Le; and R, are the left and nght children of the

node (). After insertion there are two cases that can make the tree
an unbalanced tree. These are as follows:

(a) The new node is inserted as a child (left or right) of the leaf
node of subtree Re, (Fig. 9.8).

{b) The new node is inferted as a child (left or right) of the leal
node of structure Lo, (Fig. 9.9).

Mewly inserted node
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To accomplish the balance in both these cases consider the following:
Case (a) Consider the tree given below again (Fig. 9.10).

As seen from the figure, on insertion of the new node, the balance factor of the node containing the
data 5 violates the condition of an AVL tree. To rebalance the tree, we are required 1o make a lefi-
rotation of a tree along the node containing the data 5 as the left child containing the data 11 and the
node containing the data 9 as a right child of the node contaiming the data 5. This is shown below
considenng the same tree taken for Case (a).

Fig. 9.11 Rebalancing the Tree Using Left Rotation

Case (b) Now suppose instead of 12, we insert a node with value 10, This node would get inserted as
the right child of the node containing value 9. After this the tree no longer remains a balanced tree as the
balance factor of node containing value 5 breaks the rules of AVL tree as shown in Fig. 9.12:



 Data Straciures Using C

Fig. 9.12 Unbalanced Tree after Addition of New Node

In this case, to rebalance the tree, we are initially required to make a right retation of the tree along
the node containing 11, Right rotation makes node 9 the right child of node 5. Node 11 becomes the right
child of node 9 and node 10 becomes lefi child of node 11. This is shown in Fig. 9.13.

Fig. .13 Rebalancing the Tree Again using Right Rotation

But even after night rotation. the tree remains unbalanced and hence, it is rotated o left along the node
5. As a result node 9 becomes the left child of node 19. Node 5 becomes the left child of node 9. Since
there is no left child for node 9 the right child of node 5 is empty. Thus finally, tree becomes a balanced
binary trec or an AVL tree. This procedure of rotating the tree, first o the right and then o the lefi is
known as double rotation. The resultant tree is shown in Fig. 9.14.
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Fig. 9.14 Balanced Tree after Double Rotation

There are other two possibilities where an AVL tree becomes

unbalanced due to insertion of new node. Consider Fig. 9.15. Fig. 9.15 Unbaianced AVL Tree
Now again consider the insertion of new nodes.

Newly inserted node Newly inserted node
(1) (if)
Fig. 9.16 Insertion of New Nodes
For the tree (i), to balance the tree only a right rotation is required whereas for the tree (ii) a double
rotation is required—initially a left rotation and then a right rotation.
Deletion of a Node

The deletion of a node is exactly identical to the deletion of node in a binary search tree. Initially, the node

o be deleted is searched. The conditions for deletion are same as a node to be deleted could be a leaf
node, a node with one child or a node with two children.
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L @pu‘a_.:_‘_i’_‘ree:. Fn resis girted [?_irdmrd;
case -1:
nodel = root -> right :
if{nodel -> balfact == -1)
{
printf("\nLeft rotation along 2d.".
root -= data)
root -= right = nodel -= left ;
nodel -= left = root
root -> balfact = 0 :
root = nodel ;

else

print f{"\nDouble rotation. right along 3d°. nodel
-> data) :
neded = nodel -= left
nodel -= left = node? -= right ;
node? -= riaht = nodel ;
printf(™ then Teft along 3d.\n".
root -»> data)
root -= right = node? -= left
nodez -= left = root
if{node2 -= balfact == -1}
root -= palfact = 1 ;
glse
root -= balfact = 0 ;
ifinode? -= halfact == 1)
nodel -» pbalfact = -1 -
glse
nadel -» balfact =0
root = node? ;
!
root -> balfact = 0 ;
*h = FALSE

}
}
returni{root } :
}
f* Deletes an item from the troe */
struct AVlNode * deldatalstruct AVLMode *root. int data. int *h)

{
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struct AVLNode *node

1F( 'root )
{
printf{"\nNo such data. ) :
returni root)
}
else
{
if{data = rpot -> data)
{ root -= left = deldata(root -= left. data. h) :
1 *h)
root = balr{root, h) :
}
elto
{

if{data > root -= data)

root -> right = deldata(root -» right. data. h)

if(*h )
root = ballirooct, h} :
}
glse
{
nade = root :
ifinode -> right == NULL)
{
root = node -> left
*h = TRUE :
free(node) -
}
glse
{

if(node -> left == NULL)

i

b

root = node -> right ;

*h = TRUE :
free{node) -
}
glse
{

node -= right = delinode -= right, node, h) ;
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if{*h)
root = ball{root, h} ;

I
]
return(root)

}
struct AVLNode * delistruct AVLNode *succ, struct AVLNode *node, int *h)

{

struct AVLNode *temp = succ
if{succ -> left '= NULL)
:

succ -= left = del{succ -= left. node, h) ;

if{*h}
succ = balr(succ. h)
}
glse
{
temp = succ
node -> data = succ -> data
SUCC = succ -* right :
free(temp)
*h = TRUE :
}
returni{succ) :

}

/* Balances the tree, if right sub-tree 1s higher */
struct AVLNode * balr{struct AVLNode *root, int *h)
{

struct AVLNode *nodel, *noded ;

switch{root -> balfact)

{

case 1:
root -> balfact = 0 :
break:

case {:
root -=> balfact = -1 :
*h = FALSE :
break ;
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return{root) ;

}

/* Balances the tree. 1f left sub-tree 15 higher */
struct AVLNode * ball{struct AVLNode *rgot. int *h)

i

struct AVLNode *nodel. *node?
switch{root -= balfact)

{

case -1:
root -> balfact = 0 ;
break :

case 0:
root -> balfact = 1 ;
*h = FALSE :
break :

case 1:

nodel = root -> Jeft .
ifi{nodel -> balfact == {1}

{

else

printf{“\nRight rotation along %¥d.", root -= data)
root -> left = nodel -» right
nodel -= right = root
if(nodel -» balfact == 0)

{
root -> balfact = 1 -
nodel -> balfact = -1
*h = FALSE :
}
else
{
root -> balfact = nodel -= balfact =0
}

root = nodel

printf({“\nDouble rotation, left along 3d™. nodel
-> data) ;

nodeZ = nodel -= right

nodel -> right = nodeZ -> jeft ;

node? -> left = nodel :

printf{" then right atong ¥d.\n". root -> data) :
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root -> left = node2 -> right ;
node2 -> right = root ;
ifinode2 -> balfact == 1)
root -= balfact = -1 ;
glse
root -> balfact = 0 ;
if(node?-> balfact = -1)
nodel -= balfact = 1 ;
glse
nodel -= balfact = 0 ;
root = node? ;
node? -= balfact = 0 ;
}
}
return(root)
}
/* Displays the tree in-order */
void display{struct AVLNode *root)

{
if(root != NULL)
{
displaylroot -= left)
printf("¥d\t”, root -> data) :
display(root -= right) :
}
}

/* Deletes the tree */
void deltree(struct AVLNode *root)

#
if(root != NULL)

{
deltree{root -» left) :
deltree(root -> right) :
}
free(root) ;

}

In the program, imtially, eleven nodes are created and then two nodes are deleted. After deletion of the
node, since the tree becomes unbalanced. it is balanced by performing appropriate rotations. The function
like insert(), deldata() and display() are called from the main() to add, delete and display the nodes.
The function insert{) adds node to the tree. The functions like ball{) and balr() are called by function
deldata() to balance the tree.



275
_ Advanced Trees, Forests and Orchards

The function insert() i= used to add a pew node 1o the tree, It receives three parameters—ithe first is
the address of the rool node of the tree or subtree 10 which the new node is to be added. The second is
an mteger that holds the data of the node that 15 to be added and third is the address of a variable that is
used as a flag to check whether there is a need lor balancing the tree after addition of a new node.

In the function insert(), it 15 checked whether root is NULL. If it 15, then the tree is empty and the
new node s going to be the first node. Now memory is allocated for the new node. Next data is stored
in the data part, NULL in the left and right part of the root and a value 0 is assigned 1o its balfact field as
at this point new node is going to be the leaf node.

If a tree is non-empty then the new node is added as a child of the leaf node. To determine whether
the new node should be a left child or right child again it is checked whether the data of the new node is
less than the data of the current node. I it is, then a recursive call is made to the function insert() by
passing the address of the left subtree. If the left subtree is empty then the new node is made the lefi
child of the current node. Then using if{*h) it is checked if there is a need for balancing.

If balancing necds to be done then a switch case is applied on the balfact of the current node. 1f
balfact of the curmrent node is 1 {left subiree of current node is higher) then it is checked whether the
balfact of the lefichild of current node is 1. If it is, then simply a right rotation is required along the
current node, otherwise a double rotation is required. After rotation, balfact of current node is assigned
a value 0 and a FALSE value is stored in the flag variable pointed w by h. 1f balfact of cumrent node 1s
0. balfact is simply assigned a value 1. If balfact of current node is =1, then balfact is assigned a value
0 and a FALSE value is stored in the flag vaniable pointed 1o by h.

There is one more possibility—the data of the new node 15 greater than the data of the current node.,
If it 15, then a recursive call is made to function insert() by passing the address of the right child of
current node. Here too the switch-case is applied, if needed. Finally, the address of the current node is
returned.

The function deldatal) works like insert(). Here also the recursive call is made for either the left or
right child depending upon the data 1o be deleted. If the data is found then its inorder successor is
searched and a call is made 1o fusction del() which deletes the node. The functions balli ) and bale() are
called to balance the tree after deletion of the node.

The function display(} is nothing but inorder traversal of the tree.

THREADED BINARY TREES

When a binary tree is represented using pointers, then pointers to empty subtrees are set to NULL, that
is. “lefi” pointer of the node whose left child is an empty subtree is normally set to NULL. Similarly, the
‘night” pointer of a node whose right child is an empty subtree is set to NULL. Thus, a large number of
pointers are set to NULL.

Assume that the “left” pointer of a node “n’ 18 set 1o NULL as the left child of ‘n° is an empty subtree.
Then the “left” pointer of *n’ can be said to point to the inorder predecessor of n. Similarly. if the ‘right’
child of a node 'm’ is empty then the right pointer of m can be said 1o point to the inorder snccessor
ol ‘.

In Fig. 917, links with arrow heads indicate links leading o inorder predecessor or inorder successor
while lines denote the usual links in a binary tree.

The links with arrows and the normal links indicate different relationship between nodes and the
links. It must be undersiood whether “left” or “right™ link of node “n" is leading to its children or to the
inorder predecessor or inorder successor of “n”,
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Fig. 9.17 Threaded Binary Tree

Two flags ‘leftflag’ and “rightflag’ are vsed per node to indicate the tvpe of its “left’ and ‘right’
links.

If “leftflag’ of a node is O then its ‘left’ link leads o the left subtree of n otherwise to the inorder
predecessor of ‘n’.

Similarly, if ‘rightflag’ of a node ‘n” 15 0 then nght link leads to the nght subtree of n otherwise the
right link leads to inorder snccessor of *n’.

The links are used as threads only when they would have pointed to empty subtree in a non-threaded
binary tree.

Hence the structure of a node in such a tree contains two more fields:

struct bthreadiode
i
' int rightflag. leftfiag;
int data;
struct bthreadNode * left. right:
b
MNow, consider the tree in Fig. 9.17. The lines with arrows denote threads. In a non-threaded binary
trees replace these lines with arrows with links to NULL. The inorder traversal of this tree 1s:

DLHKBEAFCLG

In the tree given in Fig. 9.17., °J does not have a child, the left and right pointers of this node are used
as threads. The left is used to point I) which is morder predecessor of this node J and the right is used
tor point H which is inorder successor. Consider I) and G—the left and right links keep dangling because
they do not have any inorder predecessor or successor.

Another approach to get nid of such problems 15 to introduce a header node. The left and nght
pointers of the header node are treated as normal links and are mitialized to point to header node
itself.
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}

S*5H0W TREE*/
showtree(p.38.1):

gotoxy(12.23) :printf{™\n Press any key..

getch();
break ;
case b
TEXITH/
exit(l):
default:

printf("\n Wrong choice! Press any key..

getch():
}

nosound( ) ;
pwhilelch!=7};

JFINSERT WODE
void addnode(int v)

{

struct btree *r *q:
Q=p.
r=malloc(sizeof{struct btree));
r->info=v;
r->rt=1:
r->1t=1:
Ff{p==NULL )
{
p=r:
r->left=head;
r->right=head;
return;
}
while(g!=head)
{
if(q-»info>v &8 g->1t==0)
g~g-=Teft:
else 1f(g->infoev &8 q->rt==0}
q=q->right;
else break:

J
1f(g->info>v)

{
g-=1t=0;

N

)

Copyrighted material
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showtree(g->left, (col-4) . (row+3));
}

iflq-=rt==0)

{

}

gotoxy((col+2), (rowtl)):
textcolor{14);
delay(100):
printf{"\\");
if{{rowk2)==0)

gotoxy{ (col+3), (row+2) ),
textcolor(14);

delay{100);

printf{~|"}):
showtree{g-=right, (col+3}, (row+3)):
}

plse

{

gotoxy{(col+4), (row+2}):
delay(100):

textcolor(14):

printf{=\\"}:
showtree{g-=right, (col+4), (row+3)):
}

return;

}

/ / IRORDER
void inorder{struct btree *g)

int flag=0:
whilelg!=head)

{

if{flag==0)

{

while{g-=1t==0)
g=q-=left;

}

delay(350):

printf{~ Td\t" . g-=info);
flag=q->rt;

g=g->right.

281
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getchl );

)

/ {PREORDER
void preorderistruct btree *gj

{

int flag=0:
while(q!=head)

{

}

while{flag==0)
|

delay(350):
printf(~ ¥d\t™.g->info):
ifig-=1t==0}
J=q->laft;
else

preak ;

}

flag=q->rt;
qq->right

agetch():

}

{ fDELETE MODE
void delnode(int dd)

{

struct btree *g.*cur, *par:
int flag=0;

par=g=p.

while{q!=head)

1

if{g->info=dd)
{

par=J;
q=q->left:
continue:

\
if{g->info<dd)
{

par=q;
g=q->right;
cont inue;
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|
if{g-=info==dd)

{
flag=1:
break ;
}
}
if(flag==0)
1
printf(~ Value not found. press any key._ ."};
getchi}):
return;
}
Cur=q;
fiCase when current node is leaf node
if{cur->1t==1 && cur->rt=-=]1}
{
i f(par->info<dd)}
]
par-=right=cur->right:
par->rt=cur->ri:
}
elop
{
par-=left=cur->left;
par-=|t=cur->|t;
1
free(cur);
return:;

1
f/Case when current node has no left child
iflcur->1t==1 &% cur-=rt==0)
{
if{cur==p)
{
p=cur->right;
1T{p-=1t==1]
p-=laft=cur-=left;
frea(cur):
Feturn;

!
i f(par->info<dd)

{
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par->right=cur->right;
par=par-=right;
}
else
*.
par-=left=cur-=right:
par=par->left;
}
while{par-=1t==0)
par=par->left:
par-=left=cur->1eft;
free{cur):
return;
}

{fCase when current node has no right child
iflcur-=rt==1 && cur-=it==0)
\

if{cur==p)
[

pecur->left;

1f{p->rt==1)

p-=right=cur->right:
freglour);

return:

]

1 f{par-=1nfo<dd)

[
par->right=cur->left;
par=par-=right:

}

else

{

par-=left=cur->1eft;

par=par-=left;

1
whilelpar-=rt==0)
par=par->right:
par->right=cur->right:
free{cur):
return;

i
P

{/Gase when current node has both child
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In our work so far with binary trees we have benefited from using recursion, and for other classes
of trees we shall continue to do so. Employing recursion means reducing a problem to a smaller one.
Hence. we should see what happens if we take a rooted tree, an ordered tree and strip off the root. What
is then lefi is (if not empty) a set of rooted trees or an ordered set of ordered trees respectively.

The standard term for an arbitrary set of trees is forest, but when we use this term we generally
assume that the trees are rooted. The phrase ordered forest is sometimes used for an ordered set of
ordered trees, but we shall adopt the equally descriptive term orchard.

Note that we can only obtain a forest or an orchard by removing the root from a rooted tree, by
starting with a forest or an orchard, attaching a new vertex at the top, and adding branches from the
new verex (which will be the root) to the roots of all trees in forest or the orchard.

It is possible that a binary tree be empty; that is, it may have no vertices. It is also possible that a
forest or an orchard be empty; that is, it contains no trees. It is however, not possible that a rooted or an
ordered tree be empty, since it is guaranteed to contain a root at least. If we wish to stant building trees
and forests, we can note that the tree with only one veriex is obtained by attaching a new rood
to an empty forest, Once we have this tree, we can make a forest consisting of as many one-vertex trees
as we wish and attach a new root to build all rooted trees of height 1. In this way we can continue to
construct all the rooted trees in turn in accordance with the following mutually recursive definitions:

= A rooled tree consists of a single vertex v, called the root of the ree, together with a forest F,
whose those trees are called the subtrees of the root.

= A forest F is (possibly empty) set of rooted trees,

* An ordered ree T consists of a single vertex ¥V called the root of the tree. together with an orchard
0 whose rees are called subtrees of root V. We may denote the ordered tree with the ordered
pair

T={V, O}

= An orchard O is either empty set T or consists of an ordered tree T, called the first tree of the
orchard, together with another orchard € (which contains the remaining trees of the orchard).
We may denote orchard with the ordered pair:

0= (T, )

* The theorem between orchard and binary trees is as follows:
Let 8 be any finite set of vertices. There 15 a one-to-one correspondence f from the set of orchards
whose set of vertices is 8 to be the set of binary trees whose set of vertices is 8.

Rotations

Rotation is the transformation from orchard to binary tree. In a binary tree [v, f{Oy), f(y)] of the left
link from V goes to the root of the binary tree f0, ), which in fact was the first child of ¥ in the ordered
tree {V, (3, ). The right link from V goes to the veriex that was formerly the root of the next ordered tree
to the right, that is, “Left link’ in the binary tree corresponds to ‘first child’ in an ordered tree and
‘right link’ commesponds to ‘next sibling’. In geometrical terms, the transformation reduces to the
following rules:

1. Draw the orchard so that the first child of each vertex is immediately below the vertex, rather than
centering the children below the verex.



bl

to its nexi sibling,
Remove the remaining original links.

b

Adwnced Treer, lorests and (Urchands

Draw a vertical link from each vertex o its first child and draw a horizontal link from each vertex

4, Rotate the diagram 45 degrees clockwise so that the vertical links appear as left hinks and the

horizontal links as right links.

o O
C
O

C
O

Fig. 9.18 Ovrchard

Heavy links added
Broken links removed

Binary tree

Fig. 9.19 Conversion from Orchard to Binary Tree

EXPRESSION TREES

An ordered tree may be used to represent a general expression in much the same way that a binary iree
may be used to represent a binary expression. Since a node may have any number of sons, non leaf
nodes need not represent only binary operators but can represent operators with any number of operands.
Figure 9.20) illustrates expressions and their tree representations;

ix=vi+ 2}/ ({u=v)*wh+t)
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Fig. 9.20 Expression Tree

Mow consider the following expression:
E=v+ulx®*y-z

Before constructing the binary tree for expression E, first we consider the precedence of the operators
that lie in the expression. The precedence of the operators that lie in the expression E is as follows:

(i) /and * have highest precedence.
(i) + and - have lowest precedence

Fig. 9.21 Operator Precedence

Now the construction of the binary tree may be done in following steps:
(i) In the expression the operands of [ are u and x.
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Traversing the hinary tree of Fig. 9.22(b) is the same as traversing the ordered tree of Fig. 9.22(a).
However, a tree as such in Fig. 9.22(a) may be considered as a binary tree in its own right, rather
than as an ordered tree. Thus, it is possible to perform a binary traversal (rather than a general
traversal) directly on the tree in Fig. 9.22(a). Opposite Fig, 9.22(a) and (b} are the binary traversals of
the trees.

MNote that the preorder traversals of both the binary trees are the same. Thus, if a preorder traversal
on a binary tree representing a binary expression yields the prefix of the expression, that traversal on an
ordered tree representing a general expression that happens o have only binary operators vields prefix
as well. However, postorder traversal of two binary trees are not the same. Instead inorder binary
traversal of the second (which is the same as the inorder general traversal of the first if it 15 considered
as an ordered tree) is same as the postorder binary traversal of the first. Thus, an inorder general
traversal of an ordered ree representing a binary expression s equivalent to the postorder binary traversal
of the binary tree representing the expression which vields postfix,

Summary

& AVL trees are height balanced trees where the difference between heighis of left and right subtrees
rooted at any node cannot be larger than one.

% The fundamental operations, namely searching, insertion and deletion can be performed more
efficiently on AVL trees. The complexities of these operations on an AVL tree having *n" node is
Dilog,).

& In an AVL tree the only case that causes difficulty when the new node is added 10 a subiree of the
root that is strictly taller than other subtree then the height is increased. This would cause one
subtree to have height 2 more than other, whereas the AVL condition is that the height difference
is never more than 1.

% When an AVL tree is right high the action needed in this case is called left rotation. On the other |
hund when the tree is left high, the right rotation is performed. In some cases, the tree is needed |

_ o rodale twice, then the condition is called double rotation.

& In a binary tree, many nodes have one child or no children. The pointers for the empty children
for these nodes are set to NULL. A more effective utilization of these pointers is possible if
‘NULL’ left pointers are set to poini to the inorder predecessor of that node and *“NULL' night |
pointers are et o point 1o the inorder successor of that node. These pointers, so introduced, are |
called threads. Threads help in writing non-recursive versions of inorder, preorder and postorder |
traversal.

An ordered iree may be used to represent a general expression.

A forest F is a set of rooted trees.

An orchard O is either the empty set §, or consists of an ordered tree T, calle.dllmfirstlreeafme
orchard, tug:thﬂr wnh another ﬂrchan:l 0. !

—— e - ———— A — S — S -
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CHAPTER

1 0 Multiway Trees

et In a binary search tree each node contains a
523 TrEE: single key and points to two subtrees. One of
= "iulm"a!"' Search Trees these subtrees contains all the keys in the tree
58" Trees rooted at node that are less than the key in
& Heaps node and other subtree contains all the keys in
&  Construction of a Heap the tree rooted at node greater than (or equal

to) the key in node.

This concept is extended to general search tree in which each node contains one or more keys. A
balanced order n-multiway search tree in which each non-root node contains at least (n—1)/2 keys 15
called B-tree. A 2-3 tree is the most elementary B tree, with two or three elements per node. Heap is
another data structure used for implementing a priority quewe. This chapter gives a detailed descrniption
of Multiway trees.

2-3 TREES

The objective of various search trees is to organize data in such a way, that any sequence of search,
insertion and deletion operations can be performed in an efficient manner. It is already seen that AVL
trees serve this purpose by ensuring that the trees are height-balanced. But the algorithms for performing
these operations are very difficult to understand and implement.

A different technigue is employed to balance trees in another data structure known as 2-3 trees. A 2-
3 tree is a general tree which satisfies the following criteria;

+ Each non-leaf node in a 2-3 tree must have exactly two or three non-empty children, each of
which is a 2-3 tree in wrn.

= All leaf nodes must have the same level.

* The nodes which have two children contain exactly one key value ‘K’. Key values of all nodes in
the left child of these nodes are less than *K” and the key values of all nodes in the right child of
these nodes are greater than “K'.
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* Modes having three children contain two key values "K' and "K,". K < K,. The children are
ordered—Ileft, middle and right. Key values of all nodes in the middle subtree are more than K’ but
less than “K," and key values of all nodes in the right subtree are more than "K'

An example of a 2-3 wee is shown in Fig. 10.]. Each non-leaf internal node in a 2-3 tree has 2 or 3
children. If all non-leaf nodes in a 2-3 tree of height ‘h’ have three children then the total number
of elements would be (3™ - 1), simitlarly, if each node of 2-3 tree has two children then the tree has
(2™ _ 1) elements. Therefore, a 2-3 tree with “n” elements having height “h™ always satisfies the
following condition:

1.1-'1_] iniﬂhl—li

Fig. 10.1 A 2-3 Tree

Searching

To search for a key value 'K’ in a 2-3 wree represented by T, start searching from the root node of “T".
To search in a node with two children, compare "K' with kev]D]. If K" is less than key[0], continug
the search in subtree rooted at child[0)]; otherwise continue search in subtree rooted at child[1].

While searching in a node with three children, if K is less than kev{0], search in the tree rooted at
child|[0). Continue the search in tree rooted at child[1] if key[0] < K < key [1]; otherwise search the
tree rooted at child[2].

If 'K’ is equal to key[0] in a node having two children then the search terminates successfully and a
pointer to a node is retomed. Similacly, if K is equal 10 key[0] or key[1] in a node with three children
search process terminates successfully, If "K' does not exist in T already. then search process will
terminate unsuccessfully at a leaf node (with two or three children).

Insertion and Deletion

The process of inserting a key ‘K’ in a 2-3 tree begins by searching for "K' in ‘T". The search will
become unsuccessful at a leaf node *x" where 'K’ 15 said to be added. If 'x” has two children add ‘K’
in the array ‘key’ of x and increase the number of children of *x’. The insertion procedure is over. If *x'
is a leaf node with two key valves key[0] and kev[1] then *x" has to be split into two nodes ‘v" and ‘2",
y" will contain the key with the smallest value among ‘K, key[0] and key[1]; z will contain the largest
value among K, Key[0] and key[1].

Let the middle value among K, K[0] and K{1] is m. ‘'m’ is added 1o the parent node “p’ of x. If p has
two children then its number of children would increase with the addition of one key value “‘m’. If 'x’
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s child[i] of 'p’ before insertion then “y" will become @
child[i] of *p": ‘'m’ becomes key[i] of p and z would

becomes child[i+1] of “p’. These manipulations would

complete the insertion procedure in this case. If ‘p’ has

three children then p will be split (in the same way x was o 15) (24)

split) and the process conlinues upwards along the path

from *x" to the root. In case 'x" is the rootl then a new

node with two children is created which becomes the new

root with 'y’ as its left child and 'z asisrightchitd. G ) (9) (1) ()@ 3
Consider the tree shown in Fig. 10.2 and suppose we

want to insert the value 2. To insert the value, first we Fig. 10.2 Origal Tree

need to search the appropriate position for the value. The

searching process will terminate at the leaf node that @

contains the data 3 and 5. The value that is to be inserted,

i.e. 2 is added to this node (Fig. 10.3).
Adding 2 to the node that already contains 3 and 5 violates

the definition of 2-3 trees. To again make it a 2-3 tree, the m 9

median of the three values 2, 3 and 5 is taken and that

value is shifted w the parent of this node. In our case

median value happens to be 3 which is moved up to the

parent node. As a result the parent node now contains 3, 6 m o @ @ m

and 15. Also the node containing 2 and 5 is now split into

two different nodes containing values 2 and 5. These two Fig. 10.5 Thee Jer Adding 2

nodes are then attached as first and second child of parent node containing the data 3, 6 and 15 as

shown in Fig. 10.4.

SEIDEENC)
QOO ) BE&_®

Fig. 10.4 Nodes Artached as First and Second Child of Parent Node

Now the node containing 3, 6 and 15 violates the rule of 2-3 tree. So again the same process of
finding the median of the three values and shifting that value to parent node is repeated. In our case, 6 is
shifted to its parent node that contains a value 20. This time the node that contains value 3 and 15 is split
in such a way that 3 forms the left subtree and 15 forms the middle subtree of the root node that
contains the values 6 and 20

Also, the old child that contains a value 5 and 9 now becomes the right and left child of the nodes that
contain the values 3 and 15 respectively. The final 2-3 tree is shown in Fig. 10.5.
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G_ 2
() (1) (24
ONONONOROICE

Fig. 10.5 The Final 2-3 Tree

The process of Deletion of a value from a 2-3 tree is exactly reverse of insertion. In case of insertion
the node where the data is (0 be inserted 1s split if it contains maximum number of valoes (i.e. two
values). But in case of deletion, two nodes are merged if the node of the value to be deleted contains

mintmum number of valves (1.e. only one value).

Consider the tree shown below,
x>
(3) (15 (24)
ONONONONOIED

Fig. 10.6 Tree before Defetion of a Value

Suppose the node that contains the value 17 is to be deleted. The parent holds the value 6 and 15 and
15 is predecessor of 17. Hence, 17 is replaced by 15 and then is merged with its sibling, i.e. with 9. Then

the node that contains 9 and 15 is made the right child of the node that initially contained the values 6
and 15 and now contains only a single value 6 (as 15 is shifted to the place of deleted node) as shown in

@
o o
THED OE»

Fig. 10.7 Tree after Deletion of a Value



MULTIWAY SEARCH TREES

Binary search trees generalize directly to multiway search trees in which, for some integer m, called the
order of the tree, each node has at most m children. If K £ m 13 the number of children, then nodes
contain exactly K-1 kevs which partition all the keys into key subsets. If some of these subsets are
empty, then the cormesponding children in the tree are empty,

Balanced Multiway Trees

Our goal is to devise multiway search tree that will minimize file accesses. Hence, we wish to make the
height of the tree as small as possible. We can accomplish this by ensuring first that no empty subtrees
appear above the leaves (s0 the division of kevs into subsets is as efficient as possible); second that all
leaves be on the same level (so that searches will be guaranteed to terminate with about the same number
of accesses) and third, that every node (except the leaves) has at least some minimal number of children.
We shall require that each node {except the leaves) has at least as many children as the maximum
possible. The condition leads to the following defimtion.

A B-tree of order m is an m-way tree in which

* Allleaves are on same level.

* All internal nodes except the root have al most m (non-empty ) children, and at least [m/2] non-
empty children.

* The number of keys in each internal node is one less than the number of its children, and these

keys partition the keys in the children in the fashion of a search tree.

The root has at most m children, but may have as few as 2 if it is not a leaf, or none if the tree

consists of the root alone,

Insertion in a B-Tree

The B-trees are not allowed to grow at their leaves; instead they are forced to grow at the root. The
general method of insertion is as follows:

= First a search is made to see if the new key is in the tree. This search will terminate in failure at a
leaf.

* The new key is added to the leaf node. If the node was not previously full, then insertion is
finished.

* When a key is added to a full node, then the nodes split into two nodes on the same level except
that the median key is not put into either of the new nodes but instead sent up the tree to be inserted
into the parent node.

* When a search is later made through a tree, a comparison with the median key will serve to direct
the search into proper subiree.

* When a key is added to full root, then the root splits into two and the median key sent upward
becomes a new rool.

The process can be undersiood with the example given below. The following kevs are inserted in a
B-tree of order of 5.

agfbkdbhbmjesirxclntiup
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The first Tour keys will be inserted into oneé node, as shown below:

l.agfhb:
BOEE

They are sorted into proper order as they are inserted.

(T
\Fhﬂl

Now the insertion of k causes the node to split into two and the median key [ moves up to enter

a new node,
J.od,hm:
f I
HODOEOononn

Mow since the split nodes are now only half full, the next three keys can be inserted without
difficulty. However, these simple insertions can require rearrangement of keys within a node.

4 j:
[ 1]
HODOENODERRDOR

The next insertion j again splits a node and this time it is j itself that is the median key and therefore
maves up 1o join an the root.
S.esir:

[ ]
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IO OENNCOOipanalannlanas

The insertion p splits the node originally contaimng k, I, m, n sending median key m upward into
the node containing e, f, j, r which is however already full. Hence, this node in turn splits and a
new node containing j is created.

Deletion in a B-Tree

During insertion, the new key always goes first into leaf, If the key that is to be deleted is not the
leaf then its immediate predecessor or successor is promoted into the position of the deleted key. The
natural order of keys are guaranteed to be in the leal nodes. Hence, we can promote the immediate
predecessor or successor into the position occupied by the deleted key and delete the key from leaf.

If the leaf contains more than minimum number of keys, then one can be deleted with no further
action. If the leaf contains the minimum number, then we first look at the two leaves (or in case of a
node on the outside, one leaf) that are immediately adjacent and children of same node. If one of these
has more than the minimum number of keys, then one of them can be moved into the parent node and
the key from the parent is moved into the leaf where the deletion is occurring.

If finally the adjacent leaf has only the mimmmum number of kevs, then the two leaves and the median
key from the parent can all be combined as one new leaf which will contain no more than the maximum
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number of keys allowed. If this step leaves parent node with too few keys, then the process propagates
upwards. In this case, the last key is removed from the root, and then the height of the tree decreases.
The process of deletion in the B-tree of order 5 is shown in the figure below.

1. The first deletion h, is from a leal with more than the minimum number of keys and caoses no

problem.
Ll

LN T

2. The second deletion r is not from a leaf, and therefore, the immediate successor of r, which is s,
is promoted into the position of r, and then s is deleted from the leaf.

1]

Profmotes &

TEENTEEOER DR e

3. The third deletion p leaves its nodes with o few keys. The key s from the parent node 15
therefore brought down and replaced by the key L.
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The next is deletion of d. This deletion again leaves the node with too few keys and neither of its
sibling nodes can spare a key. The node is therefore combined with one of the siblings and with the
median key from the parent node, as shown by the dotted line in the diagram and the combined node a,
b, ¢, e in the other diagram. The process however leaves the parent node with only the key f. The top
three nodes of the tree must therefore be combined.

sledeled LRl LRl =y gl

B* TREES

Ome of the major drawbacks of B tree is the difficulty of raversing the ree sequentially. An improvement
over B-tree is B” tree which retains the rapid random access property of the B-tree while also allowing
rapid sequential access. In BT trees all the keys are maintained in leaves and all non-leaf nodes contain
the replication of keys to define path for locating individual record. The leaves are linked together to
provide a sequential path for traversing the key.
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The linked list of the leaves is called a “sequence set”, The B* tree may be considered 1o be a natural
extension of an indexed sequential file. Each level of the tree is the index to the succeeding level and the
lowest level of the sequence set is the index to the file itself.

Insertion into B* trees proceeds much like B-trees except that the node is split, the middle key is
retained in the left half node as well as being promoted to the father.

When a key is deleted from a leaf it can be retained in non-leaf node. Time complexity in a B* wree for
searching algo is 0(1).

Additional advantage of a B” tree is that no record pointers are required to be maintained in a non-leaf
node which increases the potential order of tree.

HEAPS @

A binary heap is a simple data structure that efficiently @ @
supports the priority queue operations.
A binary heap (or simply heap) is a complete binary tree

in which the key value stored at any vertex is less than or @ e@ @
equal to the key values of its children.

There are two types of heaps—If the value present at any
node is greater than all its children then such a tree is called @ @ '@

max-heap or descending heap. In case of a min-heap or Fig. 10.8 Descending Heap
ascending heap the value present at any node is smaller than &

all its children. Figure 10.8 shows the descending heap.

Insertion of a Node in a Heap

To insert an element to the heap, the node is inserted after the
last element in the array and is compared with its parent that
is present at (2)™ position. If it is found to be greater than
its parent then they are exchanged. This procedure is repeated
till the element is placed at its appropriate place.

Consider the example in which a node containing a value
24 is inserted in the tree shown in Fig. 10.9.

For the tree given above consider the following array: Fig. 10.9 Insertion of a Node in a Heap

al0] a[l] a[2] a[3] a[4] al5] al6] al7] al8] al9]
allooo] 36 [ 32 |29 [17 [ 22|20 |28 |16 [14 |

al10] a(11] al12] a[13] a[14]
[ 15 [w [w W ]|w |

From the array given above we can see that the root node of the tree starts from the index 1 of the
array. The Oth element is called the senitel value that is the maximum value and is not the node of the
tree. It can be any number, say 1000. This value is required because while adding new node, certain
operations are performed in a loop and to terminate the loop senitel value is used.
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Adjustment of nodes starts from the level one less than the maximuom level of the tree (as the leaf
nodes are always heap). Each subtree of that particular level is made a heap. Then all the subtrees at the
level two less than maximum level of trees are made heaps. This procedure is repeated till the root node
gets the maximum or the minimum element in the list. As a result final tree becomes heap.

For example, consider an array that contains 15 elements given below:

6,8, 24,17, 22, 25, 15, 18, 35,40, 2,32, 1,4, 10
The tree can be constructed from the armay as shown in Fig. 10.12.

Fig. 10.12 Tree Construction from the Array

Steps to Construct Heap

1. The first step is to consider the elements present at

a level one less than the maximum level, From the

tree above these are 17, 22, 25 and 15. They are

converted to heaps in the same way as replacing Fig. 10.13 Step 1

the node of a heap. This is shown in Fig. 10,13,

In the next step the elements that are present at a level two less than the maximum level of the tree

are considered. The elements in our case are 24 and 8.

3. Likewise, in cach step one level is decremented and all the subtrees at that level are converted to
heaps.

3

As a result, the entire tree gets converted to a heap.

Fig. 10.14 Step 2 Fig. 10.15 Step 3
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Summary

= A different way to construct a height balanced tree is possible if some restrictions are applied on
the non-leaf nodes. This is done in a 2-3 tree where all non-leaf nodes must have either two or
three children.

* The process of insertion and deletion operations in 2-3 tree involves splitting a node or merging
two nodes. '

= A B-tree of order “m"” is an m-way search tree where each node except the root must have [m/
2] children at most “m™ children. The root node is allowed to have two children at the minimum.

* The searching, insertion and deletion operations on a B-tree are same as that of 2-3 tree. It is
interesting to note that B-tree grows or shrinks upwards during insertion and deletion of key |
values.

* Heap is another data structure for implementing a priority queue. A heap is a complete binary tree 'I
with a special property. This property states that the key value at any node is greater than or equal |
to the key values of both its children. '

Multiple Choice Questions

1. Which of the following statements is Troe in view of multiway search ees? If a node has
a. 4 subtrees, it contains 3 keys
b. 5 keys, it has 7 subtrees
¢. 6 sublrees, il contains 6 keys
d. None of the above
2. The element at the rool of the heap is
a. largest
b. smallest
¢. depending on type of heap it may be smallest or largest
d. None of the above

Fill in the Blanks

l. In a B-tree of order n, each non root node contains at least —_ keys. (n/n2)
2. The minimum nomber of kevs contained in cach non-root node of a B-tree of order 15 is

(79
3. AB-trecofordernisalsocalled . (n—(n-1}/n + (n-1}
4 A is acomplete binary tree where value at each node is at least as much as values at children
node. (heap/B-tree)
5 In a Baree of order m, no node has more than ____ subtrees. (m/n)
Descriptive Questions

. Insert the following keys into a B-tree of order (i) 3 (ii) 4 and (iii) 5.
10,24, 23, 31, 16, 26, 35, 29, 20, 46,
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CHAPTER

1 1 Searching and Sorting

Key Features

& Sorting—An Introduction
& Effidlency of Sorting Algorithms
& Bubble Sort

& Selection Sort

& Quick Sort

% Insertlon Sort

& Merge Sort

@ Binary Tree Sort

& Radix Sort

& Shell Sort

% Heap Sort

@& Searching—An Introduction

' @& Linear or Sequential Search

| & Binary Search

| & Indexed Sequential Search

Thi:.i chapter explores various searching
and sorting techniques. The process of identi-
fying or finding a particular record is called
“Searching”™ whereas “Sorting” implies ar-
ranging a set of data in some logical order.

The sorting methods can be implemented
in different ways—by selection, insertion or
merging. The mechanics of various sorting and
searching methods have been explored in this
chapter to enable a quick comparison between
them.

SORTING—AN INTRODUCTION

Sorting refers to the operation of arranging a
set of data in some given order. A collection of

records is called a list where each record contains one or more fields. The field, which contains unique
value for each record is known as the key field. For example, a telephone directory can be considered
as a list where each record has three fields—name, address and phone number. Being unique, phone
number can work as a key to locate any record in the list

Sorting is the operation of arranging the records of a table in some order according to an ordering
criterion. Sorting is performed according to the key value of each record. The records are sorted either
numerically or alphanumerically. The records are arranged in ascending or descending order depending
on the numerical value of the key. For example, sorting of a list of marks obtained by a student in the

class.

The methods of sorting can be divided into two categories:

* Internal Sorting
* External Sorting



308
Dara Srructures Using C

Internal Sorting

If all the data that is to be sorted can be adjusted at a time in main memory, then internal sorting methods
are used.

External Sorting

When the data to be sorted can't be accommodated in the memory at the same time and some has to be
kept in auxihary memory (hard disk, floppy, tape, etc.), then external sorting methods are used.

EFFICIENCY OF SORTING ALGORITHMS

The complexity of a sorting algorithm measures the running time of a function in which n number of
items are 1o be sorted. The choice of which sorting method is suitable for a problem depends on various
efficiency considerations for different problems. Three most important of these considerations are;

* The length of time spent by programmer in coding a panticular sorting program.
* Amount of machine time necessary for running the program.
* The amount of memory necessary for minning the program.

To get an idea of amount of ame required to sort an armay of “n™ elements by a particular method, the
normal approach is to analyze the method to find the number of comparisons (or exchanges) required
by it. Most of the sorting methods are data sensitive and therefore, the metrics for them depend on
the order in which they appear in an input array. Various sorting methods are analyvzed in the cases
like—hest case, worst case or average case, Therefore, the results of these cases or analysis s often
a formula giving the average time (or number of operations) required for a particular sort of size n.

Most of the sort methods we consider have time requirements that range from {nlog n) to 0in’). A
sort should not be selected only because its sorting time is ({nlogn); the relation of the file size n and the
other factors affecting the actual sorting time must be considered.

A second method of determining the time requirements of a sorting technigque is to actually run the
program and measure its efficiency (either by measuring the absolute time units or the number of
operations performed).

The time needed by a sort depends on the original sequence of data. In some sorts, where input data
is almost sorted can be completely sorted in time 0{n), whereas input data that is in reverse order needs
time that is 0{n®). For other sorts, the time required is 0(n log n), regardless of the original order of data.
The original sequence of data can help us in deciding the sorting method to select.

Once a particular sorting technigue is selected the need is to make the program as efficient as
possible. Once a sorting program has been written and tested, the next major goal 18 to improve its
speed. Any improvement in sorting time significantly affects the overall efficiency, and a small improvement
in the execution of the method saves a great deal of computer time.

Space constraints are usually less important than time considerations. The reason for this can be, as
for most sorting programs, the amount of space needed is closer to ®n) than to On®). The second
reason is that, if more space is required, it can almost always be found in auxihary storage. An ideal sort
is an in-place sort where additional space requirements are 0(1).

The in-place sort manipulates the elements to be sorted within the array or list space that contained
original unsorted input.
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There is a relationship between time and space for sorting algorithms—those programs that require
less time usually require more space and vice-versa. There are some algorithms that use both minimum
time and minimum space, that is, they are 0(n log n) in-place sorts.

BUBBLE SORT

In this sorting method, to arrange elements in ascending order, we begin with the 0™ element and
compuare it with the 1* element. If it is found to be greater than the 1% element, then they are interchanged,
In this way all the elements are compared {excluding last) with their next element and are interchanged
if required. On completing the first iteration, the largest element gets placed at the last position. Similarly,
in the second iteration second largest element geis placed at the second last position and so on. As a
result, after all the iterations, the list becomes a sorted kst

Algorithm for Bubble Sort

1.

2.

6.

In the first iteration, 0 element 23 is compared with 1% element 15 and since 23 is greater than
15, they are interchanged.

Now the 1% element 23 is compared with 2™ element 29 but 23 being less than 29 they are not
interchanged.

Repe:lt the process until (n-2)" element is compared w|lh (n-1)" element. If during comparison,
{n-!} element is found to be greater than the {n—l} , then they are interchanged else noL
When the first iteration is over (n—1)™ element holds the largest number.

. Now the second iteration begins with 0" element 15. The above process of comparing a.mi

interchanging is repeated but this time the last comparison is made between (n-3)" and (n-2)™
elements.
If there are n number of elements in the input list, then (n-1) iterations need to be performed.

Program for Bubble Sort
The following program implements the bubble son algorithm:

/* Bubble sort. */
#include <stdio_h>
#include =conio.h=
void maing )

{

int arr[5] = {23, 15, 29, 11, 1} :

int 1, j. temp ;

clrscrl )

printf{ "Bubble sort_ \n™} :

printf("\nArray bDefore sorting:wn™)

for{i =0 : 1 == 4 ; i++}
printf{"Ed\t™. arr[i]}

for{i = 0 ;: 1 <= 3 : j++)

|
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for(j =0 :J<=3-1: %)
{
iflare[3] = arr[j + 17}
{
temp = arr[j] :
arr[j] = arr[j + 1] :
arr[j + 1] = temp

!

}

primtf{ " \mnArray after sorting:\n") :
for(1 =0 ; 1 =4 ; i++)
printf{"Idvt". arr[i])
getchi 3 ;
}
Output:
Bubble sort
Array bDefore sorting:
23 15 29 11 1
Array after sorting:
1 11 15 231 29

Hence. in the above program the elements are compared—arr{j] and arr{j+1]. If the element arr{j]
15 found greater than arr{j+1] then they are interchanged.
On the other hand 1o sort the list in descending order the comparisons are made as follows:

iflarr{jl < arr [j+1])

Complexity of Bubble Sort

Buhbble sort is data sensitive. The number of iterations required may be between ‘1" and “{n-1)". The
best case for bubble sort s when only one iteration is required. The number of comparisons required is
{m=1). This case arises when input array is already sorted.

The worst case anses when the given array 15 sorted in reverse order. In this case all the ilerations
required will be:

n=1) + (=2} + .. + 2 + 1| = ni{m=1)/2

In an average case to find the number of comparisons, one must find the expected number of
iterations first. An extra iteration is required to ensure that the sorting has been completed.

Worst case complexity = {n’)
Average case complexity = 0{n*)
Best case complexity = (n")
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23 15 29 I 1
|
15 23 29 il 1
[ %
15 23 29 11 1
S
[ 3
15 23 B 29 1
| I
15 13 §] | 29
First iteration
15 23 3] 1 29
[ %
15 23 B b 29
| I |
I
15 11 23 1 29
1
15 11 1 13 9
Second iteration
15 I | 23 29
[ &
15 11 l 23 29
| —
[ %
11 15 1 23 29
S
11 1 || 1s 2 29
Third iteration
11 TR 29
| M
! 11 15 23 29
Fourth iteration

Fig. 11.1 Bubble Sort
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SELECTION SORT

The selection sort is the easiest method of sorting. In this, 1 sort the data in ascending order, the o™
element is compared with all other elements. If the 0™ element is found to be greater than the compared

L%
23 15 20 11 I
| I
15 23 29 i 1
[ ¥
15 73 29 1 1
] |
[ t
1 23 29 15 1
[] !
[ 1 ] 73 29 15 11
Furst iteration
o 73 29 15 1
{ !
| 1+ || = 29 15 T
i |
{ }
[ 1 ] 15 79 73 1
[ |
1 11 29 23 ]
Second iteration
IR
| i 24 23 ]
| |
| )
| I EE 29 15
i |
1 11 15 29 23
Third iteration
3
I i1 15 || 23
S |
1 1 15 23 29

Fig. 11.2 Selection Sort

Fourth weration -
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element then they are interchanged. In this way, after the first iteration, the smallest element 15 placed at
oh position. The procedure is repeated for 1™ element and so on.

Algorithm for Selection Sort

Say an array arr contains 5 elements. The algorithm for selection sort is as follows:

2.

3.

4,
3.

6.

In the first iteration 0™ element 23 is compared with 1* element 15 and since 23 is greater than 15,
they are interchanged.

Now the 0™ element 15 is compared with the 2™ element 29. But 15 is less than 29, hence they are
not interchanged.

The process is repeated till the 0™ element is compared with rest of the elements, Durning the
comparison if 07 element is found to be greater than the compared element, then they are
interchanged, else not.

At the end of first iteration 0™ elements holds the smallest number,

The second iteration starts with the 1% element 23. The process of comparison and swapping is
repeated.

If there are n number of elements then after (n=1) iterations the array is sorted.

Program for Selection Sort

/* Selection sort. */
#include <stdio.h>
#include <conio.h>

void main( )

{
int arr[5] = {23, 15, 29, 11, 1} ;
int 1, j. temp :
clescrl )

printf("Selection sort.'\n”™)
printf("\nArray before sorting:\n") ;
for{i =0 ; 1 <=4 ; i++)
printf{"8d\t™, arr[i]) .
for{i =0 ; 1 <=3 : i++)
{
for(j =1+ 1:J<=4; j=)
{
iflarr(i] = arr[jl}
[
temp = arr[i] :
arr[i1] = arr[j] :
arr{j) = temp ;

}
1

br‘mtff“‘m‘-.nMray after sorting:in™) ;
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for{t =0 : 1 == 4 : ++)
printf{"E¥d\t™. arr(1]) :
getch( ) ;

Output:

Selection sort

Array before sorting:
23 15 20 11 1

aArray after sorting
111 15 23 29

In the above program, arr{i} is compared with arr[f], then they are interchanged. The value of j is
starting from i+1 as we need to compare any element with its next element till the last element of the

array.

Complexity of Selection Sort

Average Case Complexity = ﬂ{nr]l
Worst Case Complexity = {n")
Best Case Complexity = ({n’)

QUICK SORT

Quick sort is a very popular sorting method. [t was introduced by Haore in 1962, It is a very important
method of internal sorting. According to this algorithm it is faster and easier 1o sort two small armays
than one larger one. The strategy that quick sort follows is of divide and conguer. In this approach,
numbers are divided and again subdivided and division goes on until it is not possible to divide them
further. The procedure it follows is of recursion. It is also known as partition exchange sort. The
procedure of quick sort can be understood from Fig. 11.3 where **" indicates the pivot element and *e’
indicates the element whose position is Nnalized.

Algorithm for Quick Sort

In the first iteration, the 0™ element 10 is placed at its final position and the array is divided. Two
index variables a and b are taken to divide the array. The indexes are initialized n a way such that
a refers 1o the 1% element 1 and b refers to the (n-1)" element 2,

. The job of index variable a is to search an element that is greater than the value at 0™ location, So

a is incremented by one till the value stored at @ is greater than 0™ element. In our case, it is
incremented till 11, as 11 is greater than 10.

Similarly, b needs to search an element that is smaller than the 0™ element so b is decremented by
one till the value stored atb is smaller than the value at@™ location. In our case, b is not decremented
because 2 15 less than 10,

. When these elements are found they are interchanged. Again from the current positions a and b

are incremented and decremented respectively and exchanges are made appropriately if desired.

. The process ends whenever the index pointers meet. In our case, they are crossed at the value 0

and 20 for the indexes a and b respectively. Finally, the 0™ clement 10 is interchanged with the
value at index b, Le. . The position b is now the final position of the pivot element 10,
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Fig. 11.3 Quick Sort

6. As a result, the whole array 1s divided into two parts where all the elements before 10 are less than
10 and all the elements after 10 are greater than 10,

7. The same procedure is applied for the two sub-amays. As a result, at the end when all sub-arrays
are left with one element, the original array becomes sorted.

Program for Quick Sort

f* Quick sort., */

#include <stdio.h=
#include <conio. h>

int split(int*, int, int) :
votd main{ )

{
int arr[10] = {10, 1. 9, 11, 46, 20, 15, 0. 72, 2} ;
int 1
void quicksort(int *, int, int) ;
clrscrl )

primtf("Ouick sort.\n™) ;

printfi{ “wnArray before sorting:'n )

for{i =0 ; i =9 ; i++)
printf{“¥d\t”. arr[i]) :

quicksort{arr. 0, 9) :
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printf{“\nArray after sorting:\n"}) :

for{ i =0 ; i =9 ; i++)
printf({"§d\t”, arr[il} .
aetchi )
1
void guicksort(int z[ 1. int lower. int upper}
{
int i1 :
ifiupper > Tower)
{
1= split{z, lower, upper} :
quicksort(z, Tower, i - 1) ;
guicksort(z, 1 + 1, upper} :
}
]
tnt split(int z[ 1. int lower. int upper)
{
int 1, a, b, t ;
a = lower + 1 ;
b = upper :
i = z[lower] ;
whilelh »= a)
]
while{z{al < 1)
det
while(zfb] = 1)
b__ '
ifib > a)
|
t = z[a] ;
z[a] = z[b] :
z[b] =t ;
;
}
t = z[lower] :
Z[Vower] = z[b] :
z[bl =t :
return b ;
]

The arguments given to the function quicksort() indicate the part of the array that is being currently
operated on. The first and the last indexes are also passed to define the part of the array to be processed.
The initial call to quicksort() would contain the arguments 0 and 9. Since, there are 10 integers in the

array.
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In the function quicksort() the condition is checked whether upper is greater than lower, If the
condition is satisfied then only the array is split in two parts, otherwise the control will simply be
returned. To split the array n two parts the function split() 15 called.

In the function split(}, to start with, two variables a and b are taken which are assigned to the values
lower+1 and npper. Then the while loop is executed to check whether the indexes a and b cross each
other. If they are not crossed then inside the while loop two more nested while loops are executed to
mcrease the index a and decrease the index b to their appropriate places. Then it is checked whether b
is greater than a. If 5o, the elements at a™ and b™ positions are interchanged.

Then, finally when the control returns 1o the quicksort() two recursive calls are made to the function
quicksort(). This is done to sort the split sub-arrays. As a result, after all recursive calls, when the
control reaches the function main() the armays become sorted.

Complexity of Quick Sort

Assuming that the size of the file n is a power of 2, say n=2" so0 that m=log,n. Assume that the proper
position for the pivot always turns oot to be the exact middle of the subarray. In that case, there will be
approximately {n=1) comparisons in the first iteration after which the file is split into two subfiles each
of size n/2 approximately. For each of these two files there are approximately n/2 compansons and a
total of four files each of size n/d comparisons yield a total n/8 subfiles. Afier halving the subfiles n
tumes, there are n files of size 1. Thus, the total number of comparisons for the entire sort 18

n+2*(nf2)+4*(nd)+8*(n8) + .. +n*n/n)

iy

Nn+0+0+n+ ..+ ni{mterms). There are m  terms because the file is subdivided m times.

The total number of comparisons is n*m} or Wn log n) (as m=log,n). Thus, the best case
complexity can be Oin log n).

Suppose now, the array is sorted, and say the pivot value is in its correct position, then original file is
split inmto subfiles of sizes 0 and n-1. If this process continues, a total of n-1 subfiles are sorted, the
first of size n. the second of size n=1, the third of size n=2, and s0 on. Assuming, K comparisons to
rearrange a file of size K, the total number of comparisons to sort the entire list is

n + (n=1) + (n=2) + ... + 2 which is worst case complexity that is O(n®).

The efficiency of the quick sort method can be enhanced:

* Choosing a better pivol element
* Lsing berter algorithms for sub-lists
* Eliminating réecursions

INSERTION S5ORT

Insertion sort is performed by inserting a particular element ar the appropriate position. In insertion sort,
the first iteration starts with comparison of 1% element with the 0™ clement. In the second iteration 2™
element is compared with the 0™ and 1™ element. In general in every iteration an element is compared
with all elements. If at same pont it is found that the element can be inserted at a position then space is
created for it by shifting the other elements one position to the right and inserting the element al the
suitable position, This procedure is repeated for all the elements in the array.
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BINARY TREE SORT

Binary tree sort makes use of a binary search tree (BST). In this method, each element in the input list
i examined and placed in its proper position in a binary tree, In binary tree each element is known as a

node.

To place an element in an appropriate position. the element is compared with the node clement. I this
element is less than the element in the node, then it is moved to the right branch. Now, if we access the
elements according to inorder traversal (left, root, right), we would get the elements in ascending order.

Let us understand this by taking an array, say xarr, of 10 elements. The elements are
13, 4, 11, 17, 59, 27, 19, 3,92 5.
The tree buill from these elements will be:

& O &
Gy (& ®
(19

Fig. 11.6 Binary Search Tree

Algorithm for Binary Tree Sort

I. To create the binary tree we start with the 0™ element 13, It is the root of the tree.

2. While inserting the 1* element, i.e. 4, it is compared with its rool element 13, Since 4 18 less than
I3 it 1s made the left child of the root node 13.

3. While inserting the 2" clement of the list, i.e., 15, it is compared with the root element 13, Since
15 is greater than 13, it is made the right child of the root node 13,

4. Using the above procedure, all the elements are placed in their proper positions in the binary search
iree,

5. To get the elements in the sored order the tree is traversed in inorder. The inorder traversal of the
binary search tree lists the elements in ascending order.

Program for Binary Tree Sort

/* Binary Tree Sorting, */
#Finclude <stdio.h=
#include <conia, h>
#include <alloc. b
struct BinaryTres
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struct BinaryTree *LeftChild :
int data .
struct BinaryTree *RightChild :

void insert{struct BinaryTree **, int) ;
void inorder(struct BimaryTree *) ;
void main( )

{

}

struct BinaryTree *BTree

int Data(10] = {11, 2. 9, 13, 57, 25, 17, 1, 90, 3} :

int 1 ;

Biree = NULL ;

clrser{ ) ;

printf{"Binary tree sort.\n”) ;
printf{ \nArray:\n") ;

for{i =0 ; 1 == 9 ; j++)
printf(“3d\t", Datali]) :

for{1 =0 : 1 <=9 : j++)
insert(&BTree. Data[i]) :
printf{“\nln-order traversal of Binary Tree:\n") ;
inorder(BTree) .

getch( )

void insert{struct BinaryTres **sr, int num)

{

if(*sr == NULL)

{
*sr = malloc{sizeof(struct BinaryTree}} :
(*sr) -> LeftChild = NULL .
(*sr) -> data = num
(*sr) -> RightChild = NULL
}
else
{
if(num < (*sr) -> data)
insert(&((*sr) -> LeftChild), num} :
glse
insert(&((*sr) -> RightChild). num) ;
}

Copyrighted material
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}
void inorder(struct Binarylree ®sr)
{
iflsr 1= HULL}
{
inorder{sr -= LeftChild) ;
printf{"X¥d\t”™. sr -> data) ;
inorder(sr -= RightChild) ;
}
}

In the insert() function two paramelers are passed—one 18 the pointer 1o the node of the tree and
other is the data that is to be inserted. At the start the pointer to the node contains the NULL value, which
indicates an empty tree. To find whether the pointer is NULL condition is checked. IT it is found (o be
NULL a new node is created and the data that is to be inserted is stored in its data part. The left and the
right child of this new node are set a NULL value, as the node being inserted is always going to be the
beal node.

The data of the current node 15 compared with the data that 15 to be inserted if the tree or sub-tree 1s
not empty. If the data that is to be inserted is found to be smaller than the current node then a recursive
call 1s made to the insert(} function by passing the address of the node of the left sub-tree, otherwise
the address of the node to the right subtree is passed. The new node is inserted at a place when in the
recursive cell. .

The function inorder{) traverses the tree as per the inorder traversal. This function receives the
address of the root node as parameter. To find whether the pointer is NULL a condition is checked
whether the pointer 1s NULL. If the pointer is found to be NULL then the recursive call is made first for
the left child and then for the right child. The values passed are the addresses of the left and right
children that are present in the pointers left and nght respectively. In between these two calls the data of
the current node is printed.

The limitation of the binary tree sort is that extra space is required for constructing the tree.

Complexity of Binary Tree Sort

The worst case complexity is §{n”} whereas best case complexity and average case complexity are 0(n
log n).

RADIX SORT

The radix sort is used generally when we intend to sont a large list of names alphabetically. Radix in this
case can be 26, as there are 26 alphabets. Therefore, if we want 1o arrange a list of names we can
classify the names into 26 classes, where the (irst class consists of those names starting with *A’. The
second class consists of names starting with ‘B° and so on.

Al this can be done in first iteration. In the second iteration each class is alphabetized according to the
second letter of the name, and so on. The radix sort method is used by a card somer—A card sorter
contains 13 receiving pockets labelled as follows:

9I' E‘I ?1 ﬁl 5\ 4'1 3I' j'I' .I‘I {-}1 ll-lg I.zl- R- {Rejﬂ:t:l
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The radix sort is based on the values of the actual digits in the positional representation. For example,
the number 235 in decimal notation is written with a 2 in a hundred’s position, 3 in ten's position and 5

in the unit’s position.

The sorter used above uses decimal numbers where the radix is 10 and hence uses only the first 10
pockets of the sorter. Suppose we want 1o sort the following set of three digits numbers:

242, 986, 504, 428, 321

Pockets
Inputs |0 1 2 3 4 5 t B g
242 242
OR& GR&
504 S
428 428
321 32

Pockets Firat ieration
Imputs | 0 [ 2 3 4 5 i 8 ]
28 428
R i OhG
54 504
242 242
321 32

Second iteration

Pockets
Inputs 1 0 1 2 3 4 5 (i g &
GR5 GRb
242 242
428 428
321 Ly |
S04 S04

Third iteraiion
Fig. 11.7 Radix Sort
The sorted list is as tollows
986 | S0 428 321 242 j
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In the example given above in the first iteration, the unit's digits are sorfed into pockets and are then
collected from pocket 9 to 0. The digits sorted and collected are send as input 1o second iteration where
ten’s digits are sorted and again collected and send (o the third iteration where hundred’s digits arc
sorted and collected. Finally, it gives the sorted list.

Algorithm for Radix Sort

1. In the first iteration the elemenis are picked up and kept in various pockets checking their unit's
digit.

The cards are collected from pocket 9 to pocket 0 and again they are given as input to sorier.

In second iteration, the ten's digits are sorted.

Repeat through step 2.

In the final eration (in the above example) the digits at hundred’s position are sorted.

. Repeat through step 2.

Complexity of Radix Sort

The vme requirement for radix sort method depends on the number of digits and the number of elements
in the file. The loop is traversed for each digit (m times) and the inner loop is raversed (n times) for
each element in the file the sort is approximately ({m*n). The m approximates logn so that Im®*n)
approximates to {n log n).

Program for Radix Sort
/* Radix Sort */
# include<stdio.h=>
# includesmalloc h>

# include<stdlib. h=
struct node

{

il

int data ;
struct node *next:
b
typedef struct node nodel;
nodel *first:
nodel *pocket[100]. *pocketl[100]:
v01d create nodeinodel *, int);
woid display(nodel *):
nodel *radix sort{nodel *).
int large{nodel * }:
int numdig(int }:
int digit{int , int}:
void update(int, nodel *});
nodel *Make_Tink{int. nodel *);
f* This function creates nodes and takes input data */
void create_node(nodel *rec. int n)
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}
ro=rec
while(r != NULL})
{
int dig = digitir->data, j);
next = r->next
update(dig.r);
ro= pext:
}
if{r!= NULL)
{
int dig = digit{r->data.j):
update(dig,r);
}
while{pocketl{poc] == NULL)
poC ++:
rec = Make linki{poc, rec):
}
returnirec):

f* This function finds largest number in the 1ist */
int large(nodel *rec)

{

}

nodel *save
int p = 0;
Save = rec
while(save !'= NULL)
{
ifisave ->data » p)
{
p = save->data;
!
save = saye-»next :
}
printf(“\n Largest element: 4™, p);
returnip):

f* This function finds number digits in a number */
int numdig{int large)

{

int temp = large ;
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int num =0 :
while(temp = 0)
{
+HOum
temp = temp/10 ;
f
printf{“\n Number of digits of the number ¥d is 34", large, num):
returninum) ;

!

int digit{int num. int j)
{
int dig. 1. k:
int temp = num ;
for{i =0 :1 <] ; 1+)
{
dig = temp ¥ 10
temp = temp / 10
!
printf{~wn %¥d digit of number ¥d i3 3d°. j. num, dig);
return{dig):
|
/* This function updates the pockets value */
void update{int dig. nodel *r)

{

ifipocket[dig] == NULL)

{
pocket[dig] = r .
pocket1[dig] = r :

}

elsp

{
pocket{dig]-=next = r ;
pocket[dig] = r :

}

r->next = NULL:
i* This function creates links Detween the nodes */
nodel* Make Hink{int poc . nodel *rec)
{

int 1. 3. k:

nadel *pointer:
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rec = pocketl[poc]:
for(i = poc +1 ; i< 10 [ 1++)
{
pointer = pocket[1-1]:
ifi{pocket[i] "= NULL)
pointer-=next= pocketl{i];
else
pocket[1] = pointer
}
returnirec):
}
/* Main function */
yold main()
{
nodel *start. *pointer:
int number;
printf{"\n Input the number of elements in the 1ist:7):
scanf{~¥d”. &number):
start = (nodel *Imalloc{sizeofinodel});
create node(start, number);
printf{™wn Given 1ist is as follows \n"};
display(start};
start = radix sort{start);
printf{“\n Sorted list is as follows:\n");
display {start});
}

SHELL S5ORT

As we have seen, insertion and selection sort behave differently. Selection sort moves the entries very
efficiently but does not make redundant comparisons. In its best case, insertion sort does the minimum
number of comparisons but is inefficient in moving entries only one place al a time, as it compares only
adjacent keys.

If we were o modify i, first comparing the keys far apart, then it could sort the entries. Aftervards
the entries closer together would be sorted and finally the increment between the keys would be reduced
to 1 to ensure that the list is completely in order. This is the idea implemented in 1959 by Donald. L. Shell
i the sorting method bearing his name. The method is also called diminishing-increment sort. The
shell sort can be explained with the following example. Suppose we want to sort:

9, 1,4,6,3,5 7, 11,14, 10, 12,0, 2, &

The given numbers are first sorted at distance 5 from each other and then resorted with distance 3
and finally insertion sort has been performed:
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5 5 5
0 0
2 [ 2 2
6 f I 6 [ !
\ - :
9 g 8
1 | | 1]
4 4 1 4 l
8 & 9
n 10 I 1
12 12 I 12
;] ;

14 14
Fig. 11.8 Shel Sort

After getting the sorted list with distance 3 from each, other simple insertion sort is performed o
get the final sorted list.
It is not mandatory to make 5, 3 and | as incremenis. Many other choices can also be made, but it

should be considered that the choices like powers of 2 such as 8, 4, 2, | are not fruatful as the same keys
compared in one pass would be compared again at the nexi pass. Therefore, making other choices may
give better chance of obtaining new information from more of the comparisons.

The final iteration of shell son has increment 1, shell sort really is insertion son optimized by the
preprocessing stage of first sorting sublists using larger increments. Although the preprocessing stage
will speed up the sorting considerably by eliminating many moves of entnies by only one position.

Algorithm for Shell Sort

In the first iteration, the elements are sphitted with a gap of say, 5, 3, etc. and are sublisted.
The sublist obtained after splitting is again sorted.

The sorted sublist is recombined.

The sorted list, in the second iteration, is again sublisted with a gap (here, it 18 3).

. Repeat through steps 2 and 3.

Program for Shell Sort

/* Shell sort */

#include <stdio. h>

#include <stdlib h>

void shell_sort(int array[]. int size)

ol ol
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Complexity of Shell Sort

The analysis of shell sort may be guite difficult as the actual time requirement for a specific sort depends
on the number of elements in the array and on their actual values. It is better if the choice of increments
158 made of prime numbers as this guarantees that successive iterations intermingle subfiles so that the
entire file is indeed sorted and the span equals 1 on the last iteration,

Therefore, the shell sont can be approximated by On{log n®),
HEAP SORT

Heap sort is based on tree structure that reflects a particular order of a corporate hierarchy. As in an
organization structure of corporate management the President is at the top, when President retires Vice-
Presideni competes for the job and wins promotion and creates a vacancy. Hence vacancy continually
appears at the top, the employees are competing for the promotion, as each employee reaches the “wop of
the heap™ that position again becomes vacant. This example illustrates the idea underlying the heap sort
method.

Heap sort thus proceeds in two phases:

* The entries are arranged in the list satisfying the requirements of a heap.
* We repeatedly remove the top of the heap and promole another eniry to take its place.

In the second phase, we recall that the root of the tree (which is the first entry of the list as well as
top of the heap) has the largest key. This key belongs to the end of the list

The Heap sorn can be understcod from the following example—Assume that the array x that is o be
soried contains the following elements:

13,4, 11, 15,59, 27, 19, 3,92, 5

The first step now 1s to create a heap from the array elements. For doing this imagine a binary tree
that can be built from the array elements. The zeroth element would be the root element and left and
right child of any element x[i] would be at x[2*i+1] and x[2%i+2] respectively.

The binary tree of the given array will be:

13 4 11 15 59 27 19 1 02 5
Fig. 11.9 Blnary Tree
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92 | 59 | 27 | 15 13 11 19 3 4

Fig. 11.10 Heap Built from Binary Tree

Now the root element 92 is moved to the last location by exchanging it with 5. Finally, 92 is eliminated
from the heap by reducing the maximum index value of array by 3. The left elements are rearranged inio

heap.

©
@ @
O OIONO®

59 I3 7 5 13 11 19 3 4 92
Similarly, one by one root element of the tree is removed:
(27)
(1 (9
(s) Olomo.
a {a}
27 13 19 3 13 11 4 3 29 92

Heap after ehminating 59
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(k)
12| 15 | 1 5 I3 3 4 271 59 | 92
(15
(B, @
O
o e ic)
15 13 i1 5 4 3 19 | 27 { 59 | 92
(13)
(. @
e 0 (d)
I3 3 11 3 4 15| 19 | 27 | 59 | ¢
(1)
() @
©
(e}
11 5 4 3 13 15 1% | 27 | 59 | 92
(5)
®»
(f
5 3 4 11 13 | 15| 19| 27 | 59 | 92
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(2)
4 3 s luulnfis|w]|27] 59| 9
(h)
3 4 5 i1 i3 i5 19 | 27 59 1 92
Fig. 11.11 Heap
Program for Heap Sort

/* Heap Sort. */
#include =stdio.h>
#include <conio. h=

void creatheap(int [ ]. int) :
void sort(int [ ]. int) :

void main( )

{

}

int xarr[10] = {11, 2, 9, 13, 57, 25, 17, 1, 90, 3} :

int i :
clrscrl )

printf(“Heap Sort.\n") ;

creatheap(xarr, 10)

printf("\nBefore Sorting:\n”) :

for(i=0:1<9:

printf(TEd\t".

sort(xarr, 107 ;

ot )

darr[1]) :

printf{"\nAfter Sorting:in") :

for(i=0;1<=9;

T4+)

printf("¥d\t", xarr(i]) :

getch{ ):

void creatheap({int x[ ]. int n)

{

int i. val, s. f :
for{i =1 :1<n:

val = x[1] :
s =1 ;

jat)
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f=i(s-1)/12:
while(s > 0 B& x[f] = val)
{
k[s] = x[f] ;
5 =T ;
f=1{s -1}/ 2 ;
!
5] = val :
}
}
void sortdint x[ 1, int n)
)

int 1, 5, f, ivalue :
for{i=n=-1;9>0; 1--)
{
ivalue = x[i] :
x[1] = x{0] :
f=10:
if(y == 1}
5 =-1;
else
s =1 :
ifli > 2 && x[2] > =x[11)
5 =2 ;
while(s == 0 && ivalue < x[s5])
{
1] = x[s] ;
f=35:
s=2%f+1] :
if(s + 1 <=9 - 1 &8 x[s] < x[s + 11}
L

ifis=1-1)

}

X[f] = ivalue ;

}
|

In the program given above, two functions have been called from the main{}—creatheapd) agd
sort(). As the name suggests, creatheap() function is used to create the heap from the tree that can be
built from the ammay. It receives two parameters—the base address of the array and the number of
elements present in the array. Here, data of each element is compared with its child data and parent and
child data is swapped if required. The function sort is called by passing two arguments—the base
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address of the array and the number of elements in the heap. The function soris the heap by eliminating
the root elements one by one and moving them to the end of the array.

Complexity of Heap Sort

To analyze the heap sort, note that a complete binary tree with n nodes (where n is one less than the

power of two) has log(n+1) levels. Thus, if each element in the array were a leal, requiring it to be

filtered through the entire tree, both while creating and adjusting the heap, the sort would be Wn log n).
In the average case, the heap sort is not as efficient as the quick sort. However, heap sort is far

superior to guick sort in the worst case. In fact, heap sort complexity remains ({n log n) in the worst

case,

SEARCHING—AN INTRODUCTION

We often spend time in searching for the desired item. If the data is kept properly in sorted order, then
searching becomes very easy and efficient.

Searching is an operation which finds the place of a given element in the list. The search is said 1o be
successful or unsuccessful depending upon whether the element that is being searched is found or not.
Some of the standard searching methods are discussed below.

Linear or Sequential Search This is the simplest method for searching. In this method, the
element to be found is searched sequentially in the list. This method can be used on a sorted or an
unsorted list. In case of a sorted list searching starts from 0™ element and continues until the element is
found or the element whose value is greater than (assuming the list is sorted in ascending order) the
value being searched is reached. As against this, searching in case of unsorted list starts from the
element and continues until the element is found or the end of list is reached.
For example,

10 1 9 11 46 20 13 0 12 2

The list given above is the list of elements in an unsorted array. The array contains 10 elements.
Suppose the element to be searched is 46. S50 46 is compared with all the elements starting from the Oth
element and searching process ends where 46 is found or the list ends.

The performance of the linear search can be measured by counting the comparisons done to find out
an element. The number of comparisons is 0(n).

Program for Linear Search in Sorted Array

/* Linear search in a sorted array. */

#include <stdio.h=

#include <conio.h=

, yoid main{ )

{
int 1ist[10] = {0, 1. 2. 9. 10, 11, 15, 20. 46, 72} :
int 1. no ;:
printf{“Enter number to search: ) :
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scanf("¥d”, &no)
for(i =0 : 1 == § : j44)

'I

if{1ist[9] < no || Tist[i] == no)

{
if(1ist[i] == no)
printf(“The number 15 at position %d in the array.”. 1) :
glse
printf("Number is not present in the array.”) :
break :
}
j
getchl )

}

Here, inside the for loop it is checked whether list[%] is less than mo or list{i] is greater than or equal
o mo. If the condition is satisfied then again the condition is checked whether list]i] is equal (o mo,
Depending upon the condition, the desired message will be printed. In either case the for loop is terminated
because there is no point in searching the element further (as the list is in sorted order).

The number of comparisons in case of sorted list might be less as compared to the unsorted list
because the search need not always continue till the end of the list.

Program for Linear Search in Unsorted Array

/* Linear search in an unsorted array. */
#include <stdio.h=
#Finclude <conio.h=
void maing )
I
int 19st{10] = {10, 1. 9. 11. 46, 20. 15, 0, 72, 2} :
int i, no
printf{“Enter number to search: )
scanf(~%d™, &no) ;

for{i=10;1=<=9; i++)
{

if{1ist[1] == no)

break

]
i1 == 10)

printf({“Number is not present in the array.”)
else

printf{“The number is at position ¥d in the array.”. 1) ;

n

getch( ) :



= Data Structures Using C

In the program no is the number that is to be searched in the array list. Inside the for loop each time
list[i] 1s compared with noe. If any element is equal to no then that is the position of element where the
number being searched is found. Hence, break is applied to the for loop.

In case of a sorted list, searching of element starts from 0™ element, Searching ends when the
element is found or any element of the list is found to be greater than the element to be searched.

For example,

[
£

L0 | 0 | 11 |15 | 20 | 46 | T2

e

Sorted Array

BINARY SEARCH

Binary search technique is very fast and efficient. It requires the list of elements to be in sorted order.

In this method, to search an element we compare it with the element present at the centre of the list.
If it matches then the search is successful otherwise, the list is divided into two halves—one from the
0™ element to the centre element (first half), another from the centre element to the last element (second
half). As a result all the elements in first half are smaller than centre element whereas all the elements in
second half are greater than the centre element.

The searching will now proceed in either of the two halves depending upon whether the target
element is greater or smaller than the centre element. If the element is smaller than the centre element
then the searching is done in the first half, otherwise it is done in the second half.

The process of comparing the required element with the centre element and if not found then dividing
the elements into two halves is repeated till the element is found or the division of half parts gives one
element,

o1 T 2Tefw]ulis 20 [ 46 [ 72

Sorted List for Binary Search

Let us take an array arr that consists of 10 sorted numbers and 46 is the element that is to be
searched. The binary search when applied to this array works as follows:

{a) 46 is compared with the element present at the centre of list (i.e. 10) since 46 is greater than 10,
the sorting is done in the second half of the array.

(b) Now, 46 is compared with the centre element of the second half of the array (i.e. 20). Again, 46
is greater than 20, the searching will be done between 20 and the last element 72.

(¢) The process is repeated till 46 is found or no further subdivision of array is possible.

Program for Binary Search

/* Binary search in a sorted array. */
ginclude <stdio. b=
ginclude =conio. h=

i

void main{ )

[
1
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int Data[l0] = {0, 1, 2. 9, 10, 11. 15, 20, 46, 72} .
int Mid. Lower = [ , Upper = 9. Nom, Flag = 1 :
clrscr{ ) :
printf{"Enter number to search: ~) :
scanf{~%d4", &Num) :
printf{ The List of Data is nwn™):
printf{"X-205", "\nData™);
for{Num=0 : Num==Upper : Nums+ )

printf("%2d ~.DatalNum]);

printf(~%-205", "\nlndexdo. ") ;
for{ Num=0 ; Num<=Upper ; Nums+)

printf{"¥3d™ . Num);
for{Mid = (Lower + Upper) / 2 : Lower <= Upper) :
Mid = {Lower + Upper) / 2)

{
if(Data[Mid] == Num)
{
printt(\mnnitThe number is at position 3d n the array. .
Mid} .
Flag = 0 :
break
}
if(DatalMid] = MNum)
Upper = Mid - 1 :
else
Lower = Mid + 1 ;
}
if(Flag)
printf("\ntlement 15 not present in the array.”) ;
getch( )

}

In the program cach time through the loop arr{mid] is compared with nam as mid holds the index
of the middle element of the array. If the num is found then the search ends. If not then in further
searching it is checked whether num is present in lower half or upper half of the array. If num is found
to be smaller than the middle element then mid-1 is made the upper limit, keeping the lower limit as it is
otherwise mid+1 is made the lower limit of searching, keeping the upper limit as it is. During each
iteration the value of mid is calculated as mid = (lower+upper /2.

For binary search, maximum number of comparisons for successful and unsuccessful search is
given by O{loggn).

In comparison with sequential search it is found that the binary search is more efficient when any
element is likely to be searched. As in binary search. in each iteration the number of elements to be
searched redoces from n o n/2. On the other hand, sequential search checks sequentially for every
element in the list.
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INDEXED SEQUENTIAL SEARCH

Another technique to improve search efficiency for a sorted file is indexed sequential search, but it
involves an increase in the amount of memory space required. An anxiliary table called an index. is set
aside in addition to a sorted file. Each element in the index table consists of a key kindex and pointer to
the record in the file that corresponds o kindex. The elements in the index, as well as elements in the
file, must be sorted on the file.

The algorithm wsed for searching an indexed sequential file is simple and straight. Letr. K and key be
defined as before. Let kindex be an array of the keys in the index, and let pindex be the array of pointers
within the index to the actual records in the file, and the size of index is also taken in a vanable. The
indexed sequential search can be understood from Fig. 11.12.

Eeys Records

k T
Index 10

kindex pmdex 14
10

AL \\\ -

30
Fig. 11.12 Indexed Sequential Search

The advantage of indexed sequential method 15 that items in the table can be examined sequentially if
all records in the file have to be accessed. yet the search time for particular item is reduced. A sequential
search is performed on smaller index rather than on the larger table. Once the index position 15 found,
sgarch is made on the record table itself.

Deletion from an indexed sequential 1able can be made most easily by flagging deleted entries. When
sequential searching is done deleted items are ignored. The item is deleted from the original table.

Insertion into an indexed sequential table may be difficult as there may not be any place between two
table entries which may lead to a shift to a large number of elements.

However, the deleted items can be overwritten.

Summary |

& Sorting and searching are fundamental operations which are frequently used in many applications. |

4 Sorting refers to the process of arranging a list of elements in a particular order. The elements are |
arranged in increasing or decreasing order of their key values. |

4 In choosing the sorting method, take into account the ways in which the keys will usually be
arranged before sorting, the size of application, the amount of time available for programming, |
the need to save computer time and space, the way in which data structures are implemented, the
cost of moving data and cost of comparing keys.



& There are many metrics available for the purpose of comparison. The significant among them are
avernge and worst case complexities in terms of number of comparisons between two records,
the number of exchanges, transfer of records, etc.

% The insertion of records in the sorted list defines a class of sorting methods. These methods are
used to sort lists when records are obtained dynamically, Some of these methods include shuttle
sort, shell sort and insertion sort.

% The sorting methods can also be classified on the basis of selecting the smallest, second smallest
and third smallest elements and putiing these elements at their proper positions. Selection sort
and Bubble sort may come in these sorting methods.

@ Merge sort algorithm works on the concept of “divide and conquer”, which is one of the most |
widely applicable and most powerful methods for designing algorithms. It divides the input lists |
into two equal halves, sons them and finally merges these sorted lists, The merge son operations
can be done in linear time. The major shortcoming of this approach is that it requires a Oin)
additional space during merge operation.

% The comparizon between quick sort and merge sort is normal. The average number of comparisons
in merge sort is n log n, the same for quick sort is 1.39 n log n.

Review Exercise ' hea?+

Multiple Choice Questions
. Average case time complexity of the heap-sort algonithm is:

a. (Mn log.n)
b. Odn Inn)
¢. n’)
d. tin%)
2. Worst case fime complexity of heap sort algonthm is:
a. Mn log.n)
b. nlnnj
c. Bin°)
d. Oin’)
For sering contiguous lists of records guick son may be preferred over merge sort because:
4. it requires less tme always,
b, it does not require exira space for auxiliary memory,
€. it requires more programming ciion.
d. some programming languages do not support recursion.
4, In quick sort, the desirable choice for the panitioning element will be
i. first element of the hsi
b. last element of the list
&, median of the list
d. a rundomly chosen element of the list

e

LOpYrignied makertal
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Explain why it is desirable to choose all the incremenis of the shell sort so that they are relatively prime.,
Find the expected number of passes, compansons and exchanges for Bubble sort when the number of
elements is equal to 10", Compare this result with the actoal number of the operations when the given
sequence is as follows:

T.1.3,4,10,9.8,6,5.2

Write a C function that sorts a file by first applying the radix-sort to the most significant r digits. It then
uses insertion sort to sori the entire field.

Trace sequential search as il searches for each of the keys present in a lisi containing three tems,
Determine how many comparisons are made and thereby check the formula for the average number of
comparisons for a specessful search.

It is required to search an arbitrary array of “n’ elements w find he element closer o a given number,
Derive an algorithm based on the principle of linear search. Assuming that given number is not equal to
any of the array clements, find the expecied number of comparisons.



CHAPTER

1 2 Graphs

Key Features T ) ) _ _
his chapter discusses graphs in detail.
% Introduction to Graphs | Craphs can be regarded as data structures that
& Terms Associated with Graphs | embody relationships among the data more
* Sequentlal Representation of Graphs | complicated than those represented by a list or

% Linked Representation of Graphs

| .
% Traversal of Graphs L

) Many problems can be described by many
i ‘;..I";:t'.:_llsntil?zﬂrﬁﬂ to many relation among a set of objects. These

problems are best solved by using graphs.
% Application of Graphs Various basic terms and applications of graphs
have also been explained in this chapter,

INTRODUCTION TO GRAPHS

A graph is a data structure that is used to represent a relational data, ¢.g. a set of terminals in a network
or a roadmap of all eities in a country. Such complex relanonship can only be represented using a graph
data structure.

Mathematically, a graph can be defined as a set of two tuples such that G=(V, E) where G is graph,
V represents vertices and E indicates the set of edges of graph G.

Consider the graph given below:

Fig. 12.1 Graph

The set of vertices in the above graph is {A, B, C, D, E} and the set of edges will be {{A, B), (A, D],
(A, C), (C, D), (C, E}}.
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TERMS ASSOCIATED WITH GRAPHS

Directed Graph A directed graph G is also called digraph which is the same as multigraph except
that each edge e in (G is assigned a direction or in other words each edge in G is identified with an
ordered pair (U, V) of nodes in G rather than an unordered pair. Figure 12.2 illustrates three directed

ooo Ve
& ©
H ®©6 ® o

la) by G
Fig. 12.2 Directed Graphs

The set of edges for the graph in Figure12.2(b) is {<A, B>, <A, C>, <A, D>, <C, D=, <F, C>,
<E, G>, <A, A>}. We use angle brackets to indicate an ordered pair,

A directed graph G is said to be connected or strongly connected if for each pair (U, V) of nodes
in G there is a path from U to ¥ and there is also a path from V1o U,

A directed graph G is said to be simple if (G has no parallel edges. A simple graph G may have loops
but it cannot have more than one loop at a given node.

Undirected Graph  An undirected graph G is a graph in which each edge e is not assigned a direction.
Examples of undirected graphs can be seen in Fig. 12.3 given below:

ﬁv@ () (B) Gvﬁ

Fig. 12.3 Undirected Graph

Connected Graph A graph is called connected if there is a path (A) (B)

from any vertex to any other vertex. An example of connected graph v

can be seen in Fig. 12.4. ' ‘
A graph G is connected if and only if there 15 a simple path between G‘e

any two nodes in G, A graph G is said to be complete if every node U
in G is adjacent 1o every other node Vin G. A complete graph withn ~ Fig. 12.4 Connected Graph
nodes has:

n* %edge&.
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Multiple edges Distinct edges e and e are called multiple
edges if they connect the same end points, i.e. il ¢ = (U, ¥} then
e = (U, V).

Loops Anedge e is called aloop if it has identical end points, i.e.
e=(, U). The definition of a graph generally does not allow multiple
edges or loops.

Path A path is a sequence of distinel vertices, each adjacent to
the next. Figure 12.5 shows a path.
The length of such a path is number of edges on that path.

Cyele A path from a node to itself is called a eyele. Thus, a cycle
is a path in which the initial and final vertices are same. For example,
consider the graph given in Fig. 12,6,

The path (A. B, C, A)yor (A, C, D, B, A} are cycles of different
lengths in the graph. If a graph contains a cycle, it is cyclic,
otherwise it is acyclic. A directed graph is also referred to as DAG.

[Mote A graph need not be a tree but a tree must be a graph.]

Therefore, a free tree is defined as a connected undirected graph
with mo cycles as shown in Fig. 12.7.

Degree, incidence, adjacency A vertex V is incident to an
edge € if V 15 one of the two vertices in the ordered pair of vertices
that constitute e.

The degree of a vertex is the number of edges incident to it

The Indegree of a vertex 'V is the number of edges that have ¥
as the head and the outdegree of vertex V is the number of edges
that have ¥ as the tail {Fig. 12.8].

Figure 12.8 has a vertex ¥V which has indegree 1, outdegree 2
and degree 3,

A vertex 'V is adjacent to vertex U if there is an edge from U 1o
V. If V iz adjacent to U, V is called a successor of U and U a
predecessor of ¥,

Weighted Graph A weighted graph is a graph in which edges
are assigned weights. This is often required to model certain physical
situations by means of a graph. Consider the graph below whach
has weights. Weights in the graph denote the distance between the
vertex connected by the corresponding edges.

Weights of an edge is also called its cost. In case of o weighted
eraph, an edge is a 3-wple (U, ¥, W), where U and V denote vertices
connected by an edge and w denotes the weight of the edge.

(D) ©
Fig. 12.5 Pach

(A
Geﬁ

Fig. 12.6 Cycle

Fig. 12.7 Free Tree

Fig. 12.9 Weighted Graph

Sub-Graph and Relation A graph G’ is called a subgraph of G=(V, E) if V' is a subset of V and E*
is 4 subset of E. For G to be a subgraph of G all the edges and vertices of " should be in G.
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Adjacency mairices of undirected graphs have a number of interesting properties. Since self loops
are not allowed in undirected graphs, the main diagonal contains zeros only. Moreover since (i, j) and (j,
i) represent the same edge in an undirected graph, the adjacency matrix of an undirected graph is
symmetric about its main diagonal. Consider an undirected graph given below:

The adjacency matrix for the graph in Fig. 12.12 is as follows:

0 1 0 1 0} v Vi
1 0 0 0 1
A=|0 0 0 0 1
vl
1 00 01 v,
o 1110 Fig. 12.12 Undirected Graph

Path Matrix
Let G be a simple directed graph with m nodes V, V; ... ¥V, The path matrix or the reach ability matrix
of (5 is the m-square matrix P = {Pujl defined as follows:
P. = {1 if there is path from V, tn"yfj]}
Y| D otherwise.
Suppose there is a path from ¥, to ¥V, then there must be a simple path from ¥, 1o ¥, or there must

be a cycle from V, to "'f’l when V= Tr'l. Since G has only m nodes, such a simple path must have length
m=1 or less, or such a cycle must have length m or less. This means that there is a non-zero ij entry in

the matrix B
Incidence Matrix

Let ‘G be a graph with n vertices, ‘e’ edges and no self loops. Consider a (n*e) matrix A = (a;) whose
rows are equivalent to the *n’ vertices and the columns to “e’ edges as follows:

1if e, is incident to Vertex
%= 10 orherwise

This kind of a matrix is known as the incidence matrix of a graph. Consider the graph given in
Fig. 12.13.

O

®

Fig. 12.13 Graph
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The incidence matrix of above graph will be

1 my (L2 (L3 L4 133 L3 435 158
o1 1 ] 0 0 0 0 0 0
1]-1 f -1 1 l ] ] 0 i
21 0 1 1 4] 0 1 i 0 0
R 0 ] -1 i -1 o 0 0
4| 0 0 ] {1 -1 0 U k f
51 0 -1 1] 0 0 0 i i I
g 0 ] 1] { 0 i) L] L] 1

Fig. 12.14 Incidence Matrix

The elements ‘a“‘ of an incidence matrix of a directed graph are defined as follows:
ay = 1 if "e" is incident out of "V’
= -1 if "e;" is incident into "V
= 0if "e;" is not incident to "V}’

Since every edge is incident to exactly two vertices, each column of A has two 18 for undirected
graphs. The number of 1s in a row gives the outdegree and the number of (=1) in a row gives the
indegree of the vertex in a directed graph.

Edges that are paralle]l in a graph produce similar columns in its incidence matrix. It may be recalled
that an adjacency matrix cannot be used to represent a graph with parallel edges. However, incidence
matrix requires more spaces than adjacency matrix as this is a (n*e) matrix and vsuvally, e>n.

LINKED REPRESENTATION OF GRAPHS

Let G be a directed graph with m vertices. The sequential representation of G in memory, ie. the
representation of G by its adjacency matrix A has a number of major disadvantages. First of all it may
be difficult to insert and delete nodes in G. This is because the size of A may need to be reordered so,
there may be many changes in matrix A. Thus, a graph G is usually represented in memory by a linked
representation.

Consider the graph G. Table 12.1 shows cach vertex in G followed by its adjacency list, which is ts
list of nodes also called its successors or neighbours. Figure 12,15 shows a diagram of linked representation
of {z in memory. Specifically the linked representation will contain two lists (or files), a node vertex list
and an edge list, as follows:

Tahllt 12.1 Vertex and adlacency list

A D
Vertex Adjacency List
A B.C. D E
B C
C -
D CE B C
E C Fig. 12.15 Linked Representation of a Graph
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VERTEX LIST  EDMGE LIST

Alwe | = Be|mw» Ce| = =e | =
B|w» | = Cw N

'

e N

1

1

| w | = [ B E oM

¥

Eln|e cefn|

Fig. 12.16 Linked Representation

Adjacency List Representation
In this representation, the m rows of the adjacency matrix are represented as n linked lists. There is one
list for each vertex in the graph. The nodes in list | represent the vertices that are adjacent from vertex i

Each list has a head node. The head nodes are sequential providing easy random access to the adjacency
list for any particular vertex, The adjacency list for graphs G1 and G2 are shown in Fig. 12.17.

Vertex | 2 M
Veriex 2 1 | A 3N
Viertex 3 M

Ciiven a vertex in a directed or undirected graph we may wish to visit all vertices in the graph that are
reachable from this vertex. This can be done in two ways—Depth first search and Breadth first

search.

TRAVERSAL OF GRAPHS

In many sitnations we may intend to examine all the vertices in a graph in some systematic order.
Traversal of a graph implies visiting each of its vertices exactly once. The two commonly used technigues
are:

= Depth First Search (DDFS)
* Breadth First Search (BFS)
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Gl o
o‘ a et of verinces = {1, 2, 3, 4}
'l', Set of edges = {(1, 2, (1, 3, (1, 4), (2, 3). (2, 4), (3, 4))

Directed G2
GRAFH
Set of vertices = {1, 2, 3}
Set of edges = {<1, 2>, <2, 1= <2, 3=}

Vertex | 2 3 4 | N
Vertex 2 1 3 4 | N
Vertex 3 = | 2 4 | N
Wertex 4 1 2 I N

Fig. 12.17 Adjacency List for G1

Depth First Search (DFS)

This is a popular technique for systematically traversing the vertices of a graph. This method starts
traversing the graph from a given vertex "V', that is 'V’ is the first vertex to be visited. The next
vertex to be visited is an unvisited vertex adjacent to "V, If *Vy has a number of unvisited adjacent
vertices then any one of them may be selected for visiting next. Once a vertex is visited, it is marked as
*visited' to make the task of finding unvisited adjacent vertices easier. Thus, from any veriex “V,', a
new adjacent unvisited vertex V" is explored. Next, another new vertex adjacent to *V;" is explored
without traversing along other edges incident to *V,". When a vertex 'V' does not have any unvisted
adjacent vertex "V " then depth first search is initiated from the vertex "V '. The process continues
until all adjacent vertices of the starting veriex have been visited.

Algorithm for Depth First Search This algorithm executes a depth first search on a graph G,
beginning at a starting node A.

1. Initialize all nodes to the ready state (STATUS = 1).

2. Push the starting node A onto STACK and change its status to the waiting state (STATUS=2).
3. Repeat steps 4 and 5 until STACK is empty.

4. Pop the top node N of STACK. Process N and change its status to the processed state (STATUS=3).
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5. Push onto STACK all the neighbours of N that are still in ready state (STATUS=1), and change
their status to the waiting state (STATUS=2).
6. Exit
Consider the graph G given in Fig. 12.18. Suppose we want to find and print all the nodes reachable
from the node J (including J itself). The steps for the Depth—first search will be as follows:

A
F B
D (i
] K
Flg. 12.18
ia) Imitially. push J onto stack as follows;
STACK : J

(k) Pop and print the top element J, and then push onto the stack all the neighbours of J (those that are
in ready state) as follows:

Print J STACK D, K

{c) Pop and print top element K. and then push onto stack all the neighbours of K (those that are in
ready state) as follows :

Print KSTACK D, E, G

(d} Pop and priat the top element G, and then push onto stack all the neighbours of G (those that are
in ready state).

Print G : STACK D, E, C

Moie that only € is pushed onto the stack, since the other neighbour, E, 15 nodt in the ready state
{because E has already been pushed onto the stack).

{e) Pop and print the top element C and then push onto the stack all the neighbours of C (those that
are in ready state) as follows:

Print C STACK DL E, F
() Pop and print the top element F (those in ready state) as follows:
Print F: STACK D, E
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Note that only neighbour I of F s not pushed onto the stack, since I is not in the ready state
(because D has a already been pushed onto the stack).

(g} Popand print the top element E and push onto the stack all the neighbours of I (those in the ready
state) as follows:

Print E: STACK: D

Note that none of the three neighbours of E is in the ready state.
{h} Pop and print the top element D, and push onto the stack all the neighbours of I (those in the
ready state) as follows:

Print D: STACK: emplty

The stack is now empty, so the Depth first search of G starting at J is now complete, Accordingly,
the nodes which were printed,

K G, CEE,D
are precisely the nodes which are reachable from J.

Analysis of Depth First Algorithm If G is represented by its adjacency list then the vertices W
adjacent to V can be determined by following a chain of links.

Since the algorithm DFS would examine each node in the adjacency list at most once and there are 2e
list nodes, the time to complete the search is (e).

If G is represented by its adjacency matrix, then the time to determine all vertices adjacent to V is
Wn). Since at most B verices are visited, the total tme is ﬂ-[ni}.

* Program that implements depth first search algorithm. */

#include <stdio.h>
#include =conio.h=>
#include <alloc.h=
#define TRUE 1
#define FALSE 0
#define MAY B
struct node
{
int gata -
struct node *next
} o
int wisited[MAX]
votd dfs( int. struct node **) :
struct node * getnode writelint) :
vold delistruct node *) .
void main( )
1
struct node *=arr[MAX]
struct node *vl. *v2, *3, *vd .
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int 1
clrserd )
vl = getnode write{2) :
arrf0] = vl
¥l -> next = v2 = getnode write ( 3 )
vZ -= nest = NULL :
vl = getnode_write(l) :
arr[1] = vl ;
vl -> next = vZ2 = getnode write(d) :
vZ -= next = v3 = getnode write(5) ;
v -> next = NULL ;
vl = getnode write(l)
arr[2] = vl :
vl -= next = v2 = getnode_write{t) .
ve -= next = v3 = getnode write(7) :
v -> next = NULL
vl = getnode write(2) :
arr[3] = vl :
vl -> next = v@ = getnode write(8) :
ve = next = NULL .
vl = getnode write(2) ;
arr(d] = vl ;
vl -> next = vZ = getnode_write(8) .
ve -= next = NULL :
vl = getnode write(3)
arr[5] = vl ;
vl -» next = y2 = getnode write(8) ;
ve -= next = NULL
vl = getnode write{3) :
arr[6] = vl ;
vl -> next = vZ = getnode write(d) .
vZ -= next = NULL ;
vl = getnode_write{d) :
arr[7] = vl ;
¥l -> next = v2 = getnode_writeld) :
ve -» next = v3 = getnode writel(o) :
vi -> next = vd = getnode_write(7) :
vad <= next = NULL
dfs{l. arr) .

for(ly =0 @ 1 = MAX ; T++)

del(arr[i]} ;
getchi } ;



}
void dfs{int v. struct node **p)

{
struct node *g ;
visited[v - 1] = TRUE ;
printf{"¥d\t™. v) ;
q=*p+v-1):
whileiq != NULL)
{
if{visited[q -» data - 1] == FALSE)
dfs(q -> data, p) :
else
q=4g -> next :
}

}
struct node * getnode write(int val)

{
struct node *newnode ;
newnode = (struct node *) malloc(sizeof{struct node)) :
newnode -> data = val ;
return newnode

}
yoid del(struct node *n)

{
struct node *temp :
while(n !'= NULL)
{
temp = n -> next .
free (n ) :
n = temp :

}

In maini)y the function getwode_writed) is called several times 1o create the lists, Afer creaton of
each list the address of first node in the list is stored in an element of array arr which is array of
pointers,

When all the lists stand created the function dfs() is called that visits each vertex and marks it as
visited by storing a value in an array visited which is defined globally.

To deallocate the memory that is dynamically created. a for loop is executed by passing the elements
of array arr.

The graph G in figure below is represented by its adjacency list shown in Fig. 12.19. If a depth first
search is initiated from vertex Wy, then the vertices of G are visible in the order @ Wy, Vy, Wy, Vg, Vi, Vg,
V. Vs
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v, 2 S 3N

V, | 4 5N

v, 1 & TN

vV, 2 8| N

V. 2 8 | N

Ve 3 8| N

V. 3 8| N

Vi 4 5 f T{N

Fig. 12.19 Graph Represented by lis Adjacency List
Breadth First Search

This is another popular method to visit the vertices of graph systematically. This method starts from a
given vertex V. The vertex “V," is marked visited. All adjacent vertices of *V, are visited next. Then
one of the adjacent vertices of "'e"F‘ 15 taken up and its unvisited adjacent vertices are visited next. The
process continues uniil all vertices reachable from V" are visited. A breadth first search (BFS)
initiated from V" visits all vertices in "Vp' where "Y' denotes the set of all unvisited adjacent vertices
of *¥,". Next the process continues from any vertex in *V'. This method continues until all the vertices
adjacent to V" are fully explored. The algorithm for breadth first traversal has o maintain a hst of
vertices which have already been visited but whose adjacent vertices have not yet been explored. The
vertices whose neighbours are yet to be visited can be stored in a queue.

Algorithm for Breadth First Search This algorithm executes a breadth first search on a graph
G beginning at a starting node A.

1. Initialize all nodes to the ready state (STATUS=1).
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2. Put the starting node A in QUEUE and change its status to waiting state (STATUS=2).

Repeat steps 4 and 5 until QUEUE is empty.

4. Remove the front node N of QUEUE. Process N and change its status to the processed siatus
(STATUS=3).

5. Add to the rear of QUEUE all the neighbours of N that are in the ready state (STATUS=1}) and
change their status to the waiting state (STATUS=2).

6. Exit

Consider the graph G given in Fig. 12,20, Suppose we want 1o find all the nodes reachable from A
o J.

b

Fig. 12.20

During the execution of search we have kept the track of origin of each edge by using an array ORIG
together with array QUEUE.

a) Initially, add A 1o QUEUE and add NULL to ORIG as follows:

FRONT =1 QUELE = A
REAR =] ORIG =0

b) Remove the front element A from QUEUE by setting FRONT = FRONT+ | and add 10 QUEUE the
neighbours of A as follows:

FRONT =2 QUELE : A,F.C.B
REAR =4 ORIG:OAAA

¢) Remove the front element F from QUEUE by setting FRONT = FRONT+ 1 and add 1o QUEUE the
neighbours of F as follows:

FRONT =3 QUELE : A.F,C,B. D
REAR =3 ORIG:OAAAF

d) Remove the front element C from QUEUE and add to QUEUE the neighbours of C (which are in
ready state) as follows:

FRONT = 4 QUELE : A.F,C.B.D
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REAR =5 ORIG:0OAAAF

Note that the neighbour F of C is not added to QUEUE, since F is not in the ready state (because
F has already been added 1o QUEUE).

¢) Remove the front element B from QUEUE, and add to QUEUE the neighbour of B (the one in the
ready state) as follows:

FRONT = 5 QUELE :AFCBDG
REAR = 6 ORIG: O, A A A AFEB

Note that only G is added 1o QUEUE since the other neighbour, T is not in the ready state.

) Remove the front element I} from QUEUE and add 1o QUEUE the neighbour of D) {the one in the
ready state ) as follows:

FRONT = 6 QUELE: AFC,B. DG
REAR =6 ORIG . O, A A A AFB
g) Remove the front element G from QUEUE and add w QUEUE the neighbour of G (the one in
ready state) as follows:

FRONT =7 QUELE : A.FC.B.D.G. E
REAR =7 ORIG: 0. A A A FBG

h} Remove the front element E from QUEUE and add w0 QUEUE the neighbour of E (the one in ready

state) as follows:

FRONT = 8 QUELVE: A FC. B, D GE]]
REAR =8 ORIG: O A A A FBGE

We stop as soon as J is added w QUEUE, since J is our final destination. We now backtrack from J,
using the array ORIG to find path. Thus,

J—E&~GB+A
is the reguired path.

Analysis of Breadth First Algorithm Each vertex visited gets into the gueue exactly once, so
the loop for ever is inlegrated al most n times.

If an adjacency matrix is used then the loop takes m) times for each vertex visited.

The total time is therefore dn’).

/* Program that implements breadth first search algorithm. */

#include <stdio.h=
#include <conio.h>
#include <=alloc.h=
#define TRUE 1
#define FALSE 0
#define MAY 8§
struct node

|



}

int data :
struct node *next :

int visited[MAX]
int g(8] :
int front, rear :

void bfs(int, struct node **) .
struct node * getnode write(int) :

void addqueuelint) :

int deletequeuel ) :int isempty( } :

yoid del{struct noge *)
void maint

{

struct node *arr[MAX] :

struct node *vl, *v2, 6 W3, Wi .

mt 1

clrscri )
vl = getnode write(2)
arrf0] = vl :

vl -> next = v2 = getnode_write{3) :

ve -= next = NULL :
vl = getnode_write(l)
arril] = wl ;

vl -> next = vZ2 = getnode write(d) :
ve -= next = vl = getnode write{d) ;

vd -= next = NULL ;
vl = getnode_writell) .
arrid] = vl :

vl -> next = vZ = getnode_write(d) :
vé -> next = v = getnode_writel(7} :

w3 -= mext = NULL
vl = getnode_write(2) :
arr[3] = vl :

vl -= next = v2 = getnode_write(8) :

vZ -= next = NULL ;
vl = getnode write(2) ;
arr[4] = vl :

vl -> next = v2 = getnode_write(B) :

vZ -> next = NULL ;
vl = getnode write(3) ;
arr[8] = vl :

vl -> next = v2 = getnode write(8) ;
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n = temp ;
}
}

The working of functions getnode_write() and del() and arrays arr{] and visited[] is exactly the
same as of program in depth first search.

The function bfs() visits each vertex and marks it visited. The function isempty(), addqueue() and
deletequene() are called while maintaining the quewe of vertices,

SPANNING TREES

If ‘G’ is a weighted graph and “T,", “T," are two spanning trees of G, then the sum of weights of
all edges in “T;" may be different from that of “T;". A spanning tree *T" of "G where the sum of
weights of all edges in *T" is minimum is called the minimal cost spanning tree or minimal spanning
tree of G.

Trees can be defined as special cases of graphs. A tree may be defined as a connected graph without
any cycle. Some examples of graphs as trees are:

Fig. 12.21 Examples of graphs as trees

The only difference between general trees and trees defined here is that a tree defined as a special
case of graph does not have special vertex called root. In fact,
any vertex can be chosen as root. a

A sub-graph of a graph G=(V, E) which is tree containing all
vertices of “V' is called a spanning tree of ‘G". If "G’ is not
connected then there is no spanning tree of *G’. Now consider o
the graph G given in Fig. 12.22.

Two spanning trees of the above graph are shown in

Fig. 12.23,

Algorithms for Computing Minimal Spanning Tree 2 3
There are two popular algorithms to calculate mimmal cost e

spanning tree of a weighted undirected graph: Fig. 12.22

Kruskal’s Algorithm Kruskals algorithm functions on a list of edges of a graph where the list is
arranged in order of weight of the edges. It begins with a forest of *m’ trees if the graph has ‘m’



Fig. 12.23 Spanning Trees

vertices. The trees in the forest contain a different vertex of
the graph and no edges. One edge from the sorted list is
taken for connecting two forests in each step of the algonithm.
The edge 15 added if the incorporation does not form a cycle.
Once an edge is selected, i is deleted from the hist of edges.
the algorithm continues untl (n-1) edges are added 1o the list
of edges exhausted. When the algorithm ends after adding
(=1} edges, a minimum spanning tree is produced.
Consider the graph given in Fig. 12.24. There are eleven
edges. An edge connecting the vertices “i° and °J° may be
represented by a taple(i, j).
The list of edges of the graph sorted in non-descending
arder may be given by {(0, 2), {1, 2), (0, 1), (1, 3}, (2, 3), Fig. 12.24
(2, 53, (4, 6), (4, 5), (3, 6), (5, 6), (1. 4)}. The intial forest
can be shown by Fig. 12.25.
The first edge (0, 2) from the list of edges 15 taken into account. Since the addition of this edge does
not form a cycle, it can be added to change the partial minimum spanning tree as shown in Fig. 12.26.
(1,2} is the next edge to be considered. Inclusion of this edge does not result in a cycle and hence
it will be added to the partially formed minimum spanning tree as shown in Fig. 12.27.

® o% @,

®© @ @
® ® ®

® 6 ® © ® 6
® ® ®

Fig. 12.25 Fig. 12.26 Fig. 12.27




3 Data Structures Using C S

The next edge (0, 1) is not added to the partially formed tree as it forms a cycle. The next edge
(1, 3} is now taken into account. Since inclusion of this edge does not form a cycle, this edge can be
included and the partial minimum spanning tree is created as in Fig. 12,28,

If the next edge (2, 3) is added then a cycle 2-1-3-2 is formed. Therefore, this edge is not added to
the parually formed tree. The next edge (2, 5) 12 selected. Since inclusion of this edge does not form a
cyele, thas edge can be added and the partial minimal spanning tree 18 formed as shown in Fig. 12.29.

Mext, the edge (4, 6) is chosen. This edge can be added. Note that the result of each step of the
algorithm is not a tree but a forest. In fact, after a successful addition of an edge the number of foresis
decreases. The number of trees in the forest, after addition of edge (4, 6), 1s 2. [Fig. 12.30]

The next edge in the list (4, 5) can be added in the forest by merging the two trees creating a minimal
cosl spanning tree as shown in Fig. 12,31

O (0}, O
éﬁl D % OO 0
0’06 0°6 0’6

® ® .\o

(8)

Fig. 12.28 Flg. 12.29 Flg. 12.30 Fig. 12.31

Prim’s Algorithm Prim’s algorithm starts with any arbitrary vertex as the partial minimal spanning
tree “T". In each iteration of algorithm one edge (U, V) is added to the partial tree T so that exactly one
end of this edge belongs to the set of vertices in "I . Of all such possible edges, the edge having the least
cost is selected. The algorithm continues to add (n=1) edges. Consider the graph given in Fig. 12.32(a)
in which we start with vertex 0,

Fig. 12.32(a)
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SHORTEST PATH

As a final application of graphs, one requiring somewhat more sophisticated reasoning, we consider the
following problem: We are given a directed graph G in which every edge has a weight attached, and our
problem is to find a path from one vertex V to another W such that the sum of the weights on the path
15 as small as possible. We call such a path a shortest path.

Length of a path in a weighted graph is defined to be the sum of costs or weights of all edges in that
path. In general there could be more than one path between a pair of specified vertices, say “V," and
“¥;" and a path with the minimum cost or weight is called the shortest path from “V".to “V;", Note
that the shortest path between two vertices may not be unigue.

Consider the weighted undirected graph given in Fig. 12,33,

Fig. 12.33

It can be easily seen that there are more than three paths 0-1, 0-2-1, 0-2-3-1, from the ventex “IF
to the vertex “1’. The path with the shortest path length is 0-2-1. The length of the shortest path is 4.
There are many different variations of the shortest path problem. They vary with respect to the

specification of the start vertex (referred 1o as source) and end vertex (referred to as destination). Some
of the commonly known variants are listed below:

= The shortest path from a specified source vertex to a specified destination vertex.

* The shortest path from one specified vertex to all other vertices. This problem is also known as
single source shortest path problem.

* The shortest path between all possible source and destination vertices. This problem is also known
as all pairs shortest path problem.

= The shortest path can be determined using Kruskal's on Prim's algorithm.

APPLICATION OF GRAFPHS

Let us assume one input line containing four integers followed by any number of input lines with two
integers each. The first integer on the first line, n, represents number of cities which, for simplicity, are
numbered from 0 to n — 1. The second and third integers on that line are between 0 to n-1 and represent
two cities. It 1s desired to travel from the first city to second wsing exactly nr roads, where nr is the
fourth integer on the first input line. Each subsequent input line contains two integers representing two
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cities, indicating that there is a road from the first city 1 the second. The problem is to determine
whether there is a path of required length by which one can travel Irom the first of the given cities to the
second.

Following is the plan for solution:

Create a graph with the cities as nodes and the roads as arcs. To find the path of length or from node
A to node B, look for a node C such that an are exists from A to C and a path of length nr - 1 exists from
C 1o B. If these conditions are satisfied for some node C. the desired path exists, If the conditions are not
satisfied for any node C, the desired path does not exist.

The traversal of a graph like Depth first traversal has many imponant applications such as finding the
components of a graph, detecting cycles in an undirected graph, determining whether the graph is bi-
connecled, ele.

Summary

Graphs provide an excellent way to model the essential features of many applications, thereby
facilitating specificanon of the underlving problems and formuolation of algorithms for their solution.
Ciraphs may be implemented in many ways-—Dby the use of different kinds of data structures.
In many applications, edges are to be assigned costs or weights. Such graphs are known as
weighted graphs.
. There are various ways of representing a graph. Adjacency matrix of a graph is 8 matrix
i representation, Adjacency list of a graph is a linked-list representation.
There are two popular technigues for graph traversal—breadth first and Depth first.
% Two famous algorithms to complete a minimal spanning tree of a weighted graph are Kruskal's

and Prim’s algonthm.

¥ ®

Review Exesrcise

Multiple Choice Questions

I. A vertex with degree ong in a graph is called
a. A leal
b. Pendant vertex
¢, Adjacency list
d. Mone of the above
L In an adjacency mairix parallel edges sre given by
i, Similar columns
b, Similar rows
¢, Mot representable
d. Mone of the above
3. Breadih-first scarch
i, Scans all incident edges before moving to other verex,
b. Scans adjacent unvisited vertex as soon as possible,
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. Explain Adjacency list representation of the Graphs. Write Adjacency list representation of the graphs of

previous question,

Wrile a program that convens Adjacency matrix representation into jts adjacency list representation.
Expluin Adjacency multi list representation of a Graph.

What is a path matrix?

Explain Warshall’s minimal algorithm for finding the path matrix of a graph given its adjacency matrix.
What do you mean by traversal of any Graph?

Wnite depth first search algorithm for the traversal of any graph. Write a *C” program for the same. Explain
your algorithm’s ume complexity with the help of an example.

Explain breadth firsi search algorithm for the troversal of any graph with suitable examples. Define time
complexity of the algorithm. Write a *C” program for the same.

Another way to represent a graph is by its incidence matrix, There is one row for each vertex and one
column for each edge. Then INCY{ijl=1 if edge j is incident o vertex i. Write a program that converts
adjacency matrix representation of any graph to its incidence matrix representation.

Define spanning tree and minimal spanning tree. Write Kruskal's algorithm for finding minimal spunning
tree of any graph. Find the minimal spanning tree of the following graphs by Kruskal's algorithm,

b
Q

Wnite Prim’s algorithm for finding minimal spanning wee of any praph. Find the minimal spanning trees
of the graph of previous guestions by Prim's algorithm,

H:.rlcumidtﬁng the complete graph with n vertices, show that the number of spanning trees is at least
e
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Key Festures ! Man:r comparison based search opera-

% Hashing—An Introduction | tions cannot be made better than 0{log,n) time
@ Hash Functions complexity even on the average. For achieving
% Collision in Hashing | better performance, more efficient search
@ Collision or Conflict Resolution Techniques methods are required. Hashing is one such
% Open Addressing | method.
% Analysis of Open Addressing Hashing tries to compute the address where
# Chaining  Cha | an element is o be inserted or found in a table
‘i’:’ Analysis :al H"im" of Hashing Methods . by applying a hash function to a given key value,
&

Empirical Comparison of Hashing Methods ,

HASHING—AN INTRODUCTION

In varous sorting technigues we assumed that the record being sorted is stored in a table and it is
necessary (o pass through some number of kevs before finding the desired one. The search time of each
algorithm depends on the number of *n’ elements in the collection of data. Hashing or hash function
is a technique used 1o perform a search which is essentially independent of the number of elements, i.e.
n. Hashing provides a conceptually different mechanism to search a table for a given key value. In
hashing. the record corresponding to a given key value is directly referred by calculating its address
from key value.

The hashing function has one flaw. Suppose two keys K1 and K2 are hiK1) and hiK2). Then when
a record with key K1 is entered into the table, it is inserted at position h{K1). But when K2 is hashed,
because it can hash to the same value as that of K1, an attempt may be made to insert the record into the
same position where the record with key K1 is already stored. However, the two records cannot occupy
the same position. Such a sitwation is called a hash collision. Thus, the objective of a collision resolution
strategy is to locate an empty position as efficiently as possible, once the collision occurs.



HASH FUNCTIONS

The two principle criteria used in selecting a hash function are as follows: First, the function should be
very easy and quick 1o compute. Second, the function should, as far as possible, uniformly divide the
hash addresses throughout the available memory address range so that there are minimum number of
collisions. To compute various hashing functions we assume that there is a file F of m records with a set
k of keys which uniguely determine the records in F. Secondly, we assume that F is maintained in
memory by a table T of m memory locations, and that L is a set of memory addresses of the locations
inT.
Some of the popular hash functions are described below,

Division Method

In this method, we choose a number m {i.e. memory locations) larger than the number of n (1.e.
number of records) of keys in K (i.e. keys which uniguely determine records). The number of m is
usually chosen to be a prime number or a number without small divisors, since this frequently minimizes
the number of collisions. The hash function H is defined by:

L
HIK) = Kimod m) + 1

Here K (mod m) denotes the remainder when K is divided by m. The second formula is used when
we want the hash addresses to range from 1 to m rather than from 0 to m-1.

For example, a company has 68 employees and they have been assigned 4-digit employee number,
Assume L (memory addresses in the table) of 100 two digit addresses: 00, 01, 02..99. Applying the
above hash function, say, for employee numbers:

3205, T148, 2345

Here, we choose a prime number m close to 99, such as %97 then —

H(3205) = 4
H(7148) = 67
H{2345) = 17

That is, dividing 3205 by 97 gives a remainder of 4, dividing 7148 by 97 gives a remainder of 67, and
dividing 2345 by 97 gives a remainder of 17.

In the other case where the memory addresses begin with 0] rather than 00, we choose the hash
function:

H(3205) = 4+1 =5
H(7148) = 67+1 = 68

MID Square Method
When the key K is squared then the hash function H is defined by
HK)=1
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people are independent, the probabilities multiply. and we obtain that the probability that m people have
different barthday is
364 363 362 365 -m-1
3657365 365 365
This expression becomes less than 0.5 whenever m = 24,
With reference 1o hashing, the example above tells us that with any problem of reasonable size we are

almost certain o have some collisions. Our approach, therefore, should not only be to try to minimize
the number of collisions but also to handle those that occur as expeditiously as possible.

COLLISION OR CONFLICT RESOLUTION TECHNIQUES

Every hash function is likely to generate the same address for some set different key values. Suppose
we want to add new records R with key K to our file F but suppose the memory location H(K) is
already occupied. This sitwation is called collision. Therefore, one must know how 1o deal with such
situations. The collision resolution techniques fall in two broad classes:

* Open addressing
* Chamming

OPEN ADDRESSING

Linear Probing

Suppose, that a new record R with key K is to be added into memory table T, but that the memory
location with hash addresses H{K)=h is already occupied. One natural way to resolve the collision is o
assign R to the first available location. This collision resolution is called linear probing.

Linear probing is easy to implement but it suffers from “primary clustering™. A collision at any
particular address in the memory indicates that many keys are mapped to the same address. Therefore,
all keys mapped at that particular address will be clustered around the slot building up of long run of
occupied slots. This would increase the search and insertion time values.,

Clustering

One problem with linear probing is that it results in a situation called clustering. A good hash function
results in a uniform distribution of indexes throughout the array’s index range. Therefore, initially

records are inserted throughout the arrays, each room equally likely to be filled. Over time, however
after a number of collisions have been resolved, the distribution of records in the array becomes less and

less uniform. The records tend to cluster together, as multiple keys begin to contend for a single hash
function.

Thus, the main disadvantage of linear probing is that records tend to cluster—appear next to one
another,

Quadratic Probing

In this method, suppose a record R with key K has the address HiK)=h. Then instead of searching the
locations with addresses h, h+1, h+2..., we linearly search the locations with addresses -

h, h+1, h+4, h+9, h+16..h+i’...
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For example, consider the diagram given below:
Indexes Employee Records
Key = 14001 L Empty
Hash function *l 0l Record with Key = 44001
Key % 100
02 Empiy
To add record 03 Record with Key = 50003
04 Record with Key = 42004
05 Record with Key = 77005
6 Empiy
a7 Record with Key = 12007
08 Empity
. (1] Record with Key = 66009
1]
Empty
O
o9
Fig. 13.1 Rehashing
Counting Probes

As with other methods of information retrieval, we would like to know how many comparison of keys
occur on average during both successful and unsuccessful attempts to locate a record with given target
key. We shall use the word probe for looking at one item and comparing its key with the target.

The number of probes we need clearly depends on how full the table is. Therefore, (as for searching
methods) we let n be the number of items in the table, and t (which is same as HASHSIZE) be the
number of positions in the array. The load factor of the table = Load Factor (A) = nft. Thus, A = 0
signifies an empiy table; A = 0.5 a table is half full. For open addressing A can never exceed |, but for
chaining there is no limit on the value of . Hence, we consider chaining and open addressing separately.

ANALYSIS OF OPEN ADDRESSING

For our analysis of number of probes performed in open addressing, let us first ignore the problem of
clustering by assuming that not only are the first probes random, but after a collision, the next probe will
be random over all remaining positions of the table. In fact, let us assume that the table is so large that
all probes can be regarded as independent evenis.
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Let us first study an unsuccessful search. The probability that the first probe hits an occupied cell is
A, the load factor. The probability the probe hits the empty cell is (1-A). The probability that the
unsuccessful search terminates in exactly two probes is therefore A{1-4) and similarly the probability
that exactly K probes are made in a unsuccessful search is A% '(1-4). The expecied number UfA) of
probes in an unsuccessful search is therefore:

U(A) = Z KA (1= 4)
K=l
On further evaluation we obtain:

I I
UlA) = ”_“;ri =

To count the probes needed for successful search, we note that the number required will be exactly
one more than the number of probes in the unsuccessful search made before inserting the item. Now let
us consider the wable as being empty in the beginning, with each item inserted one at a time. As these
items are inserted, the load factor grows slowly from 0 to its final value A. It is reasonable for us o
approximate this step by step growth by continuous growth and replace a sum with integral—we
conclode average number of probes in a successful search is*approximately

i
1 1 1
S(A) = ;'L-! Uludy = 1 in =3
Similar calculations may be done for open addressing with linear probing where it is no longer
reasonable to assume that successive probes are independent. For linear probing the average number of
probes for an unsuccessful scarch increases to:

| |
_] o
2( +u—l}']

and for spccessful search number becomes

1 1
E(H {l—ﬂ,}]

Chaining involves maintaining two tables in the memory. First of all, as before, there is a wable T in
memory which contains the records in F. Now the table has an additional field LINK which is used so
that all records in T with the same hash address h may be linked together o form a linked list. If a new
record, say R, has to be added in the file F we place R in the first available location in the table and a
reference or a pointer of K is added o the linked list. When the linked list is soried, then the record is
inserted in the beginning. This is also called Separate Chaining.

Coalesced Chaining

This techmque 15 identical 10 hinear probe method except that all the kevs that hash to the same address
are linked together. Each node in the hash table has an additional field that will either hold the address of

CHAINING
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the expecied number of items—the one being searched s A=n/t. Hence, the average number of probes
for an unsuccessful search is A
MNow suppose that the search is successful. From the analysis of sequential search, we know that the
average number of comparisons is L2(K+1), where K is the length of chain containing the target
record. But the expected length of this chain is no longer & since we know in advance that it must
conlain at least one node (the target). The (a-1) nodes other than the target are distributed uniformly
over all chains; hence the expected number of chains with the target is 1+(n~1Wt. Except for the tables
of trivially small size. we may approximate (n=1)t by nft=A. Hence, the average number of probes for
a successful search is nearly
1
2

THEORETICAL COMPARISON OF HASHING METHODS

Table 13.1 gives the value of the above expressions for different values of load factor.

(Kel)=L(+A+1)=1412

| =

Table 13.1 Theoretical Comparison of Hashing Methods

Load l’au.Em_r .10 (1L.50 (50 {05 099 2088
Swccesslul search, expected number of probes,

Chadinkrg 1.0% 1.25 140 1.45 1,50 200
Open, Random Probes .05 1.4 0 26 4.6 -
Open, Linear Probes 1.0 1.5 3.0 5.5 50.5 -
Unsuceesful search, expected number of probes,

Chaaning: 0,10 .54 LRV 090 099 2.0
Open, Random Probes 1.1 2.0 5.0 10 ] -
Open, Linear Probes 1.12 5 13 50 SO0

Several conclusions can be drawn from Table 13.1. First, it is clear that chaining requires fewer
probes than addressing. On the other hand, traversal of linked list is usually slower than array access,
which can reduce the advantage specially if key comparison can be done quickly. Chaining comes into
own when the records are large and comparisons of keys takes significant time. Chaining is especially
advantageous when unsuccessful searches are common since with chaining an empty list or very short
list may be found, so that ofien no key comparisons need 1o be done at all to show that a scarch is
unsuccessiul.

With open addressing and successiul searches the simpler method of linear probing is not significantly
slower than more sophisticated methods, at least until the table is almost completely full. For unsuccessful
searches, however, clustering quickly causes linear probing to degenerate into long sequential search.
We might conclude therefore, that if searches are quite likely to be successful and the load factor is
moderate then linear probing is quite satisfactory, but in another circumstances other methods must be
used.



EMPIRICAL COMPARISON OF HASHING METHODS

It is important to remember that the computations given in earlier table are only approximate and also
that in practice nothing is completely random so that we can always expect some difference between
the theoretical computations and the actual results. For the sake of comparisons, therefore, the table
below gives the results of one empirical study, using 900 keys that are pseudorandom numbers between
(0 and 1.

Table 13.2 Results of Empirical Study

Load Factor 0.1 0.5 0.8 .9 0.99 2.0
Successful search average number of probes

Chaining 1.064 1.2 1.4 1.4 1.5 20
Open, Quadratic Probes 1.0 1.5 2.1 2.7 52 -
Open, Linear Probes 1.05 1.6 34 6.2 21.3 -
Laoad Factor i1 0.5 0.8 0.9 .99 20
LUnsuecessful search average number of probes

Chaining 010 .50 (.80 .94 099 2080
Open, Quadratic Probes 1.13 22 52 R 126 -
Open, Linear Probes I.13 2.7 154 M8 430

In comparison with other methods of information retrieval, the important thing 1o note about all these
numbers is that they depend only on the load factor, not on the absolute number of items in the table.
Retneval from a hash table with 20,000 items in 40,000 possible posinons is no slower, on average, than
15 retrieval from a table with 20 items in 40 possible positions. With sequential search a list 1000 times
the size will take 1000 times as long to search. With binary search this ratio is reduced to 10 (more
precisely o lg 1000) but still the time needed increases with the size, which it does not with hashing.

Finally, we should emphasize the imponance of devising a good hash function—one that executes
quickly and maximizes the speed of keys. If the hash function is poor, the performance of hashing can
degenerate 1o that of sequential search.

Summary
[ & A hash table is a data structure that is often used to implement many abstract data (ypes or,
DICTIONARY ADT.
& Hashing is a process of computing the address where an element is to be inserted or found in a
table by applying a hash function to a given key value.
Many different hash functions and collision resolution technigues are available like division method,
folding, etc., which distribute the keys uniformly to the slots of the hash table.
& There are two broad categories of collision resolution techniques—open addressing and chaining.
Some of the imponant open addressing methods include linear and quadratic probing, double
hashing, etc. Important chaining methods include separate chaining, coalesced chaining, and
bucket chaining.

: & :
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Review Exercise . 9.0 ﬁi_

Multiple Choice Questions

. What is not true about hashing?
a. Also called KAT
b. It is an algorithm producing address given a key
c. ISAM is a technique for hashing
d. All are troe

2 What is not true aboul collision?
a. It occurs when two or more keys produce same address
b. Every hashing algorithm may produce it
¢. Another hashing function may be used o resolve collision
d. All are true

3. Folding is a method of generating
a. index function for a triangular matrix
b. header node for a circularly hinked list
€. a hash function
d. None of the above

4. The technigue of linear probing for collision resolution can lead to

a. clustering
b, radix son
¢, efficient storage utilization
d. overflow
5. In which collision processing method, it is not required to detect a given list position if it is occupied or
mot.
. Quadratic b. Linked
¢, Rehashing d. Mone of the above
Fill in the Blanks
1. Application of a hash function, o a record key, resulis ina valve knownasa ___ (hash key / hash
index ).
2. Hashing takes key as input and gives — of key as output (address [/ value).
3. Division remainder method isa ________ techmique (collision / hashing),

4 occurs when hashing produces same address for two different keys (collision / probing)
5 I collision processing method the kev causing collision is kept at first vacant position

(linear / quadratic).
Il.lu whether True or False

. Hashing 15 also known as KAT.
1 Division remainder method of hashing uses a prime nomber to arrive at sddress,
3, Folding method of hashing rules out the possibility of collision.
4. There is no hashing method without the possibility of collision.
5. Multiple hashing uses more than one hashing function 1o resolve collision,
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String Processing

Key Features

= Introduction to Strings

£ Representation of Strings through Arrays

L Representation of Strings through Linked Lists
& String as.an ADT

% String Operations

& Pattern Matching Algorithms

% Improvements on the Pattern Matching

A wide variety of applications from
different domains such as word processing,
computer graphics, etc. involve manipulation
of text. Text can be treated as a stream of
symbols and is often referred to as a string.
Therefore efficient representation and
handling of strings play an important role in

Algorithms data structure.

INTRODUCTION TO STRINGS

A string is defined as a list whose entries are characters. Examples of strings are—*This is a string” or
‘Name’. Thus a finite sequence S of zero or more characters is called a string. An empty string is
denoted by’ *. A string may be represented by an array or linked list.

REPRESENTATION OF STRINGS THROUGH ARRAYS

A string of characters having length ‘n° can be implemented by a one dimensional array of ‘n’
elements where the i element of the array stores the i element of the string. Type declaration for
such a string would be:

typedef struct string
4

int length:

char str[1000];
I string:

In such a representation there must be a defined maximum length of the strings to be manipulated.
The actual length of a string varies and can only be known during execution. But in this representation
the maximum length has to be specified. If the maximum length is too big, then substantial wastage of
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memory occurs, On the other hand if the maximum length 1s small, then it will not be possible 1o store
strings with lengths more than the maximum specified.

The advantage of such a representation is that the array elements may be directly accessed and this
could speed up several operations on strings.

REPRESENTATION OF STRINGS THROUGH LINKED LISTS

An alternative mode of representation of strings is through linked lists. A string represented by a linked
list is identified by a pointer to the linked list. Each node in the list contains symbol and a pointer to the
next symbol in the string. The pointer of the node containing the last symbol in the string is set to null,
Thus, the string points to the first symbol and the list is to be traversed to get all of its symbols. In this
case a string may be declared as

typedef struct string
iﬁ

char symbol:

struct string *next:
} string;

Consider the string “abbacabca”. The array representation of the string is shown in Fig. 14.1.

alblb|laljclalhb|c]|a

Fig. 14,1 Armay Representation of the String

The linked list representation of the string is shown in Fig. 14.2.
h .[ i) |y s B |

r—llli:' i

—=l =t |k L —e{ @ ]

Fig. 14.2 Linked List Representation of the String
STRING AS AN ADT

The string with zero characters is called an empty string or the null string. Specific strings will be
denoted by enclosing their characters in single quotation marks. The quotation marks will also serve as
string delimiters. Hence,

“‘THE END" “TO BE OR NOT TO BE'

are strings of 7 and 18 lengths respectively.,
There are several operations which typically arise in the context of string manipulation.

STRING OPERATIONS

Although a string may be viewed simply as a sequential or linear array of characters, there is a fundamental
difference in use between strings and other types of armays. Specifically, groups of consecutive elements
in a string (such as words, phrases and sentences), called substrings, may be units in themselves.
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For example,

LENGTH("COMPUTER )= B
{* Program to find out the length of a given string */

maine
{
char str[20];
int 1, length=l;
printf("Enter the string :7);
scanf("¥s, str):
for{i=0; str[i] !'= "\0"; 14}
length+;
printf("Length of string is ¥d\n™, length):

}
PATTERN MATCHING ALGORITHMS

There are many pattern matching algorithms to decide whether or not a given string pattern P appears in
a string text T. We assume that the length of P does not exceed the length of T.

Brute Force Algorithm

This is one of the most simple algorithms for string searching. It starts by scanning the text from its 0%
index and checks whether pattern matches the text from that position. To check whether match occurs
or not, all the first “m" characters in the string from its 0™ position are compared one by one to all “m”
characters of the pattern. During these comparisons if (0 + k)™ character of the text is not the same as
the k™ character of the pattern (0 €k € m) then a match cannot occur from the 0™ position of the
string. It then becomes necessary to find the match starting with 1 position or index of the string. This
process continues until a match 1s found starting from the i"™ position of the text or till the text is
exhausied. The latter case indicates that the pattern is non-existent in the text.

The following *C’ function is based on the brute force algorithm. The parameters “s” and “p” are
declared as armay of characters—"s" denotes the text and “p” denotes the patiemn.

/* Pattern searching using Brute Force algorithm */
int brutestringsearchichar *s, char *p)

{

nt 1. 3. k. omon;
n = strien(s);
m = strienip);

for{i=0; i==n-m; j++)

{
J=0:
k=1
while((s[k] == p[j]) && (j<m))
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{
£k
JjHt
}
1F( j==m)
return i;
t
returni-1)

}

Consider that § = “xxxxxx™ and ‘p" be “xxxy™. It is clear that starting from any position of the text
one has to make all four character comparisons to detect a mismatch. This is because the mismatch is
detected only after the last character of the pattern is compared to the corresponding character of the
string. In this example, exactly (n-m+1) * m number of comparisons are required where ‘n” and ‘m’
are lengths of text and pattern respectively.

In practice however, a mismatch will be detected much earlier than all “m” comparisons which will
reduce the average case complexity of this algorithm.

Knuth-Morris Pratt Algorithm

Knuth and Pratt developed another algonthm for siring searching. The algorithm runs in ({n+m) worst
case nime which 18 much better than the worst case complexity of the Brute-Force algorithm.

Knuth-Morris algorithm avoids many redandant comparisons, which brute force algorithm would
have performed. Consider a string “xyyyyx"” and the pattern “xyyxy™. At first, the brute force method
tries to match the pattern “xvyxy™ with the text beginning from the 0™ index. The comparison between
s[3] and pl3] results in a mismatch. Once this mismatch occurs the Brute Force algonithm would blindly
proceed to check for a possible match starting from the index one to the text. So the next companson
to be performed by the Brute Force method is between the 0™ character of the pattern (i.e. *X") and the
1* character of the string (i.e., ‘y").

Considering the available information at the end of the 0™ trial (starting from the 0™ index of the text),
this companson becomes unneécessary. After the comparisons made in the initial trial, it 15 already
known that the first three characters of the pattern are the same as the first three characters of the string
(as the fourth comparison resulted in a mismatch).

Moreover, since the pattern is known, it is also known that the first two characters in it {‘x” and “y’
respectively) are distinct, Using this knowledge about the patiern and the knowledge that the first three
characters of the text have matched with those of the pattern, it can be safely concluded that the first
two characters in the siring must be distinct (as they are "x" & "y’ respectively). 5o the 0™ character in
the pattern must be distinct from the 1* character of the text.

Therefore, without making any more character comparison, it can be concluded that the trial starting
from the 1 position of the text is bound to result in a mismatch,

The Brute Force algorithm does not attempt to make use of such acquired knowledge. It would
blindly go for trial from the index one of the text and will detect a mismatch only after making at least
one comparison (between the 1% character of the string and the 0" character of the pattern),

* Function declared for the Knuth-Morris Pratt algorithm =/
int ¥MP(char *s, char *p)
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int i, j.om, on;

n = strien(s)

m = strienip);

for(i=0; j=0: 1<n &% jam: i++; j++)
while({j==0) && (s[i)!=p[jl})

j = next[j];
1T j==m)

rewun 1-m:
glse
return -i

A
i

Analysis of Brute Force and Knuth-Morris Pratt Algorithm

Searching for a pattern in a text 15 an imporant and significant problem. The simple Brute Force algorithm
which accomplishes this task is computationally expensive. If ‘m” and “n” are lengths of the pattern and
the text respectively then the nme complexity of Brute Foree string searching algorithm is {mm).

Enmuth-Morns Pratt algonthm examines the pattem 1o exploil penodically the substnings in the pattern,
This algorithm first computes a “next” table and then uses this table to search the patiern in a text. The
time complexity of KMP algonithm is ({m+n).

IMPROVEMENTS ON THE PATTERN MATCHING ALGORITHMS

There are several improvements that can be effected:

= T avond the sitwation where length of the pattern is greater than the remaining length of the siring
but the algorithm is still searching for a match.

* To check whether first and last characters of pattern match with those in string before checking
the remaining characters of pattern.

A significant improvement of performance may be achieved if the pattem is matched against the
string from right to left. On a mismaich the pattern may be shified right possibly skipping few trials.

This idea leads to a right to left Brute Force string searching algorithm. Combining these algorithms
with & right to left version of KMP algorithm vields a much betier algorithm known as Boyer-Moore
algorithm. Although the worst case time complexity of Bover-Moore algosithm O{m-n), its average
complexity is ({n/m).

Boyer-Moore Algorithm
Let 's" be “abaabcabbebabbababb™ and “p’ be “bababb™. Let *x" and *y' store the lengths of ‘p” and °s’
respectively. So, x=0 and y=19.

In this algorithm, the occurrence of a pattern is searched from right to left. This, the 0% match starts
by comparing p{x-1) with six-1) and continues to the left until the comparison fails or p[}] becomes
equal to s{0].

In our example, the 0™ match starts by companng s|5] with pl5] as x=5, As &[5]="c” and p[5] = b’,
the companson fails. Not only this, all matches starting from index "0 to index 5" of 's" will fail. This
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while(jl= 0)
{
0 = PAT;
ro= Save;
if(q — data == j — data)
{
whilelp - data == r - data 8& p '= q)
{
p=p—= link:
rer - link;
}
If{p — q)
{
1 = 5ave;
return;
}
save = save —  link;
j=3= link:
]
}
Analysis of Algorithm

If we apply NFIND to the strings 8 = "aa ... a"; and PAT = ‘a ... ab":, then the computing time for these
inputs is O{m) where m = length(s} which is far better than FIND which required O(mn). However,
the worst case computing time is O{mm).

PAT

a
T
p

s
a 1} a b a b b i i b a8 a8 mo maich
T T 1
q T i
a b a b b f i b a a no match
T T
r J
a b a b b a a b a a parilal maich
1 T
r i
B b a8 b b a a b a a rio atch
T T
r i
a b a i} 4] a a 4] a a N matzh
T 1
@ b a b b a a b & a EUCCRSS

L) T

j
Fig. 14.4 Acton of NFIND on § and PAT



Hidden page



CHAFTER

1 5 Storage Management

Key Features I |
! n the earlier chapters we made use of data
% Dynamic Storage Management—An structures that required some form of memaory
. management in order 10 handle requests for
| @ Compaction of Blocks of Storage allocation and release of memory. When the
@ First-Fit Method lists and tree structures were discussed, we
i g m:‘m saw that nodes were simply created but it
; -Fit Method wias not considered how these nodes will be
| @ Comparison between First-Fic and Best-Fit ' released when they were no longer needed.
; This chapter discusses some of the tech-
' g Buund.:'r Tag Method niques and algorithms that can be used to pro-
& EHMI m:l vide vanous levels of storage management and

control compatibility.

DYNAMIC STORAGE MANAGEMENT—AN INTRODUCTION

In many cases. we assumed that storage is allocaied and freed one node at a time. There are two
characteristics of nodes that make the above methods suitable. The first is that each node of a given type
is of fixed size and the second is that the size of each node is fairly small. Bul in some cases a program
might require a large amount of contiguous storage which would be difficult to obtain one block at a
time, of a4 program may reguire storage blocks in a large variety of sizes. In such cases, memory
management sysiem musi be able 10 process requests for variable length blocks. Thus processing
certain types of data structures efficiently requires dynamic storage management capability.

Consider a small memory of 1024 bytes. Suppose a request is made for three blocks of storage of
348, 100 and 212 bytes. Let us assume that these blocks are allocated sequentially.

0 Block-1 348 Block-2 438 Block-3 4670 1021
348 Bytes 110 Byvies 212 Bytes Free space 354 Bytes

Fig. 15.1
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Now let us suppose that the second block of 110 bytes is set free. Although there are now 464 bytes
of free space, a request of 400 bytes could nol be satishied since the free space is divided into non-
contiguons blocks.

If block three is set to be free, it is not desirable to retain three free Free space
blocks of 110, 212 and 354 bytes. Rather the block can be combined 348 Bytes | 676 Bytes
inio a single large block of 676 bytes so that large memory requests can
be further satisfied. After combination they appear in two fragments of Fig. 15.2

that of size 348 bytes and 676 bytes respectively,

COMPACTION OF BLOCKS OF STORAGE

Initially, memory is a large block of available storage. As requests for storage come, blocks of memory
are allocated sequentially, starting from the first location of the memory. A variable freepoint is used to
store the address of the first location following the last allocated block.

When a block of size n is allocated, freepoints are increased by ‘n’. This continues until a block of
size nis requested and thus freepoint + (n=1) 15 the highest address of the memory.

For compaction, a block of storage routine or system compaction routine is brought into action and
all other routines are terminated. Such a routine copies all allocated blocks into sequential memory
locations starting from lowest address in the memory. Thus, all free blocks which were interspersed are
eliminated and a freepoint is set 1o the sum of size of all allocated blocks. When such a technique is used,

special care must be taken to ensure that the pointer value is comect. Therefore, in order to have
successful compaction there must be a method to determine if contents in a given location are addresses.

A compaction routine requires a method that can compute address as offset from the base address.
Compaction routine also requires a method by which size of the block and its status could be determined.
There are two drawbacks of compaction roatine:

* This technique stops all other user processing while the compaction of blocks takes place.
* There is problem of pointer maintenance.

Consider a memory as fragmented below:

0 348 458 670 1023
L
110 bytes 154 bytes
Mbytes | g e | 212byims | e
Fig. 15.3

MNow, if a request is made for a block of 250 bytes the free space of 354 bytes or the location 670
through 920 would be used.

i 344 454 a7l 920 1023
110 bytes MNew block 104 bytes
348 bytes free space 212 bytes 250 bytes free space

Fig. 15.4
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Again, if we consider the memory before aflocating space for new block and now if a request for a
block of 50 bytes comes, the request could be satisfied by either the block of 348 bytes or the block of
size 110 bytes or the block of size 250 bytes. In each, a part of a free block becomes allocated, leaving
the remaining portion free.

Every time that a request is made for storage, a free area large enough to accommodate the size
requesied must be allocated. The most obvious method for keeping track of the free blocks is to use a
linear linked list. Each free block contains a field containing the size of the block and a field containing
a pointer to the next free block. These fields are in some uniform location (say, the first two words) in
the block. If p is the address of free block, the expression size(p) and next(p) are used to refer to these
two gquantities. A global pointer to freeblock points to the first free block on this list. Let us see how
blocks are added on (o this list when they are freed.

Consider the situation in the figure given below:

0 348 458 670 1023

110 bytes 154 bytes
free space 212 bytes free space

Fig. 15.5

345 bytes

Figure 15.5, when reproduced to show the free list can be seen from Fig. 15.6.

0 148 458 670 1023
10 bytes 354 byies
348 bytes free space 212 bytes free space
Fig. 15.6

There are several methods of selecting the free block to use when processing a request for storage.
Important among these methods are;

» First Fit Method
+ Best Fit Method
* Worst Fit Method

FIRST-FIT METHOD

In the first fit method, the free list is traversed sequentially to find the first free block whose size is larger
than or equal to the amount of memory requested. Once the block is found, it is allocated to the
requesting application (if it is equal in size to the amount requested) or 18 spht into two portions (if it is
greater than the amount requested). The first of these portions remains on the list and the second is
allocated. The reason for allocating the second portion rather than first is that the free list next pointer
is at the beginning of each free block, By leaving the first portion of the block on the free list, this pointer
need not be copied to some other location and the next field of the previous block in the list need not be
changed.
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Whereas under best-fit method the block of size 54 15 split as shown in Fig. 15,10,

] 348 458 HT0 H94 T24 1023

¥

. 110 bytes | . 29 bytes R _ ]

348 bytes frec space 212 bytes free space 25 bytes 30 bytes .'
Fig. 15.10

Now again, if a block of size 100 is requested, the request can be fulfilled under best-fit, since a block
of size 110 is available, but it cannot be fulfilled under first-fit. This illustrates an advantage of the best-
fit method, in that large free blocks remain unsplit so that requests for large blocks can be satisfied. In
the first-fit method, a very large block of free storage at the beginning of free list is nibbled away by
smiall requests so that it is severely shrunken by the time large requests arive.

However, there may be some conditions where the first-fit method succeeds and best-fit fails. For
example, consider a case in which sysiem begins with free block of size 110 and 54 and then makes
successive requests for 25, 70 and 50 words.

Figure 15.11 illustrates that first-fit method succeeds in fulfilling these requests whereas the best-fit
does not. The reason is that remaining unallocated portions of blocks are smaller under best-fit than
under first-fit.

Blocks remaining
Request First-fut ¢ Best-fit
Initially | 110, 54 110, 54
23 ES, 54 104, 29
o 15, 54 40, 29
il I35, & Cannot be fulfilled
Fig. 15.11

WORST-FIT METHOD

Another method of allocating block of storage is the worst-fit method. In this method, the system
always allocates a portion of largest free block in memory. The basic idea behind this method is that by
using a small number of very large blocks repeatedly to satisfy the majority of requests, many moderately
szed blocks will be left unfragmented. Thus, this method is likely 1o satsty a larger number of requesis
as compared to the other methods, For example, if memory initially consists of blocks of sizes 200, 300
and 100 the sequence of requests 150, 100, 125, 100 and can be satished by worst-fit method bt
neither by the first-fit nor by the best-fit method.

The major reason for choosing one method over the other is efficiency. In each of the methods the
search can be made more efficient. For example, a true first-fit which allocates the block of lowest
memory address first, will be most efficient if the available list is maintained in the order of increasing
memory address. On the other hand, if the available list 15 maintained in the order of increasing size,
a best-fit search for a block becomes more efficient. And finally, if the list is maintained in order of
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decreasing size, a worst-fit search requires no searching as the largest block is always first on the
list.

BOUNDARY TAG METHOD

It is desirable to eliminate all searching during liberation to make the process more efficient. One method
of doing this comes at the expense of keeping extra information in all blocks (both free and allocated).

A search is necessary during liberation to determine if the newly freed block may be combined with
some existing free block. There is no way of detecting whether such a block exists or which block it is,
without a search. However, if such a block exists, it must immediately proceed or succeed the block
being freed. The first address of block that follows the block of size n at alloc is alloc+n. Suppose that
every block contains a field flag that is true if the block is allocated and firee if the block is free. Then
by examining flag (alloc+n). it can be determined whether or not the block immediately following the
block at alloc is free.

It is more difficult to determine the status of the block immediately preceding the block at alloc. The
address of last location of that preceding block is of course alloc-1. But there is no way of finding the
first location without knowing its size. Suppose each block contains two flags fllag and bflag. Both of
these are true if a block is allocated and false otherwise. The Mag is at a specific offset from the front
of the block and bflag is at a specific negative offset from the back of the block. To access both (flag
and bifag, the first and last location of the block must be known. The status of the block must be
known. The status of the block following the block at alloc can be determined from the valoe of fflag
(alloc+n) and the status of block preceding the block at alloc can be determined from the valoe biflag
(alloc-1).

A list of free blocks is still needed for the allocation process. When a flag
block is freed, its neighbours are examined. If both blocks are allocated,
the block can simply be appended to the front of the free list. If one (or
both) of its neighbours is free, the neighbours can be removed from the next
free hist combined with the newly freed block, and the newly created prev
large block can be placed at the head of the free-list. This could reduce

siFe

the search time under firsi-fit allocation as well, since a previously unused
allocated block is likely to be large enough to satisfy the next allocation bsize
request. bflag

To remove an arbitrary block from the free list (to combine it with a
newly freed block) without traversing the entire list, the free list must be FREE BLOCK
doubly linked. Thus, each free block must contain two pointers mext Mag
and prev to the next and previous free blocks on the free list. It is also

_ : . used for
necessary to be able to access these two pointers from the last location
nan-5ystem

of a free block (This is needed when combining a newly freed block purposes
with a free block that immediately precedes it in memory). Thus, the
front of free block must be accessible from its rear. One way to do this bilag
15 to introduce absize field at a given negative offset from the last location Fig. 15.12

of each free block. The figure below illustrates the structure of free and

allocated hlocks under this method which is called, Boundary Tag Method. Each of the control fields
(fMag, size, next, prev, bsize and bflag) are shown as occupying a complete word.
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Garbage collection is usually done in two phases. The first phase called the marking phase involves
marking of all nodes that are accessible from the external pointer. The second phase called the collection
phase which involves proceeding sequentially through memory and freeing all nodes that have not been
marked.

Therefore, it can be said that first, the computer runs through all lists, tagging those cells that are
currently in use and then the computer runs through the memory, collecting all untagged space on to the
free-storage list. The garbage collection may take place when there is only some minimum amount of
space left in the free storage list and when the CPLU 15 idle and has time o do the collection.

r Summary .
Storage is a precious computer resource and its effective management is critical for enhancing the
operational efficiency. There are several strategies employed for dynamic storage management. |
Memory treeing refers to the release of an allocated block of storage and its return to the free list. |
In the first-fit allocation algorithm the block that is allocated is the first block that is found w be |
larger than or equal to the requested amount.

BE *®

& The best-fit method does not use the first sunable block found but instead continues searching |
the list until the smallest suitable block is found. [
& Boundary tag method is a procedure 1o free a block which uses doubly linked list structure for |
the available list. '
& Garbage collection is the process of collecting all unused nodes and returning them to the available |
Space. i
Review Exercise RS -

Multiple Choice Questions
. Compaction is
a, Compression of information fields of a list
b, Moving all memwry locations currently in use into single contiguous region of memory
¢. Conversion of a link list to an array
d, Mone of the above

State whether True or False

1. First-fit technique is used in memory management.

2 Garbage collection is about freeing dynamically allocated memory when not in usc.
3 Imernal fragmentation is a big dissdvantage of buddy system.

4. The term liberation is the process of agaun allocating an allocated block of storage.

Descriptive Questions

I. Implement the first-fit, best-fit and worst-fit metheds of siorage allocation as follows: Write a function
gethlockin) that refurns the address of block of size o that 1= available for allocation and modifies the free
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list appropriately. The function should utilize the following variables memsize, the number of locations in
memory [memsize], an array of integers representing the memory, freeblock, a pointer o the first location
of the first freeblock on the list.

The value of size(p) may be obtained by the expression memory(p} and the value of nextip) by the
expression memory[p+1].

Implement the boundary tag method of liberation as a C function as in the above exercise. The values of
size(p) and bsize{p) should be obtained by the expression abs(memory [pl), fflag(p), and bflagip) by
(memory{p] > 0) next (p) by memory[P+1] and previp) by memory[P+2].

. How could the freelist be organized o reduce the search nme in best-Nit method? What liberation algorithm
would be used for such a freehst?

. Prove formally (using mathematical induction) that in binary buddy system

a. there are 2* possible i blocks. .

b. the starting address of i-block is an integer muliple of 2'.

. Implement a binary buddy system as a set of C program.
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APPENDIX

Mathematical Concepts
for Data Structures

Key Features T _ o _
his appendix discusses important math-
% Matrix ematical concepts which have been used in
& Polynomials many applications. There are many math-
% Sum of Powers of Integers ematical results which are used in algorithm
g Harmonic Numbers anaysis.
The concept of logarithms is used to provide
& Permutations, Combinations, Factorials :
& N aconvenient way to handle very large numbers

whereas the concepts of Fibonacci and Catalan
i numbers are additional topics included in this
chapter.

@& Catalan Numbers

MATRIX

A matrix is a rectangular arrangement of numbers, arranged in rows and columns. For example,

6 o> e

Each number or entity in a matrix is called its element.
FPlural of matrix is matrices.

Order of a Matrix The order of a matrix = Number of rows in it * Number of columns in it;

For example, if a matrix has m rows and n columns, its order is written as m X n (read as m by n).
Consider the matrix

2 1 5y =— 1" row
3 -2 7

I

[ st 2nd 3rd
column column  column

— 2™ row
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It has 2 rows and 3 columns; hence its order = 2 = 3 (read as 2 by 3)
[Mote While stating the order of a matrix, the number of rows is given first followed by the number of columns. ]

Notation: Matrices, in general, are denoted by capital letiers. For example, if A is a matrix with m
rows and n columns, then it is writlen as A
Similarly, B,, 4 denotes a matrix B with 2 rows and 3 columns.

Types of Matrices

Row Matrix A matrix, which has only one row, is called a row matrix. For example,

[a b] =—  Single row Since, this matrix has 1 row and 2 columns,
I T its arder = 1 % 2 {1 by 2)
lu Il'lli

column  column

Similarly, [a bc ] is a row matrix of order 1 x 3.
A row matrix is also called a row vector,

Column Matrix A matrix which has only one column is called a column matrix. For example,

a — 1" row Since, this matrix has 2 rows and 1 colomn,
[h] — g o its order = 2 = 1 (2 by 1).
Single
colummn
a

Similarly, | b | is a column matrix of order 3 = 1.
¢

A column matrix is also called a column vector.

Square Matrix A matrix which has equal number of rows and columns is called a square matrix.
For example,

a by =— 1* row Since, this mairix has 2 rows and 2 columns,
[ﬂ l.i] — 2 e IlSDIdEr:IHItEh‘-,rE}
1‘-' zrllj

column  columin
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5 7 4
Similarly, | 2 =1 0 |15 a sguare matrix of order 3 = 3.
0 3 4

Rectangular Matrix A matrix in which the number of rows are not equal to the number of columns
(i.e., m # n), is called a rectangular matrix. For example,

(2 4 T] 31

th 2
I & 5

17
order is 2 % 3 order is 3 x 2

Zero or Null Matrix  If each element of a matrix is zero, it is called a zero matrix or a null matrix.

For example,
oy (00
[0 0] [{:J‘ [ﬂ U]" etc.

Diagonal Matrix A square matrix, which has all its elements zero except those on the leading (or
principal) diagonal, is called a diagonal matrix. For example,

2 0 (02 o
0 3 . - + BIC.
0 0 3
{Leading (principal) diagonal means; the diagonal from top left to bottom right).

Unit or Identity Matrix A diagonal matrix, in which each element of its leading diagonal is unity
(i.e., 1) and all other elements are zeros, is called a unit or identity maitrix. It is denoted by 1. In other
words, 1t 15 a square matrix, in which each element of s leading diagonal is equal to 1 and all other

remaining elements are zero cach. For example.

I 0 0
o u1u]|
'|:|I1 s EIC,

00 1)

Transpose of a Matrix

Transpose of a matrix 15 the matrix obtained by interchanging it rows and columns. If A 15 4 matnx,
then its transpose is denoted by A'. For example,

2 0
lfﬁuzalm'tlrnn Al=3 4
- . LREn 115 SN -
0o 4 71" pose L7
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MULTIPLICATION OF MATRICES

Two matrices A and B can be multiplied together to get the product matrix AB, if and only if, the number
of columns in A (the left hand matrix) is equal 1o the number of rows in B (the right hand matrix).

Step 1:  Multiply every element of 15t row of matrix A with corresponding element of 15t column of
B and add them to get the first element of the st row of the prodect matnx AB,

Step 2:  Muliiply every element of st row of matrix A with corresponding element of 2nd column of
B and add them t